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Abstract: A full three-dimensional technology-computer-aided-design-based reliability prediction
model was proposed for dynamic random-access memory (DRAM) storage capacitors. The model
can be used to predict the time-dependent dielectric breakdown as well as leakage current of a
state-of-the-art DRAM storage capacitor with a complex three-dimensional structure.
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1. Introduction

Dynamic random-access memory (DRAM) cells are continuously scaled down to improve the
chip density [1]. The cell-size reduction decreases the storage capacitance (Cs), which is crucial for the
data retention time and read sensing margin [2]. Therefore, cell-size reduction while maintaining Cs is
one of the most important technical issues in DRAM cell design. Two approaches have been employed
to overcome this obstacle: increasing the surface area (A) and increasing the dielectric constant (k)
of the storage capacitor. For the first approach, storage capacitors are converted from planar into
three-dimensional (3D) structures to maximize their aspect ratios [3]. Regarding the second approach,
various types of high-k materials are introduced such as ZrO2 [4], TiO2 [5], and SrTiO [6], which tends
to deteriorate the defect density and bandgap energy [7]. This implies that state-of-the-art DRAM
storage capacitors suffer from reliability issues such as leakage current and time-dependent dielectric
breakdown (TDDB) [8]. Therefore, it is required to predict the electrical reliabilities of DRAM storage
capacitors with complex 3D structures. Several pioneering studies have been carried out to model
the leakage currents [9] and TDDB behaviors [10] of high-k dielectric films based on a kinetic Monte
Carlo (kMC) method; however, the extension to the complex 3D structure is insufficient owing to the
very large computational time [11]. In this manuscript, a full 3D technology-computer-aided-design
(TCAD)-based reliability prediction model for DRAM storage capacitors is proposed. TCAD provides
a faster calculation process than that based on the kMC method and structural changes can also be
easily implemented. The proposed model emulates the leakage current and TDDB behavior based on
any commercial TCAD simulator as long as it provides 3D structure generation, an electron and hole
continuity equation solver, a Poisson equation solver, and physical models including trap-assisted
charge transports [12]. Using this model, the percolation simulation can be applied.

Micromachines 2019, 10, 256; doi:10.3390/mi10040256 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-5515-2912
http://dx.doi.org/10.3390/mi10040256
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/10/4/256?type=check_update&version=2


Micromachines 2019, 10, 256 2 of 9

2. Methodology

In this section, the proposed reliability prediction model is explained. The leakage current of
a planar DRAM storage capacitor is simulated using the possible leakage current mechanisms of
metal/insulator/metal (MIM) structures (Figure 1a): (i) thermionic emission, (ii) Fowler–Nordheim
tunneling, (iii) Poole–Frenkel emission (PFE), (iv) trap-assisted tunneling (TAT), (v) trap-to-trap
tunneling, and (vi) direct tunneling. Figure 1b shows the structure of the simulated storage capacitor,
which has a TiN/ZrO2/TiN stack.

The leakage currents of ZrO2-based storage capacitors are affected mainly by PFE and TAT owing
to the high defect density of ZrO2 [13,14]. In addition to the PFE and TAT, the proposed model solved
the electron and hole continuity equations coupled with the Poisson equation:

∇·(ε∇φ) = −q(p− n + ND −NA) − ρtrap (1)

∇·
→

J n = q(Rnet,n −Gnet,n) + q
∂n
∂t

(2)

−∇·
→

J p = q
(
Rnet,p −Gnet,p

)
+ q

∂p
∂t

(3)

where ε is the electrical permittivity, q is the elementary electronic charge, ND is the concentration of
ionized donors, NA is the concentration of ionized acceptors, ρtrap is the charge density contributed
by traps, Rnet,n and Rnet,p are the electron and hole net recombination rates, Gnet,n and Gnet,p are the

electron and hole net generation rates,
→

J n is the electron current density,
→

J p is the hole current density,
and n and p are the electron and hole densities, respectively. The trap-assisted charge transport was
calculated using the Shockley–Read–Hall (SRH) recombination rate:

