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Abstract: With the aim of designing an action detection method on artificial knee, anew time—frequency
feature extraction method was proposed. The inertial data were extracted periodically using the
microelectromechanical systems (MEMS) inertial measurement unit (IMU) on the prosthesis, and the
features were extracted from the inertial data after fractional Fourier transform (FRFT). Then, a feature
vector composed of eight features was constructed. The transformation results of these features after
FRFT with different orders were analyzed, and the dimensions of the feature vector were reduced.
The classification effects of different features and different orders are analyzed, according to which
order and feature of each sub-classifier were designed. Finally, according to the experiment with the
prototype, the method proposed above can reduce the requirements of hardware calculation and has
a better classification effect. The accuracies of each sub-classifier are 95.05%, 95.38%, 91.43%, and
89.39%, respectively; the precisions are 78.43%, 98.36%, 98.36%, and 93.41%, respectively; and the
recalls are 100%, 93.26%, 86.96%, and 86.68%, respectively.

Keywords: action detection; artificial knee; microelectromechanical systems (MEMS); fractional
Fourier transform (FRFT)

1. Introduction

The knee joint is an important supporting joint of the lower limbs. For a knee joint injury that
seriously impedes the movement of the lower limbs, the best treatment is to replace the joint with
an artificial joint. Among patients, a large number need amputation, and prosthesis is an important
guarantee for the physical and physiological recovery of amputees. In the lower limb prosthesis,
the artificial knee joint is the core component and it can help the human body to achieve supported
standing and flexible walking so that patients show good gait [1].

Before the 1990s, the movement of prosthetics could not keep pace with the speed of amputees and
road conditions, and the movement lacked stability [2]. With the continuous development of bionic
intelligent knee prosthesis technology, there are many intelligent knee prostheses, which can achieve
dynamic adjustment, real control of gait, and other functions. The intelligent lower limb usually refers
to the unpowered intelligent lower limb. The flexion and extension movement of the prosthetic knee
joint is driven by the leg stump. The intelligent control system only adjusts the size of the damping
torque of the knee joint [3]. For the knee joint of the unpowered intelligent lower limb prosthesis that
controls gait by adjusting the damping torque, the accuracy of damping adjustment directly affects
the comfort, convenience and safety of the knee joint in question. Generally, the damping adjustment
is based on the recognition of the current action state. Among the existing action detection methods
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of intelligent prosthetics, methods that detect the motion frequency or the position of the piston of a
cylinder and the pressure at the bottom of the foot have long lag times and low accuracy. Methods that
extract the features of acceleration or angular velocity from the time domain have few features from
which to choose, hence they are susceptible to interference and low robustness. So, an accurate, fast,
low-cost and stable action detection method is needed.

The action detection often needs to go through the process of data collection, data preprocessing,
feature extraction, the establishment of an action detection model, and the use of the model for action
detection [4]. Currently, sensors used to collect data can be divided into two major categories of
wearable and nonwearable. The nonwearable methods include motion detection methods based
on radar [5], and machine vision [6]. The wearable methods include motion detection methods
based on accelerometers [7], accelerometers and gyroscopes [8], accelerometers and other sensors [9],
and myoelectricity [10]. The nonwearable sensors are not suitable for human motion recognition on
prosthesis due to their severe constraints of scene and high cost. In the wearable methods, myoelectricity
is inconvenient to wear on a daily basis due to the need to install electrodes in multiple places on
the wearer’s legs. The microelectromechanical systems (MEMS) inertial measurement unit (IMU)
integrated with accelerometers, gyroscopes and barometers can be integrated into the control circuit
and does not require additional operation. So, it is more suitable for human action data acquisition on
commercial products.

For feature extraction, the preprocessed data are usually divided into a series of windows by the
sliding window mechanism of fixed length first-in, first-out, and the feature values are extracted by a
series of methods. Aziz et al., for example, calculated the mean and variance of data in each window to
construct 18 dimensional features [11]; Pierleoni et al. discovered that the RMS (Root Mean Square) of
acceleration was no less than 2.5 g when the impact process of motion occurs [12]; Cheng et al. judged
the state of motion according to an amplitude of acceleration higher than a given threshold [13].

