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Abstract: In this study, we investigated the operational characteristics of AlGaN/GaN high electron
mobility transistors (HEMTs) by applying the copper-filled trench and via structures for improved
heat dissipation. Therefore, we used a basic T-gate HEMT device to construct the thermal structures.
To identify the heat flow across the device structure, a thermal conductivity model and the heat transfer
properties corresponding to the GaN, SiC, and Cu materials were applied. Initially, we simulated
the direct current (DC) characteristics of a basic GaN on SiC HEMT to confirm the self-heating effect
on AlGaN/GaN HEMT. Then, to verify the heat sink effect of the copper-filled thermal structures,
we compared the DC characteristics such as the threshold voltage, transconductance, saturation
current, and breakdown voltage. Finally, we estimated and compared the lattice temperature of
a two-dimensional electron gas channel, the vertical lattice temperature near the drain-side gate
head edge, and the transient thermal analysis for the copper-filled thermal trench and via structures.
Through this study, we could optimize the operational characteristics of the device by applying an
effective heat dissipation structure to the AlGaN/GaN HEMT.

Keywords: GaN; high electron mobility transistor; self-heating effect; copper-filled structure;
thermal conductivity

1. Introduction

AlGaN/GaN high electron mobility transistors (HEMTs) are used as power-amplifying devices
because of their advantages, such as high breakdown voltage, wide bandgap, and stability at high
temperatures of up to approximately 1000 K [1–4]. GaN based devices are still operational even if they
exhibit deterioration and unstable behavior at high temperatures. However, the self-heating effect
(SHE), which causes a gate leakage current, breakdown voltage degradation, and a negatively sloped
saturation curve, has become a major issue in power amplification devices [5–9]. To be specific, phonon
scattering enhanced by SHE degrades the direct current (DC) and radio frequency (RF) characteristics
of HEMTs. Therefore, to control such influences, research on field plates, high thermal conductivity
materials, and air–water cooling systems has been actively conducted [10–14].

To propose an optimized thermal structure for the heat sink, we simulated the DC and thermal
characteristics of AlGaN/GaN HEMTs by considering the application of copper-filled structures to a
SiC substrate. Two different thermal structures, namely a copper-filled thermal trench (CTT) and a
copper-filled thermal via (CTV), were used [15–21]. To verify the exact heat sink effect, we applied
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the thermal conductivity model and the corresponding parameters for each material. To investigate
the electrical operational degradation caused by SHE, we first simulated the thermal effects on the
DC characteristics of a conventional basic GaN on SiC (BGS) HEMT structure. The DC characteristics
of the BGS structure were then compared with those of the CTT and CTV structures. Additionally,
steady-state thermal characteristics, such as the lateral lattice temperature inside the two-dimensional
electron gas (2-DEG) channel and the vertical lattice temperature during device operation followed by
a transient thermal analysis were discussed.

2. Materials and Methods

Figure 1 shows a top schematic view of the two-finger BGS structure for the fabrication consisting of
the drain, gate, and source contact pads. The gate and source electrodes were patterned symmetrically
on both sides of the drain electrode in the center. The inset shows a cross-sectional scanning electron
microscope (SEM) image of the T-gate with a gate length of 0.45 µm, a head length of 0.8 µm, and a
width of 200 µm.
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Figure 1. Top-view schematic of the two-finger basic AlGaN/GaN high electron mobility transistor
(HEMT) structure and the cross-sectional scanning electron microscope (SEM) image of the one-finger
gate electrode.

