Supplementary Materials: Establishment of the Inducible Tet-on System for the Activation of the Silent Trichosetin Gene Cluster in Fusarium fujikuroi

Slavica Janevska, Birgit Arndt, Leonie Baumann, Lisa Helene Apken, Lucas Maciel Mauriz Marques, Hans-Ulrich Humpf, Bettina Tudzynski

Figure S1. HPLC-HRMS extracted ion chromatograms (XICs) of trichosetin ($\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 360.2169, \Delta \mathrm{ppm}=5$; retention time 16.31 min) for OE::TF22 transformants T9 and T13 in comparison to the wild type (WT). The strains were grown in liquid culture for 7 days. The y axis is not identical for all XICs to ensure visibility of the analyte in the transformant T13.

Figure S2. Phenotypic analysis of TET::TF22 double mutants. The wild type (WT), TET::TF22 and indicated double mutants were grown on solid CM for 3 days. The medium was supplemented with 0,10 or $50 \mu \mathrm{~g} / \mathrm{mL}$ doxycycline (Dox) for induction of transcription factor (TF) gene expression. T, transformant.

Figure S3. Real-time expression analysis of TET::TF22 double mutants. The wild type (WT) and two independent transformants (T) of TET::TF22 single and double mutants were grown on solid CM for 3 days. The medium was supplemented with 0,10 or $50 \mu \mathrm{~g} / \mathrm{mL}$ doxycycline (Dox) for induction of transcription factor (TF) gene expression. Total RNA was isolated from the harvested mycelium, transcribed into cDNA and the relative expression (RE) of TF22 was analyzed using the $\Delta \Delta C t$ method. Error bars (\pm standard deviation) originate from a technical replicate and expression of TET::TF22 T10, $50 \mu \mathrm{~g} / \mathrm{mL}$ Dox was arbitrarily set to 1 .

Figure S4. HPLC-HRMS analysis of the $\triangle D A / T E T:: T F 22$ double mutant. Shown are the extracted ion chromatograms of trichosetin $\left(\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 360.2169, \Delta \mathrm{ppm}=5\right)$. TET::TF22 and $\triangle D A / T E T:: T F 22$ transformants (T) were grown in liquid culture for 2 days, then transcription factor (TF) gene expression was induced with $50 \mu \mathrm{~g} / \mathrm{mL}$ doxycycline for an additional 5 days.

Figure S5. Trichosetin plate assay. (a) The wild type (WT), $\triangle M F S-T$ and $\triangle T F 23$ transformants (T) were grown on solid CM supplemented with 0,5 or $10 \mu \mathrm{~g} / \mathrm{mL}$ trichosetin for 4 days. (b) The cultivation was done in triplicate and average colony diameters are shown.

Figure S6. Rice germination assay using $\mathrm{H}_{2} \mathrm{O}$ (negative control), the F. fujikuroi wild type (WT) as well as one transformant (T) of OE::TF22. (a) Surface sterilized rice seedlings were treated with $\mathrm{H}_{2} \mathrm{O}$ or fungal suspension for 16 h , then seedlings were incubated for 6 days in the presence of a 12 h light $/ 12 \mathrm{~h}$ dark cycle to germinate. Arrows indicate bakanae symptoms. (b) Out of 50 seedlings, the germination of only shoot or shoot + root was counted and related to the $\mathrm{H}_{2} \mathrm{O}$ control which was set to 100%.

Figure S7. CCK-8 assay on Hep G2 cells applying 0.1-50 $\mu \mathrm{M}$ equisetin or trichosetin. 1% methanol (MeOH) and $10 \mu \mathrm{M}$ T-2 toxin served as negative and positive control, respectively. The data represent mean values (\pm standard deviation). The significance indicated refers to the solvent-treated control $(1 \% \mathrm{MeOH})$ calculated with an unequal variances t-test; ${ }^{* * *}$ statistically highly significant ($p \leq 0.001$).

Figure S8. HPLC-HRMS extracted ion chromatograms of $m / z[\mathrm{M}+\mathrm{H}]^{+} 376.2118$ (calculated for hydroxy- or ketotrichosetin, $\Delta \mathrm{ppm}=5$) for the wild type (WT) and OE::TF22 T9. The strains were grown in liquid culture for 7 days.