For the establishment of an action detection model, the commonly used methods are the threshold
method and the machine learning method. The threshold method determines motion state by
comparing the extracted features with a setting threshold; generally, it can be divided into two types: a
single state recognition and a multiple state recognition. The machine learning method regards action
detection as a typical classification problem and constructs a motion detection model based on the
training set composed of various motion data. Typical machine learning algorithms such as support
vector machine (SVM) [11,14-16], decision tree (DT), Naive Bayes [17], deep learning [18], artificial
neural network (ANN) [19], and K nearest neighbor (K-NN) [20] can be used for model construction.
The preferable effective algorithms include convolutional neural network (CNN), I support vector
machine (1ISVM), CNN+1SVM [21], hidden Markova model [22], K-NN and ANN [23].

However, in most action detection methods the machine learning method can achieve higher
precision, but it needs lots of features and is a complicated detection model with a slow detection
speed and high calculate cost. The threshold method is simple in calculation and fast in speed, which
is very suitable for long-term operation on micro-wearable devices with limited resources. However,
the selection of its threshold value often depends on the simulated motion data, and there are few
features from which to choose. When the distribution of test data and training data is greatly different,
it will seriously affect the detection accuracy of the model, so it lacks certain applicability. Therefore,
a detection method that can provide sufficient features for selection, at the same time as satisfying
high computing speed and low model complexity, is needed. Considering that human action is
a time-varying movement, and we cannot only look for features in the time domain or frequency
domain, we came up with the idea of using the fractional Fourier transform (FRFT) in order to provide
sufficient features from the fractional domain, and also in order to obtain suitable features for low
power consumption wearable devices.

Fractional Fourier transform (FRFT) is a representation method on the fractional-order Fourier
domain by the signal on the time—frequency plane after the coordinate axis rotates counterclockwise
around the origin at any angle. It is a time—frequency analysis method and a generalized Fourier
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transform. Fractional Fourier transform has many properties that traditional Fourier transform does
not have, and is widely applied in scientific research and engineering technology [24]. In this paper,
firstly the effect of FRFT is analyzed, and the results of transformation with the same action in different
orders, or different actions in the same order, are compared. Then, eight features are selected from the
commonly used features to construct a feature vector space. The variation of each feature after FRFT
in different orders is analyzed. Then, the dimension of the feature vector is further reduced, and the
results of different features after FRFT in different orders are analyzed, according to which we design
a classifier. Finally, a prototype of an intelligent knee joint is designed, and the method is verified
by experiments.

2. Theory

2.1. Fractional Fourier Transform (FRFT)

In the field of signal processing, the traditional Fourier transform is a mature and widely used
mathematical tool. The fractional order Fourier transform (FRFT) is proposed in the form of pure
mathematics by V. Namias from the view of feature and feature function [25]. Then, researchers
proposed the concept of FRFT from an optical point of view. It can be proved that these definitions
are completely equivalent [26]. FRFT is first applied to optical signal processing because it can be
implemented by simple optical devices. In recent years, several rapid algorithms for FRFT have been
discovered, so that FRFT has received attention in multiple areas of signal processing.

2.1.1. Definition

Generally, the p-order fractional Fourier transform of a function f, () can be expressed as: f,(u)
or FP f(u), where, FF f (u) can be interpreted as the operator FP on the function f(u) whose result is in
the domain u.

The definition of the fractional Fourier transform [27] is

—+00
fw) = [ Kl nfo W
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fractional Fourier transform, A, =

After sorting, it is shown as follows:
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where T;(x) = exp(—jntx?), t = tan(a/2),s = —csc(a).

Noticing that, F#" and F4"*2 are equivalent to identity operator 7 and parity operator P respectively.
Forp =1, therearea = 5, A; = 1and fi(u) = f_t:o e 12t £(1)dt.