To investigate the thermal effect on the AlGaN/GaN HEMT, two different copper-filled thermal
structures were applied under the active region of the BGS HEMT, as shown in Figure 2. Figure 2a
shows a unit BGS device. Furthermore, the two thermal structures in the SiC substrate are depicted in
Figure 2b,c. The SiC substrate under the active region was etched away and filled with copper, forming
trenches or via. Table 1 provides detailed geometrical information of the BGS, CTT, and CTV structures.
To fabricate vias and trenches in the SiC substrate, the base metal Ti and Au were first deposited
across the SiC wafer as adhesion layers for nickel etch mask deposition. The deposition thickness
of Ti and Au were 3 nm and 8 nm, respectively. Afterwards, to open up the SiC substrate surface,
an etching window was selectively defined with photolithography, followed by a lift-off process after
nick etch mask deposition. Before SiC etching, removal of the base metal was performed by Ar-based
inductively-coupled plasma reactive-ion-etching (ICP RIE). Then, SiC etching was performed by
SF6-based ICP RIE using a high RF power of above 2000 W. The etch rate of SiC was 1.6 µm/min. The
nickel etch mask was removed in a diluted HNO3. Then, the base metals, Au and Ti, were sequentially
removed using iodine-based etchant and buffered oxide etchant (BOE), respectively. Finally, the device
was immersed in a diluted HCl solution and ultrasonically cleaned simultaneously to remove etch
residues resulting from the etching process. Next, the trench and via structures were filled with
copper by an electroplating and a damascene process. In the case of the via structure, copper-filled via
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formation could be performed from the backside. However, there was an issue in the deposition of the
GaN layer for CTT. Since the transition layer and the GaN layer must be deposited after the formation
of the trench structure from the top SiC substrate, the epitaxial growth of the GaN on copper using
metal organic chemical vapor deposition (MOCVD) had interfacial reaction problems between the
GaN and the copper because of high temperature. However, this interfacial problem between the GaN
and copper could be resolved by using a low temperature growth of the pulsed laser deposition (PLD)
method [22–24]. Moreover, growth of III nitrides using PLD was possible at even room temperature
due to the enhanced kinetic energies of the film precursors, which promoted surface transferal.
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Figure 2. AlGaN/GaN HEMT structure: (a) basic AlGaN/GaN on SiC, (b) copper-filled thermal trench,
and (c) copper-filled thermal via in the SiC substrate.

Table 1. Geometrical parameters for basic GaN on SiC (BGS), copper-filled thermal trench (CTT), and
copper-filled thermal via (CTV) structures.

Parameter Unit Value

À LGate-Source µm 1.025
Á LGate-Head µm 0.8
Â LGate-Foot nm 250
Ã LGate µm 0.45
Ä LGate-Drain µm 4.525
Å LCTT-Cu-width µm 0.25
Æ LCu-Cu µm 0.25
Ç LCTT-Cu-depth µm 5.5
È LCTV-Cu-width µm 6
É LCTV-Cu-depth µm 8
SiN passivation (AlGaN interface) nm 90
SiN passivation (gate and side wall) nm 40
AlGaN nm 25
GaN channel nm 50
GaN buffer µm 2
Transition layer nm 50
SiC substrate µm 8

Acceptor trap doping was applied in the GaN buffer layer to prevent the substrate leakage current.
We used the Gaussian acceptor doping profile, in which the doping concentration gradually decreased
so that the acceptor doping concentration in the interface of the AlGaN and the GaN layer was set
to less than 1015/cm3. More specifically, the concentration at this interface was 6.82× 1014/cm3 [25].
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In this simulation study, the same physical values for electron sheet density and electron mobility were
assigned for all the device epitaxy layers. The other material parameters of GaN and AlGaN used for
the simulation are summarized in Table 2.

Table 2. Material properties used for calculation.