Figure S9. Overexpression of TF22 and TF23 via constitutive PoliC promoter from A. nidulans as well as overexpression of $e q x D$ via constitutive PglnA promoter from F. fujikuroi. (a) The full-length gene TF22 including 244 bp of the native terminator sequence (T) was cloned into NcoI/SacII restricted pNDH-OGG conferring hygromycin B resistance (hphR). (b) The first 1.2 kb of TF23 was cloned into NcoI/SacII restricted pNDH-OGG conferring hygromycin B resistance (hphR). (c) The full-length gene eqxD from F. heterosporum was cloned into NcoI/NotI restricted pNAN-GGT conferring nourseothricin resistance (natR). (d) The integration of pOE::TF22 in two independent transformants (T) was checked using primer pairs PoliC_Seq_F2/TF22_OE_R (1.82 kb) and PoliC_Seq_F2/TF22_OE_diag (1.86 kb). OE::TF22 T9: ectopic integration; OE::TF22 T13: in locus integration. (e) The in locus integration of pOE::TF23 in two independent transformants (T) was checked using primer pair PoliC_Seq_F2/02223_WT_R (1.74 kb). (f) The integration of pOE::TF22 and pOE::eqxD in three independent transformants (T) was checked using primer pairs PoliC_Seq_F2/TF22_OE_R (1.82 kb) and eqxD_OE_F/eqxD_OE_R (1.18 kb), respectively. The F. fujikuroi wild type (WT) was used as control. $\lambda, \lambda /$ HindIII; M: GeneRuler DNA Ladder Mix.

Figure S10. Inducible overexpression of TF22. (a) The full-length gene TF22 was cloned into NcoI/NotI restricted pTET conferring nourseothricin resistance (natR). For pTET, the TET construct was fused to the constitutive PoliC promoter from A. nidulans, which encodes the tetracycline-dependent transactivator rtTA2s-M2 and furthermore, harbors the tetracycline-responsive element TRE. 2 kb of $D D R 48$ and its upstream sequence targets pTET to the constitutively expressed DDR48 locus. pTET::TF22 was transformed into all relevant genetic backgrounds, (b) the F. fujikuroi wild type (WT), (c) $\triangle P K S-N R P S 1$, (d), $\triangle D A$, (e) $\triangle E R$, (f) $\triangle T F 23$ and (g) $\triangle M F S-T$. The presence of pTET and the correct in locus integration in two independent transformants (T) was checked using primer pairs TET_Seq_F/02222_WT_R (1.50 kb) and Tgluc_hiF/TET_ddr_diag_R (2.10 kb), respectively. The WT or the respective deletion mutant was used as control. M: GeneRuler DNA Ladder Mix.

Figure S11. Verification of $\triangle P K S$-NRPS1 deletion mutants by diagnostic PCR and Southern blot. (a) Deletion via homologous recombination with the hygromycin B resistance cassette ($h p h R$) was underlined with the amplification of 5' (trpC_T/02219_5diag) and 3' (trpC_P2/02219_3diag) flanks but no amplification of wild-type (WT; 02219_WT_F/02219_WT_R) signal for two independent transformants (T). (b) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with StuI and the 3' flank was applied for probing. (c) Detected signals match the expected 2.07 kb for the WT as well as 5.61 kb for $\triangle P K S-N R P S 1 . \lambda: \lambda / H i n d I I I$, M: GeneRuler DNA Ladder Mix.

Figure S12. Verification of $\triangle D A$ deletion mutants by diagnostic PCR and Southern blot. (a) Deletion via homologous recombination with the hygromycin B resistance cassette (hphR) was underlined with the amplification of 5^{\prime} (trpC_T/02220_5diag) and 3' (trpC_P2/02220_3diag) flanks but no amplification of wild-type (WT; 02220_WT_F/02220_WT_R) signal for three independent transformants (T). (b) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with EcoRI and the 3' flank was applied for probing. (c) Detected signals match the expected 7.72 kb for the WT as well as 3.38 kb for $\Delta D A . \lambda: \lambda / H i n d I I I, ~ M: ~ G e n e R u l e r ~ D N A ~ L a d d e r ~ M i x . ~$