Apparently, f;(u) is the Fourier transformation of f(u). The 0-order transformation is defined as
the function itself, and the definition by p or a is periodic in 4 or 27t due to @ = ’% only appearing in
the parameter position of the trig function.

Except for comparison with the time domain or the frequency domain, to explain the reason that
choose FRFT to extract features, Li Chao derived the relationship between the amplitude mean A in the
time domain and the amplitude B in the fractional domain by the timewidth-bandwidth in theory [28].
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From the fraction domain sampling theorem, the relationship between the fraction domain

bandwidth Bu and the frequency domain bandwidth B is:
Bu = Bsina @)

where a is the rotation angle of the fraction domain.
The timewidth and bandwidth of the fraction domain signal are defined as follows:

2
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where 1, is the frequency of the fractional domain and x(u,) is the FRFT of x(t).
From the uncertainty principle of the signal frequency domain:

is(At-Au> ©) (6)
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where At is the timewidth and Au is the bandwidth.
The uncertainty principle of the fractional domain can be derived from the three Equations (4)—(6):
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From Parseval, the energy of the signal in the time domain is the same as that in the

fractional domain:
E=Eq, ®)

where E is the total energy in the time domain, and E, is the total energy in fraction domain.
Furthermore:

1— 1=
E= EA-Atz, Eo = 35B- Au? 9)

Combining Equations (7)—(9), it can be observed that the signal’s amplitude average A in the time
domain and the B of the signal show a non-linear change, and it is related to the changed angle in the
fractional domain [29,30].

Therefore, a sequence of values with no significant difference in amplitude in time domain can
be converted into a fractional sequence with significant differences in amplitude by choosing an
appropriate FRFT order [28].

2.1.2. Discrete FRFT

Equation (2) is the calculation method in the continuous domain. Such continuous transformation
cannot be calculated in practice, and it is usually necessary to carry out numerical calculation by
sampling and interpolating continuous signals. According to the Shannon interpolation equation and
numerical integration operation, the discrete calculation equation of FRFT is shown in Equation (10):
2

]
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After sorting, it is shown as follows:
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where E(uy) = exp(—jntu%), t = tan(a/2), s = —csc(a) and x; = ux = k/2A. A is the dimension
normalized time domain or frequency domain scale.

2.1.3. Transform Effect

According to the theory above, the inertial data collected by MEMS can be processed by FRFT. In
contrast to the time domain and the frequency domain, the fractional domain has a better diversity
and can provide more optional features. Figures 1 and 2 are the results of the same data after FRFT in
different orders. Figure 3a is the results of the same class data after FRFT in the same order. Figure 3b
is the results of different data after FRFT in the same order. It can be observed that the results of the
same data after FRFT in different orders show significant differences, and the results of different data
after FRFT in the same order also show differences. Therefore, different actions can be distinguished
by selecting an appropriate order and an appropriate feature.

254
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Figure 1. Results of Multiorder fractional Fourier transform (FRFT) with single action (order: 0-1).
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Figure 3. (a) The results of FRFT of walking in 0.7 order. (b) The results of FRFT of different actions in
0.7 order.
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2.2. Feature

After the performance of FRFT on the collected data, the appropriate features should be extracted
and then classified according to the features. The commonly used features are shown in Table 1.
However, not all the features are appropriate for the data in MEMS IMU, besides, too many features
will lead to excessive computing costs, time costs, storage costs, and reduce the endurance of the device.
However, too few features will not reach enough accuracy to classify different actions. Therefore, it is
necessary to select appropriate features for action recognition.

Table 1. The commonly used features and the calculation method.