Parameter Unit GaN AlGaN

Bandgap energy eV 3.39 3.87
Electron affinity eV 4 2.73
Relative permittivity - 9.5 9.38
Low field electron mobility cm2/V·s 1460 300
High field mobility model - GANSAT Mobility Model
Electron saturation velocity cm/s 1.9 × 107 1.12 × 107

Hole saturation velocity cm/s 1.9 × 107 1.0 × 106

Shockley–Read–Hall (SRH) life time s 1.0 × 10−8 1.0 × 10−8

In order to consider the overall thermal effect for the DC operational characteristics of AlGaN/GaN
HEMT, SHE and the thermal conductivity model were required for the calculation. The SHE model
included the lattice heat flow and heat generation equations [26,27]. Thus, we defined the lattice heat
flow as follows:

C
∂TL

∂t
= ∇(k∇TL) + H, (1)

where C is the heat capacitance per unit volume, TL is the local lattice temperature, k is the thermal
conductivity, and H is the heat generation, which can be defined as follows:

H =


∣∣∣∣∣→Jn

∣∣∣∣∣2
qµnn

+

∣∣∣∣∣→Jp

∣∣∣∣∣2
qµpp

+ q(R−G)
[
ϕp −ϕn + TL

(
Pp − Pn

)]
, (2)

where


∣∣∣∣∣→Jn

∣∣∣∣∣2
qµnn +

∣∣∣∣∣→Jp

∣∣∣∣∣2
qµpp

 is the Joule heating term, and q(R−G)
[
ϕp −ϕn + TL

(
Pp − Pn

)]
is the recombination

and generation heating and cooling term.
Figure 3 represents the thermal conductivity as a function of the lattice temperature corresponding

to each GaN, SiC, and Cu. The thermal conductivity model applied to the simulation can be expressed
as follows:

k(TL) = (TC.CONST)/(TL/300)TC.NPOW (3)

where TC.CONST is a thermal conductivity constant of each material for 300 K and TC.NPOW is
an experimental value of each material for the thermal conductivity model. Table 3 shows the
thermal constants used for the thermal conductivity model for each material. As shown in Figure 3,
at temperatures from 300 K to approximately 650 K, the thermal conductivity was high in the order of
Cu, SiC, and GaN [28–30].
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Figure 3. Thermal conductivity profiles for the GaN, SiC, and Cu materials.

Table 3. Thermal constants used for the thermal conductivity model.

Parameter Unit GaN AlGaN SiC Cu

Thermal conductivity constant (TC.CONST) W/cm·K 1.3 0.4 3.3 3.83
Thermal conductivity factor (TC.NPOW) - 0.43 0 1.61 0.3

Thermal boundary resistances (TBRs) are significant factors for heat transfer characteristics
analysis. Since the process methods and conditions for each structure are different, TBRs for each
structure will be also different. Therefore, in the simulations, the dynamic TBRs (RTH, R’TH, R”TH,
and R”’TH) were calculated by the differences of the thermal conductivity corresponding to the lattice
temperature for each material as depicted in Figure 4. The dynamic TBRs for three structures were
considered by the heat flow equation and the thermal conductivity model. In addition, for the effective
heat flow analysis, we applied the static TBR (α) of 2.5× 10−8 m2K/W, which is within the actual range
measured at the interface between any material and GaN [31,32]. Moreover, in order to carry out the
simulation considering the convection heat transfer, we designated a thermal boundary condition
with an external temperature of 300 K at the bottom of all structures. In addition, for the basic
physical calculations, the Shockley–Read–Hall (SRH) recombination, the Auger recombination, and
the Fermi–Dirac distribution function were applied to the simulation. Furthermore, the Selberherr
impact ionization model, which is the temperature dependent impact ionization model, was used to
calculate the impact ionization process near the gate edge of the device [33,34].
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Figure 4. Thermal boundary resistances for basic GaN on SiC (BGS), copper-filled thermal trench (CTT),
and copper-filled thermal via (CTV) structures.
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3. Results and Discussions

First of all, in order to have confidence in simulation reliability, we tried to match simulation
values with experimental data for I-V transfer characteristics by applying material parameters and
physical models, including the self-heating effect.