Figure S13. Verification of $\triangle E R$ deletion mutants by diagnostic PCR and Southern blot. (a) Deletion via homologous recombination with the hygromycin B resistance cassette (hphR) was underlined with the amplification of $5^{\prime}\left(\operatorname{trpC}\right.$ T/02221_5diag) and 3^{\prime} (trpC_P2/02221_3diag) flanks but no amplification of wild-type (WT; 02221_WT_F/02221_WT_R) signal for three independent transformants (T). (b) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with ScaI and the 5' flank was applied for probing. (c) Detected signals match the expected 10.66 kb for the WT as well as 5.26 kb for $\Delta E R$. $\lambda: \lambda / H i n d I I I, ~ M: ~ G e n e R u l e r ~ D N A ~ L a d d e r ~ M i x . ~$

Figure S14. Verification of $\triangle T F 23$ deletion mutants by diagnostic PCR and Southern blot. (a) Deletion via homologous recombination with the hygromycin B resistance cassette ($h p h R$) was underlined with the amplification of $5^{\prime}\left(\operatorname{trpC}\right.$ T/02223_5diag) and 3^{\prime} (trpC_P2/02223_3diag) flanks but no amplification of wild-type (WT; 02223_WT_F/02223_WT_R) signal for two independent transformants (T). (b) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with HindIII and the 5' flank was applied for probing. (c) Detected signals match the expected 2.87 kb for the WT as well as 4.43 kb for $\Delta T F 23$. $\lambda: \lambda /$ HindIII, M: GeneRuler DNA Ladder Mix.

Figure S15. Verification of $\triangle M F S-T$ deletion mutants by diagnostic PCR and Southern blot. (a) Deletion via homologous recombination with the hygromycin B resistance cassette (hphR) was underlined with the amplification of $5^{\prime}\left(\operatorname{trpC}\right.$ T/02224_5diag) and 3^{\prime} (trpC_P2/02224_3diag) flanks but no amplification of wild-type (WT; 02224_WT_F/02224_WT_R) signal for three independent transformants (T). (b) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with ScaI and the 5' flank was applied for probing. (c) Detected signals match the expected 5.26 kb for the WT as well as 2.97 kb for Δ MFS-T. $\lambda: \lambda / H i n d I I I, ~ M: ~ G e n e R u l e r ~ D N A ~ L a d d e r ~ M i x . ~$

Figure S16. Analysis of physico-chemical properties and purity of trichosetin. (a) UV-spectrum of trichosetin in acetonitrile. (b) UV-spectrum of trichosetin in methanol. (c) Molar CD spectrum of trichosetin in methanol. (d) HPLC-ELSD chromatogram of trichosetin, retention time 21.27 min .

Figure S17. Calibration curve of the semi-quantitative analysis of trichosetin and equisetin, respectively. The analysis was done with HPLC-MS/MS, and OTA was used as internal standard (IS). The corresponding function
of the calibration curves as well as the Pearson correlation coefficient R^{2} are given adjacent to the names of the analytes.

Table S1. HPLC-HRMS-CID measurement of trichosetin and the two putative stereoisomers in $\triangle D A / T E T:: T F 22$. The precursor ion $m / z 360.22$ was fragmented with 40% normalized collision energy (NCE). The highest and second highest fragment ions were fragmented again with 15% NCE. The "?" in the table indicate that the ppm deviation of calculated to measured exact mass was higher than 5 ppm .