Features Calculation Method
Maximum max(A)
Minimum min(A)
Ai
Mean mean(A) = Y. 3
1
Extreme Difference range(A) = max(A) — min(A)
. L (Aj—mean (A))?
Variance oar( A) _ —
Standard Deviation std(A) = +Jvar(A)
LA
Root Mean Square rms(A) = \
Absolute Value abs(A;) = |Aj|
. . t t t
Signal Amplitude Area sma(A) = %(fo |Ax|dt+fA f}qﬂdt—l—fo |Az|dt)
Correlation Coefficient cc(A) = %
Interquartile Range IOR=Q3-Q
Number of Peaks The number of peaks in signal (pksNum)
X pksi
Mean of Peaks pksMean =

In this paper, the extreme difference range, standard deviation std, variance var, interquartile range
IQR, mean mean, mean of peaks pksMean, and number of peaks pksNum were selected to form the
feature_vector:

feature_vector = [range, std, var, rms, IQR, mean, pksMean, PksNum| (12)

Figures 4-11 are the analysis of each feature during the order of FRFT changed from 0 to 1.
Figures 4, 6, 8 and 10 are the FRFT results of the eight features of four actions, namely walk, run,
upstairs, and dwstairs (downstairs), in different orders. Figures 5,7, 9 and 11 are the standard deviation
and mean of eight features of each action. Tables 2-5 are the mean, minimum standard deviation and
corresponding order of standard deviation of each feature of each action. It can be observed that,
except for rms, all the other features change significantly, but this does not mean that rms cannot be
used for classification. Besides, it can be observed that it might be useful to classify walk and dwstairs
by rms and mean, to classify upstairs and dwstairs by range and pksNum, and to classify walk, dwstairs
and run by std and pksNum.
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Figure 4. The Order—Amplitude figures of different features of 40 groups for the walk action. (a) range,
(b) std, (c) var, (d) rms, (e) IQR, (f) mean, (g) pksMean and (h) pksNum.
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Figure 5. Standard deviation and mean of eight features of the walk action. (a) The standard deviation

of each feature, (b) The mean of each feature.
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Figure 6. The Order—-Amplitude figures of different features of 40 groups for the upstairs action.
(a) range, (b) std, (c) var, (d) rms, (e) IQR, (f) mean, (g) pksMean and (h) pksNum.
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Figure 7. Standard deviation and mean of eight features of the upstairs action. (a) The standard

deviation of each feature, (b) The mean of each feature.
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Figure 8. The Order—Amplitude figures of different features of 40 groups for the dwstairs action.
(a) range, (b) std, (c) var, (d) rms, (e) IQR, (f) mean, (g) pksMean and (h) pksNum.
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Figure 9. Standard deviation and mean of eight features of the dwstairs action. (a) The standard

deviation of each feature, (b) The mean of each feature.
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Figure 11. Standard deviation and mean of eight features of the run action. (a) The standard deviation
of each feature, (b) The mean of each feature.

Table 2. Mean and min of standard deviation of each feature of walk.

STD

Feature Min

Mean
Value Order

Range 0.6996 0.390 1.1189
Standard Deviation (Std) 0.1494 0.453 0.1854
Variance (Var) 0.4785 0.453 0.6612
Root Mean Square (RMS) 0.0382 0.635 0.0387
Interquartile Range (IQR) 0.2171 0.310 0.3105
Mean 0.2799 1 0.3076
Mean of Peaks (pksMean) 0.6857 0.043 1.1725
Number of Peaks (pksNum) 0.5430 0.992 2.6806
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Table 3. Mean and min of standard deviation of each feature of upstairs.

STD
Feature Min
Mean
Value Order
Range 1.9913 0.981 3.0821
Std 0.4898 0.997 0.5659
Var 2.4833 0.428 3.1291
RMS 0.0527 0.607 0.0535
IQR 0.3743 0.130 0.7365
Mean 0.3249 1 0.7060
pksMean 1.9208 0.701 2.8684
pksNum 0.5633 1 2.7401

Table 4. Mean and min of standard deviation of each feature of dwstairs.

STD
Feature Min
Mean
Value Order
Range 0.6453 0.400 1.2644
Std 0.1589 0.281 0.1978
Var 0.4816 0.308 0.7028
RMS 0.0209 0.624 0.0213
IQR 0.2369 0.212 0.3018
Mean 0.1681 1 0.2500
pksMean 0.6681 0.194 1.3048
pksNum 0.6485 0.997 2.9343

Table 5. Mean and min of standard deviation of each feature of run.