The matching process of the I-V transfer characteristics for drain voltage = 10 V was preceded.
In the case of experimental data, the BGS HEMT’s drain current and transconductance were measured
using Yokogawa GS200 and Keithley 2410 DC bias measurement systems in a probe station at room
temperature. Thereafter, we calculated the electrical and thermal properties of GaN HEMT based on
the simulation and investigated their tendency. Figure 5 shows the simulation and experimental values
for I-V transfer characteristics at drain voltage = 10 V. We extracted the simulation conditions from the
experimental data.
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effect (SHE) at VDS = 10 V.

It was necessary to confirm the degradation due to the SHE in the operational characteristics of the
AlGaN/GaN HEMTs. As shown in Figure 6a,b, the I–V transfer characteristics, such as threshold voltage,
drain current, and transconductance for the drain voltage of 10 V and 30 V, were compared with and
without the SHE. Consequently, the SHE decreased both the drain current and the transconductance
as a whole, and this tendency became more apparent as the drain voltage increased. Accordingly,
we verified that the higher electric field between the drain and the source resulted in the lesser drain
current because of the higher SHE. However, the threshold voltage did not change. Figure 6c shows
the saturation current characteristics for the gate voltages of −5, −4, −3, −2, −1, and 0 V. With the
application of the SHE, the overall drain current decreased, and the saturation curve showed a negative
slope. The heat generated by the applied electric field and current density caused a thermal scattering.
This effect reduced electron mobility. Therefore, as the applied drain voltage increased, the carrier
scattering effect increased, reducing the drain current density. For this reason, the drain current in the
saturation region showed a negative slope as the drain voltage increased. The breakdown voltage with
a gate pinch-off voltage of −10 V, as shown in Figure 6d, also decreased from 481.7 V to 434.2 V because
of the SHE. From the overall electrical perspective, the SHE severely degraded the DC operational
characteristics of the GaN HEMT.



Micromachines 2020, 11, 53 7 of 13
Micromachines 2019, 10, x FOR PEER REVIEW 7 of 13 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure 6. Direct current (DC) characteristics of the BGS HEMT structure with and without the SHE: 
I–V transfer characteristics at (a) VDS = 10 V and (b) VDS = 30 V; (c) saturation current when gate 
voltages were −5, −4, −3, −2, −1, and 0 V; and (d) breakdown characteristics at a pinch-off of VGS = −10 
V. 

To control the heat generated by the SHE, we used two different copper-filled thermal structures 
to the SiC substrate of the BGS HEMT. We simulated the DC characteristics of the two copper-filled 
thermal structures with the SHE and compared them to those of the BGS HEMT. Figure 7 shows the 
comparison of the DC characteristics with the SHE for the BGS, CTT, and CTV structures. Figure 7a,b 
shows the I–V transfer characteristics for all the three structures simulated when the drain voltage 
was 10 V and 30 V, respectively. The overall drain current and the maximum transconductance 
improved because of the application of the copper-filled thermal structures. CTV showed better 
improvement than CTT, irrespective of the drain voltage. As shown in Figure 7c, the saturation 
current characteristics of all the structures were estimated when the gate voltages were −5, −4, −3, −2, 
−1, and 0 V. The application of thermal structures increased the overall drain current and stabilized 
the saturation current characteristics as compared to the BGS structure. Figure 7d shows the 
breakdown voltage characteristics for three structures. The CTT and CTV structures had an enhanced 
breakdown voltage as compared to the BGS structure. However, the breakdown voltage behavior 
was similar for the CTT and CTV structures. The breakdown voltages extracted at the point where 
the drain current was 1 mA/mm were 434, 469, and 468 V for the BGS, CTT, and CTV structures, 
respectively. One of several operational instabilities due to the SHE was the increase in the gate 
leakage current, which caused a breakdown of the device. As the operating temperature of the device 
increased, the gate leakage current increased, which in turn reduced the breakdown voltage. 
However, the additional heat sinks obtained by the copper filling approach improved breakdown 
voltage by reducing the gate leakage current as a result of lowering the overall lattice temperature 
inside the device's 2-DEG channel. As a result, the application of the copper-filled thermal structures 
improved the overall DC characteristics. Of these, the CTV structure showed the most thermally 
optimized GaN HEMT electrical characteristics. 