Trichosetin			Peak@16.43 min			Peak ${ }_{\text {a }} 18.45 \mathrm{~min}$		
$m / z 360.22$	@CID40		$m / z 360.22$	@CID40		$m / z 360.22$	@CID40	
$m / z \text { of }$ product ion	Putative loss	Intensity [\%]	$m / z \text { of }$ product ion	Putative loss	Intensity $[\%]$	$m / z \text { of }$ product ion	Putative loss	Intensity [\%]
342.2062	$\mathrm{H}_{2} \mathrm{O}$	100.0	342.2060	$\mathrm{H}_{2} \mathrm{O}$	100.0	342.2060	$\mathrm{H}_{2} \mathrm{O}$	100.0
332.2217	CO	35.1	332.2216	CO	43.4	332.2216	CO	27.2
175.1478	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~N}$	17.6	175.1478	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~N}$	14.6	175.1478	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~N}$	19.4
205.1948	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~N}$	9.7	205.1948	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~N}$	8.8	186.0758	$\mathrm{C}_{13} \mathrm{H}_{18}$	8.0
186.0758	$\mathrm{C}_{13} \mathrm{H}_{18}$	6.1	186.0758	$\mathrm{C}_{13} \mathrm{H}_{18}$	5.7	205.1948	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~N}$	6.6
231.1741	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	5.8	189.1635	$\mathrm{C}_{13} \mathrm{H}_{18}$	4.8	231.1740	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	3.3
189.1635	$\mathrm{C}_{13} \mathrm{H}_{18}$	4.6	231.1740	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	4.4	130.0495	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$	2.7
130.0496	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$	4.3	130.0495	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$	2.8	189.1635	$\mathrm{C}_{13} \mathrm{H}_{18}$	2.6
$m / z 332.2$	@CID15		$m / z 332.2$	@CID15		m/z 332.2	@CID15	
m / z of product ion	Putative loss	Intensity [\%]	m / z of product ion	Putative loss	Intensity $[\%]$	$m / z \text { of }$ product ion	Putative loss	Intensity [\%]
203.1792	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	100.0	177.1635	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$	100.0	177.1635	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$	100.0
210.1123	$\mathrm{C}_{9} \mathrm{H}_{14}$	47.2	203.1792	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	69.2	203.1791	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	80.9
177.1635	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$	41.7	170.0808	$\mathrm{C}_{12} \mathrm{H}_{18}$	26.4			
191.1790	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	23.3	210.1121	$\mathrm{C}_{9} \mathrm{H}_{14}$	20.0			
276.1591	$\mathrm{C}_{4} \mathrm{H}_{8}$	18.5	191.1793	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	16.5			
130.0495	$\mathrm{C}_{16} \mathrm{H}_{20}$	10.8						
$m / z 342.2$	@CID15		$m / z 342.2$	@CID15		$m / z 342.2$	@CID15	
m / z of product ion	Putative loss	Intensity [\%]	m / z of product ion	Putative loss	Intensity [\%]	m / z of product ion	Putative loss	Intensity [\%]
342.2060	Precursor Ion	100.0	342.2060	Precursor Ion	100.0	342.2061	Precursor Ion	100.0
213.1635	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	57.4	213.1636	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	61.0	288.1592	$\mathrm{C}_{4} \mathrm{H}_{6}$	70.0
286.1435	$\mathrm{C}_{4} \mathrm{H}_{8}$	46.4	300.1591	$\mathrm{C}_{3} \mathrm{H}_{6}$	50.6	300.1591	$\mathrm{C}_{3} \mathrm{H}_{6}$	69.5
288.1591	$\mathrm{C}_{4} \mathrm{H}_{6}$	45.0	288.1591	$\mathrm{C}_{4} \mathrm{H}_{6}$	48.3	213.1634	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	59.1
300.1591	$\mathrm{C}_{3} \mathrm{H}_{6}$	42.7	286.1433	$\mathrm{C}_{4} \mathrm{H}_{8}$	47.7	286.1434	$\mathrm{C}_{4} \mathrm{H}_{8}$	53.8
187.1478	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$	30.4	324.1954	? $\mathrm{H}_{2} \mathrm{O}$	45.8	324.1955	? $\mathrm{H}_{2} \mathrm{O}$	37.8
324.1959	? $\mathrm{H}_{2} \mathrm{O}$	29.8	187.1477	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$	45.5	187.1478	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$	28.9
312.1956	$\mathrm{CH}_{2} \mathrm{O}$	29.5	312.1953	$\mathrm{CH}_{2} \mathrm{O}$	39.8	272.1278	$\mathrm{C}_{5} \mathrm{H}_{10}$	25.1
173.1321	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$	28.3	173.1320	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$	33.6	173.1323	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$	23.0
201.1635	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	25.9	201.1635	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	27.7	201.1636	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$	23.0
272.1278	$\mathrm{C}_{5} \mathrm{H}_{10}$	24.8	170.0807	$\mathrm{C}_{13} \mathrm{H}_{16}$	20.7	312.1957	$\mathrm{CH}_{2} \mathrm{O}$	22.8
246.1123	$\mathrm{C}_{7} \mathrm{H}_{12}$	19.1	156.0650	$\mathrm{C}_{14} \mathrm{H}_{18}$	13.7	274.1437	$\mathrm{C}_{5} \mathrm{H}_{8}$	17.9
274.1436	$\mathrm{C}_{5} \mathrm{H}_{8}$	15.1	246.1123	$\mathrm{C}_{7} \mathrm{H}_{12}$	11.6	246.1120	$\mathrm{C}_{7} \mathrm{H}_{12}$	10.4
170.0808	$\mathrm{C}_{13} \mathrm{H}_{16}$	13.4	272.1279	$\mathrm{C}_{5} \mathrm{H}_{10}$	9.7	170.0812	$\mathrm{C}_{13} \mathrm{H}_{16}$	7.0
234.1124	$\mathrm{C}_{8} \mathrm{H}_{12}$	12.7				234.1124	$\mathrm{C}_{8} \mathrm{H}_{12}$	6.0
159.1165	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}$	12.6						
156.0652	$\mathrm{C}_{14} \mathrm{H}_{18}$	12.2						