STD
Feature Min
Mean
Value Order
Range 2.3835 0.803 3.3444
Std 0.4612 0.168 0.5488
Var 3.6646 0.169 49012
RMS 0.0783 0.663 0.0803
IQR 0.6780 0.318 0.8944
Mean 0.6471 0.020 0.8000
pksMean 0.9936 0.031 1.2464
pksNum 2.8274 0.991 4.4601

Different features have different classification effects for the inertia data in MEMS IMU. Figure 12
shows the effect of distinguishing two actions by two kinds of features. It can be observed that to
classify walk and dwstairs, the combination of pksNum and std is better than the combination of range
and pksMean, and the order = 0.67 is better than order = 0.20. To classify upstairs and dwstairs, the
combination of range and pksNum is better than the combination of rms and IQR, and the order = 0.64
is better than order = 0.20. To classify walk and upstairs, the combination of rms and mean is better
than the combination of std and IQR, and the order = 0.71 is better than order = 0.20. To separate run
from the other actions, the combination of rms and mean is better than the combination of range and
IQR, and it is better when order = 0.75. Figure 13 shows the effect of classification with two features
extracted directly in the time domain without FRFT. It can be observed that the effect was not good
for classification.
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Figure 12. The effect of classification. (a) walk and dwstairs with the features std and pksNum when
Order = 0.67; (b) walk and dwstairs with the features std and pksNum when Order = 0.20; (c) walk and
dwstairs with the features range and pksMean when Order = 0.67; (d) dwstairs and upstairs with the
features range and pksNum when Order = 0.64; (e) dwstairs and upstairs with the features range and
pksNum when Order = 0.20; (f) dwstairs and upstairs with the features rms and IQR when Order = 0.64;
(g) walk and upstairs with the features rms and mean when Order = 0.71; (h) walk and upstairs with
the features rms and mean when Order = 0.20; (i) walk and upstairs with the features std and IQR when
Order = 0.71; (j) all the actions with the features rms and mean when Order = 0.75; (k) all the actions
with the features range and IQR when Order = 0.75; (1) all the actions with the features pksMean and
pksNum when Order = 0.75.
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Figure 13. The effect of classification with two features extracted directly in the time domain without

FRFT. (a) walk and dwstairs with the features std and pksNum; (b) dwstairs and upstairs with the

features range and pksNum; (c) walk and upstairs with the features rms and mean; (d) all the actions
with the features var and IQR.

2.3. Classifier

According to the conclusion above, different features and different orders have different effects
for classification. The optimal order and feature of each action are different. A binary classifier was
designed which classifies by changing the order and feature value of each sub-classifier. Only one
action is separated at a time, and then all motion gestures are recognized by multiple classifications.
The structure of the classifier is shown in Figure 14.
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Order:0.75
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Figure 14. The structure and process of the classifier. As different orders and feature vectors are

needed to classify walk, upstairs and dwstairs, one can distinguish walk and dwstairs first, and

then separate upstairs from walk and dwstairs, respectively, then separate upstairs from walk and

dwstairs, respectively.
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3. Experiment

3.1. Experiment Design

According to the conclusion above, an experiment for verification is designed. The information of
the subject is shown in Table 6. To protect the privacy of amputees, the photos of amputees will not be
shown here. The artificial knee used in the experiment is shown in Figure 15, the MEMS IMU used in
the experiment is shown in Figure 16, and the main specifications of the devices are given in Table 7.

Table 6. Information of the subject.

Project Value
Age 24
Weight 65 kg
Position of prosthesis Left
High 174 cm
Gender M

Figure 15. The artificial knee. The position of the pneumatic cylinder, servo motor and control circuit
with inertial measurement unit (IMU) have been pointed out.