Figure 6. Direct current (DC) characteristics of the BGS HEMT structure with and without the SHE: I–V
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were −5, −4, −3, −2, −1, and 0 V; and (d) breakdown characteristics at a pinch-off of VGS = −10 V.

To control the heat generated by the SHE, we used two different copper-filled thermal structures
to the SiC substrate of the BGS HEMT. We simulated the DC characteristics of the two copper-filled
thermal structures with the SHE and compared them to those of the BGS HEMT. Figure 7 shows the
comparison of the DC characteristics with the SHE for the BGS, CTT, and CTV structures. Figure 7a,b
shows the I–V transfer characteristics for all the three structures simulated when the drain voltage was
10 V and 30 V, respectively. The overall drain current and the maximum transconductance improved
because of the application of the copper-filled thermal structures. CTV showed better improvement
than CTT, irrespective of the drain voltage. As shown in Figure 7c, the saturation current characteristics
of all the structures were estimated when the gate voltages were −5, −4, −3, −2, −1, and 0 V. The
application of thermal structures increased the overall drain current and stabilized the saturation
current characteristics as compared to the BGS structure. Figure 7d shows the breakdown voltage
characteristics for three structures. The CTT and CTV structures had an enhanced breakdown voltage
as compared to the BGS structure. However, the breakdown voltage behavior was similar for the
CTT and CTV structures. The breakdown voltages extracted at the point where the drain current was
1 mA/mm were 434, 469, and 468 V for the BGS, CTT, and CTV structures, respectively. One of several
operational instabilities due to the SHE was the increase in the gate leakage current, which caused
a breakdown of the device. As the operating temperature of the device increased, the gate leakage
current increased, which in turn reduced the breakdown voltage. However, the additional heat sinks
obtained by the copper filling approach improved breakdown voltage by reducing the gate leakage
current as a result of lowering the overall lattice temperature inside the device’s 2-DEG channel. As a
result, the application of the copper-filled thermal structures improved the overall DC characteristics.
Of these, the CTV structure showed the most thermally optimized GaN HEMT electrical characteristics.
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structures: I–V transfer characteristics at (a) VDS = 10 V and (b) VDS = 30 V; (c) saturation current when
gate voltages were −5, −4, −3, −2, −1, and 0 V; and (d) breakdown characteristics at a pinch-off of
VGS = −10 V.

Figure 8 shows the lateral and vertical lattice temperatures for the BGS, CTT, and CTV structures.
The highest lateral lattice temperature inside the 2-DEG channel when VGS = 0 V and VDS = 30 V
appeared near the drain-side gate head edge for all the three structures, as shown in Figure 8a. The
application of copper-filled thermal structures as an additional heat sink had a positive effect in
reducing the overall heat generated during device operation. The overall lateral lattice temperature
was lower in the order of the CTV, CTT, and the BGS structure, and the peak temperatures were 552.8 K,
577.8 K, and 592.7 K, respectively. Figure 8b shows the vertical lattice temperature near the drain-side
gate head edge in the device at the point with the highest lateral lattice temperature from the 2-DEG
channel to the bottom of the device. For all three structures, region I was the GaN layer under the
2-DEG channel. Regions II and III were the SiC substrate for the BGS structure. In the CTT structure,
region II was a copper-filled thermal trench area, and region III was the SiC substrate, as depicted in
Figure 2b. In the CTV structure, regions II and III were both copper-filled thermal via areas. As shown
in Figure 8b, the temperature drop across region I was larger in the order of the CTV, CTT, and the BGS
structure. Moreover, the overall temperature reduction was more effective for CTV.