Table S2. Primer sequences used for the generation of deletion constructs, verification of their homologous integration as well as for probe generation. Introduced overhangs required for yeast recombinational cloning are underlined.

Gene	Primer	Sequence 5' $\boldsymbol{\rightarrow}$ 3'
02218	02218_WT_F	GTTAGGCATCAAGTCCATTCTCC
	02218_WT_R	GCGAGAGATTCGTTAAAGCGC
$\begin{gathered} P K S-N R P S 1 \\ (02219) \end{gathered}$	02219_5F	GTAACGCCAGGGTTTTTCCCAGTCACGACGCCAGATGCATGGTACCATC
	02219_5R	ATCCACTTAACGTTACTGAAATCTCCAACGATTGATCGAGCAGTTGACC
	02219_3F	CTCCTTCAATATCATCTTCTGTCTCCGACCAAGTTCCTAAGAGGCCG
	02219_3R	GCGGATAACAATTTCACACAGGAAACAGCGGCTACGTAATGCAGCTTG
	02219_5diag	GCGCGAGGACCTAGCTCAGG
	02219_3diag	TCGGCATGTTGGTTAACGGC
	02219_WT_F	CCGAGACACACAAGGGACAGCC
	02219_WT_R	CCTGGAAGGCATCGAGCTCAC
$\begin{gathered} D A \\ (02220) \end{gathered}$	02220_5F	GTAACGCCAGGGTTTTCCCAGTCACGACGCCAAGCTTGATGAACAGGCCG
	02220_5R	ATCCACTTAACGTTACTGAAATCTCCAACGAGTCAAGAGTAATTGGGTCG
	02220_3F	CTCCTTCAATATCATCTTCTGTCTCCGACTCATTTGTTAGTAACTGGTGG
	02220_3R	GCGGATAACAATTTCACACAGGAAACAGCCGGGATTTACCGAAACAGC
	02220_5diag	GTTGGCTCCAGCTGCGATGG
	02220_3diag	CGACTGCACCGGGTGTGACG
	02220_WT_F	GGCTCAGGCAATGTCTTCGCC
	02220_WT_R	CGCCTCCTCATCCGCACC
$\begin{gathered} E R \\ (02221) \end{gathered}$	02221_5F	GTAACGCCAGGGTTTTTCCCAGTCACGACGGATTTAGGTGCCGAGGTCTTG
	02221_5R	ATCCACTTAACGTTACTGAAATCTCCAACCTTGAGTTGACAAGAACGC
	02221_3F	CTCCTTCAATATCATCTTCTGTCTCCGACCAGTCTTCCCAACATCATAAGC
	02221_3R	GCGGATAACAATTTCACACAGGAAACAGCCTAGGATGCATACTACAGACTC
	02221_5diag	GGTGAAACTGACAGGGTTGAATG
	02221_3diag	CAACCAAGGTTAGGTCGCTC
	02221_WT_F	CGCCTTGGTGGGCACTCC
	02221_WT_R	GACCTCTGCAAGACCACCCTGC
$\begin{gathered} T F 22 \\ (02222) \end{gathered}$	02222_WT_F	GCACACTCCGCCACATGCC
	02222_WT_R	GCCTTGAGCGACCTAACCTTGG
$\begin{gathered} T F 23 \\ (02223) \end{gathered}$	02223_5F	GTAACGCCAGGGTTTTCCCAGTCACGACGGATAGATGATGAGACGCCC
	02223_5R	ATCCACTTAACGTTACTGAAATCTCCAACGACGCGATTCCTGGTCCGCC
	02223_3F	CTCCTTCAATATCATCTTCTGTCTCCGACGATTGTTTCGGCTACAAAGG
	02223_3R	GCGGATAACAATTTCACACAGGAAACAGCCGGTACACAATCAACCAACCG
	02223_5diag	GCACAGCCGATTGTGAAGGCC
	02223_3diag	CGTGAGGAGTCAGTTACGACGG
	02223_WT_F	GCTGTTCTCGACGGGATTGCC
	02223_WT_R	CGGCGTCAGTTCTGTTTCTGGC
$\begin{aligned} & M F S-T \\ & (02224) \end{aligned}$	02224_5F	GTAACGCCAGGGTTTTCCCAGTCACGACGGTAGCAACAGCCGTGTTCACG
	02224_5R	ATCCACTTAACGTTACTGAAATCTCCAACCTGGGATGATAACACTGC