Figure 16. MEMS (microelectromechanical systems)-IMU, the position of IMU and barometer have
been pointed out.
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Table 7. Main specifications of devices.

Parameters

Main Specifications

Sustainable Working Hours
Operating Voltage
Sustainable Working Temperature
Power Consumption
Core Circuit Board Dimensions
Weight
Sensing Range
Static Accuracy
Dynamic Accuracy
Resolution
Output Frequency

>24h
33t030V

-40°Cto85°C
550 mW@5.0 V

33 mm X 20 mm X 22 mm

<100 g
0° to 360°

+0.5° (roll, pitch); +1° (yaw)

+1° RMS
0.05°
0.01 to 100 Hz

Sensor Accelerometer Gyroscope Parameters Barometer
Measure range +10g +1000°/s Measure range 10 to 1200 mbar
Nonlinear <0.2% of FS <0.1% of FS Resolution 10 cm
Bias stability +4 mg 9.2°/h Bias stability +1 mbar/year

3.2. Results and Analysis

After the experimental data collection, the same processing method is used to extract the feature

vector through FRFT after dividing the cycle, and the classifier designed above is used for classification,
the results are shown in Figure 17 and the performance of the sub-classifier is detailed in Table 8. The
comparison of the accuracy in fractional domain and time domain is in Table 9. It can be seen that the

effect of fractional domain is better than the effect of time domain.

*  walk
dwstairs
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2 O run 25
=
204
£
3
Z 154
[Z}
X
Q *
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(c)

Figure 17. The results of each sub-classifier. (a) run and other actions with the features rms and pksNum;
(b) walk and dwstairs with the features std and pksNum; (c) walk and upstairs with the features rms
and mean; (d) dwstairs and upstairs with the features range and pksNum.
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Table 8. Performance of each sub-classifier.

Sub-Classifier b c d e
Accuracy 0.9505 0.9538 0.9143 0.8939
Precision 0.7843 0.9836 0.9836 0.9341

Recall 1 0.9326 0.8696 0.8667
F1-Score 0.3053 0.7018 0.7157 0.6753

Table 9. Accuracy of each sub-classifier in fractional domain and time domain.

Sub-Classifier Fractional Domain Time Domain
b 0.9505 0.9011
c 0.9538 0.8259
d 0.9143 0.7424
e 0.8939 0.7629

4. Conclusions

With the aim of designing an action detection method on artificial knee, a new time—frequency
feature extraction method is proposed. This method is targeted at four common actions of the artificial
knee wearer, and extracted features from the inertia data are measured by MEMS IMU, using fractional
Fourier transform (FRFT) to magnify the diversity of features. FRFT is employed to extract the
appropriate feature vectors and construct a feature vector composed of eight features.

By analyzing the results of these features after FRFT in different orders, it was discovered that it
may have a good effect to classify walk and dwstairs by rms and mean, to classify upstairs and dwstairs
by range and pksNum, and to classify walk, dwstairs and run by std and pksNum.

The results of the classification with different features and orders are also analyzed. It was
discovered that in order to classify walk and dwstairs, the combination of pksNum and std is better
than the combination of range and pksMean, and it is better when order = 0.67 than order = 0.20. To
classify upstairs and dwstairs, the combination of range and pksNum is better than the combination of
rms and IQR, and it is better when order = 0.64 than order = 0.20. To classify walk and upstairs, the
combination of rms and mean is better than the combination of std and IQR, and it is better when order
= 0.71 than order = 0.20. To separate run from the other actions, the combination of rms and mean is
better than the combination of range and IQR, and it is better when order = 0.75.

Finally, the verification experiment is designed with the artificial lower limb knee prototype.
The results show that the method that we proposed has a good classification performance while also
reducing the requirements of hardware calculation. The accuracies of each sub-classifier are 95.05%,
95.38%, 91.43%, and 89.39%, respectively; the precisions are 78.43%, 98.36%, 98.36%, and 93.41%,
respectively; and the recalls are 100%, 93.26%, 86.96%, and 86.68%, respectively.
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