Figure 9 represents the hot points of three different HEMT structures for gate voltage = 0 V and
drain voltage = 30 V using the thermal analysis technology computer-aided design (TCAD) simulator.
The CTV structure showed the lowest temperature near the gate electrode. The thermal distribution
throughout the GaN HEMT was alleviated the most in CTV.
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Figure 9. Temperature gradient profiles for the BGS, CTT, and CTV structures when VGS = 0 V and
VDS = 30 V.

Figure 10a shows the maximum junction temperature across the GaN HEMT for the BGS, CTT,
and CTV structures, while the power density increased from 0 to 20 W/mm with a step of 1 W/mm. The
increment of temperature for 1 W/mm was approximately 16.8 K, 15.1 K, and 13.6 K on average for the
BGS, CTT, and the CTV structure, respectively. This confirmed that the heat generated by the increase
in the power density was well controlled in the CTV structure. As shown in Figure 10a, the maximum
junction temperature slope changed after a power density of 6 W/mm. The lattice temperature inside
the 2-DEG channel for increasing the power density from 1 W/mm to 8 W/mm at 1 W/mm interval is
shown in Figure 10b. The temperature peak was extracted at the drain electrode edge at the power
density of less than 6 W/mm. However, the temperature peak was extracted near the drain-side gate
head edge at the power density higher than 6 W/mm. When the power density increased from 6 W/mm
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to 7 W/mm, the heat generation near the drain-side gate head edge sharply increased. For this reason,
the maximum junction temperature slope suddenly changed after 6 W/mm power density.

Furthermore, instead of an analysis of the steady-state thermal characteristics, we conducted the
transient thermal analysis of the AlGaN/GaN HEMT to identify the change in the thermal response
after the device was turned on and off [35–37]. As shown in Figure 11a, for drain voltage = 10 V,
a transient bias condition from −5 V to 0 V was applied as the gate voltage. As all the structures
took approximately 6–7 µs to reach the thermal equilibrium after turning on, we set both the on- and
off-interval to 10 µs. The transient thermal characteristics were simulated with an input bias condition
of a 50% duty cycle. Figure 11b shows the transient thermal responses of the BGS, CTT, and CTV
structures. As a result, the heating time required to reach the maximum temperature after turning the
device on was 4.38 µs for the BGS structure, 4.64 µs for the CTT structure, and 4.42 µs for the CTV
structure. The cooling time was almost the same for three structures.
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(a) Transient bias condition with a 50% duty cycle and (b) transient maximum junction temperature as
a function of time.

The CTV HEMT, in contrast to the CTT HEMT, was the most thermally optimized HEMT from
electrical and thermal points of view. As shown in Figure 3, thermal conductivity between SiC and
copper was significantly different at temperatures above 300 K. According to the basic principle of
heat transfer, the higher the thermal conductivity of material, the more effective the heat transfer will
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be. Thus, the CTV structure showed more effective heat transfer than the CTT structure with a large
Cu/SiC surface-to-volume ratio.

4. Conclusions

In general, the field plate technique can be used to redistribute the heat and electric field
concentrated near the drain-side gate head edge, thereby improving the breakdown DC characteristics
of AlGaN/GaN HEMTs. However, in this study, the overall lattice temperature inside the 2-DEG channel
was reduced by using copper-filled thermal structures. The drain current, maximum transconductance,
breakdown voltage, and saturation current characteristics improved when we constructed the two
thermal structures. In addition, the application of the thermal structures was an effective method of
controlling steady-state thermal characteristics, such as the lateral lattice temperature inside the 2-DEG
channel, the vertical lattice temperature, and the heat generation rate with increasing power density.
Through a transient thermal analysis, we confirmed that the maximum junction temperatures were
lower for the copper-filled thermal structures, and the time to reach the maximum lattice temperature
was further slowed down by applying thermal structures to GaN HEMTs. The simulation results
suggest that the CTV could improve the thermal management of GaN HEMTs.
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