Rnet =
NTRAPcncp

(
np− n2

i

)
cn

(
n + ni

gn
exp

(ETRAP
kBT

))
+ cp

(
p + ni

gp
exp

(
−ETRAP

kBT

)) (4)

where NTRAP is the trap density, ETRAP is the energy of the trap, cn and cp are the electron and hole
capture rates, and gn and gp are the electron and hole degeneracy factors, respectively. All of the used
tunneling models, such as the elastic/inelastic TAT and trap-to-trap tunneling, are nonlocal models.
Only the PFE model was used as a local model and considered to increase the emission rate of electrons
injected through tunneling. The electron capture rate for the phonon-assisted (inelastic) transition from
the conduction band is [15]
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(5)

where VTRAP is the interaction volume of the trap, S is the Huang–Rhys factor, }ω is the energy of
the phonon involved in the transition, α is a dimensionless parameter, l is the number of phonons
emitted in the transition, f B is the Bose–Einstein occupation of the phonon state, z = 2S

√
fB( fB + 1),

χ =
√

l2 + z2, ∆E is the dissipated energy, EF,n is the Fermi energy, Tn is the electron temperature,
mt is the relative tunneling mass, and gc is the prefactor for the Richardson constant at the interface or
contact. The electron capture rate for the elastic transition from the conduction band is [16]
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where f (x) = 1/(1 + exp(−x)). The electron capture rate for the trap-to-trap tunneling is [17,18]

cn
trap−to−trap,i =

∑
j,i

[
Cf
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√
π
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where transitions occur between a localized state i with an energy of Ei
TRAP and neighboring localized

states j with energies of E j
TRAP, WOPT is the trap optical ionization energy, WT is the trap thermal

ionization energy, Q0 =
√

2(WOPT −WT), ri,j is the spatial distance between traps i and j involved in the
transition, f j is the localized trap j occupation probability, and Cf is a multiplication factor. The electron
capture rate for the PFE model is [17]

cn
PFE = σn

PFEvn
thn (8)

σn
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0(1 + ΓPFE) (9)
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 (11)

where vn
th is the electron thermal velocity, σn

0 is the electron capture cross section, and εPFE is an adjustable
parameter. The emission rates were computed following the principle of detailed balance. Figure 1c
shows that our simulation results matched well with experimental data under various temperature
conditions. The main parameters were: TINS = 8 nm, conduction band offset (CBO) = 1.90 eV,
ETRAP = 1.1 eV, and NTRAP = 1 × 1019 cm−3. It is worth noting that the experimental data measured
at a low electric field were ignored in our simulation as they were attributed to deep traps [19].
Only the shallow trap level, which provided the dominant leakage path formed by oxygen vacancies,
was considered [20].

The TDDB simulation was performed based on the leakage current simulation. Figure 2 shows a
flowchart of the proposed TDDB model. The TDDB simulation followed these five steps: (i) set the
initial trap distribution, structure, material parameters, and leakage current at the TDDB condition
(ILIMIT); (ii) after the calculation of the leakage current (ILEAK) through the trap-assisted charge transport
models, determine whether the TDDB condition is satisfied (ILEAK > ILIMIT); (iii) if not, fill the trap
sites with electrons and calculate the electric field using the Poisson equation, which is distorted by
the trapped electrons; (iv) probe the electric fields of all nodes and calculate the new trap generation
probability based on the thermochemical model [8]; and (v) repeat the above procedure after the update
of the trap distribution using the Monte Carlo method.
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Figure 1. (a) Energy band diagram of a metal/insulator/metal (MIM) capacitor, including the possible 

charge transport mechanisms. CBO: conduction band offset between the metal and dielectric layers. 

ETRAP is an energy level of a trap state. The red arrows show possible charge transport mechanisms: 

(i) thermionic emission, (ii) Fowler–Nordheim tunneling, (iii) Poole–Frenkel emission (PFE), (iv) trap-
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represent trapped electrons at the trap sites. q and V are the elementary charge and applied voltage, 

respectively. (b) Bird’s-eye and cross-sectional views of a simulated TiN/ZrO2/TiN capacitor. (c) 
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solved the electron and hole continuity equations coupled with the Poisson equation: 

Figure 1. (a) Energy band diagram of a metal/insulator/metal (MIM) capacitor, including the possible
charge transport mechanisms. CBO: conduction band offset between the metal and dielectric
layers. ETRAP is an energy level of a trap state. The red arrows show possible charge transport
mechanisms: (i) thermionic emission, (ii) Fowler–Nordheim tunneling, (iii) Poole–Frenkel emission
(PFE), (iv) trap-assisted tunneling (TAT), (v) trap-to-trap tunneling, and (vi) direct tunneling. The red
circles represent trapped electrons at the trap sites. q and V are the elementary charge and applied
voltage, respectively. (b) Bird’s-eye and cross-sectional views of a simulated TiN/ZrO2/TiN capacitor.
(c) Calibrated simulation data compared with experimental data [21]. It is worth noting that the leakage
current at a low bias is ignored, as only the shallow trap level, which originates from oxygen vacancies,
is considered [20].
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3. Results and Discussion

ILIMIT was calculated assuming the percolation condition, as shown in Figure 3. In this case,
the trap-to-trap tunneling current rapidly increased in the low-bias region, which was used to determine
ILIMIT. Based on the thermochemical model, the probability of bonding breaking (PBD) is

PBD = exp
(
−

∆H0

kBT
+ γE

)
(12)

where ∆H0 is the enthalpy of activation for bond breakage, kB is the Boltzmann’s constant, T is
the temperature, γ is the field acceleration parameter, and E is the applied electric field. The main
parameters were ∆H0 = 1.874 eV and γ = 8.67 cm/MV [21]. The newly generated trap was affected
by the existing trap. This phenomenon occurred as the existing trap became an electron trap site.
The trapped electron reduced the defect formation energy nearby, thus increasing the probability that a
new trap would form around the existing trap [22]. The enhancement in the local electric field by the
trapped electrons led to an increase in trap generation probability around an existing trap. Figure 4a
shows the progression of the trap generation and occupation of TDDB according to the stress. In this
case, the stress bias was 4.4 V for the voltage of the top electrode (VTOP), while the temperature was
398 K. Figure 4c–e show the trap distribution at each point in Figure 4a. Traps were generated through
probabilities based on the TDDB model and eventually reached the TDDB condition by forming a
percolation path. Furthermore, TDDB simulations were repeated in many samples, changing the stress
bias conditions. The TDDB distribution was summarized as a Weibull plot, which was calculated as a
cumulative probability density function (CDF), as shown in Figure 4b. Particularly, when ln(–ln(1 −
CDF)) = 0, which represents the lifetime, the experimental [21] and simulation results were consistent.
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Figure 4. TDDB simulation with a constant voltage stress of 4.4 V at 398 K. (a) Leakage current
density until the TDDB. (b) Weibull plot for the experimental (symbols) and simulation (lines) results.
(c)–(e) represent points A–C in (a), respectively. The red spheres indicate trap sites. Trap generation
according to the stress and (e) formation of a percolation path were observed.

Finally, the TDDB simulation was extended with a 3D cylindrical structure by combining the
above simulation results. The structure was defined by: TINS = 2 nm, TMETAL = 0.5 nm, bottom critical
dimension (CDBOT) = 10 nm, and height (H) = 20 nm, assuming an extremely scaled and simplified
capacitor, as shown in Figure 5a. Figure 5b shows the trap distribution at breakdown. In contrast to the
planar structure, the trap formation occurred mainly near the interface between the top electrode and
dielectric film. The reason for this is as follows: first, the 3D cylindrical structure shown in Figure 5a
had a smaller top electrode than a bottom one, while the planar structure had the same top electrode
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area as the bottom one. Considering Gauss’s law, this means that the electric field near the top electrode
was larger than that near the bottom electrode, which made trap formation near the top electrode
easier than near the bottom electrode. Second, the 3D cylindrical structure had two corners in the top
electrode while the planar one had no corners. According to the electrostatics, a sharp corner increased
the electric field surrounding it. Thus, trap formation was relatively easy around the corners of the top
electrode. Figure 5c shows the electric field when VTOP = 1.0 V in the absence of a trap, while Figure 5d
shows the maximum and minimum electric fields for body, edge, and planar cases. Owing to the
nonuniform electric field, considering the cylindrical structure, the maximum electric field was formed
at the interface of the top electrode where the Gauss surface was small [23]. This suggests a weakness
of top-electrode interface degradation. Particularly, in the edge case, the maximum electric field was
enhanced owing to the electric field crowding effect [24]; however, simultaneously, the minimum
electric field was significantly reduced owing to the nonuniform electric field. Therefore, in this
structure, most samples showed collapse of the body case.
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4. Conclusions

A full 3D TCAD-based TDDB model for DRAM storage capacitors was proposed. It can
be employed to predict leakage current and TDDB in a complex structure, which is required by
state-of-the-art DRAM storage capacitors, based on the powerful function of TCAD. In addition, it can
be applied to predict characteristic changes due to structural variations, such as surface roughness
and etch profile, and can be extended to a mixed-mode and AC analysis by utilizing other functions
of TCAD.
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