	02224_3F	CTCCTTCAATATCATCTTCTGTCTCCGACGTACATACTGGGCTTGACAAG
	02224_3R	GCGGATAACAATTTCACACAGGAAACAGCCATATCCGAGGATACAGGGATC
	02224_5diag	CCTCCGCCCGTGGATCG
	02224_3diag	CTAGCGGCCATATTTCGGC
	02224_WT_F	CCTGGGCTTCGCGCTAGG
	02224 WT R	GTGCCGATGATAGGGACGATCC
	02225_WT_F	CGGGGGGCCTAGCTGCCC
	02225_WT_R	CGCTAGGAGACTGAGCGAGTTGC
	hph_F	GTCGGAGACAGAAGATGATATTGAAGGAGC
	hph_R	GTTGGAGATTTCAGTAACGTTAAGTGGAT
	trpC_T	GGAATAGAGTAGATGCCGACCGG
	trpC_P2	GTGATCCGCCTGGACGACTAAACC

Table S3. Primer sequences used for the generation and analysis of constitutive and inducible overexpression vectors. Introduced overhangs required for yeast recombinational cloning are underlined.

Gene	Primer	Sequence 5' $\boldsymbol{\rightarrow}$ 3'
pOE::TF22	TF22_OE_F	CCATCACATCACAATCGATCCAACCATGTCCACACGGAACAGC
	TF22_OE_R	GTAACGCCAGGGTTTTCCCAGTCACGACGGGCTCCTGGTTGACGGACGC
	TF22_OE_diag	GGACCGGTCGTGGTCGCC
	TF22_Seq	GCACACTCCGCCACATGCC
pOE::TF23	TF23_OE_F	CCATCACATCACAATCGATCCAACCATGGAGTGGGGTCCAGGG
	TF23_OE_R	GTAACGCCAGGGTTTTCCCAGTCACGACGGCGTCTCCAGCACGTAAGGG
	TF23_Seq	GCTGTTCTCGACGGGATTGCC
	TF23_OE_diag	CGGCGTCAGTTCTGTTTCTGGC
pOE: $:$ eqxD	eqxD_OE_F	CCCCGTATCACAACCACATTCACAATGTCATCTATCCTTTCGCG
	eqxD_OE_R	GTTGACATGGAGCTATTAAATCATCAACTCTGTACAGGTAGC
	eqxD_Seq1	GCCACCAAGACGGGCATGG
	eqxD_Seq2	CTTCGGCATGTGTGCTGCAGG
PoliC	PoliC_Seq_F2	GGGAGACGTATTTAGGTGCTAGGG
$P g \ln A$	GS_Prom_M	ATGTCGAAGTATCTTCCCTGTGC
pTET::TF22	TET-A-PoliC-F	CATCACATCACAATCGATCCAACCATGTCTAGACTGGACAAGAGCAAAGT
	TET-A-R	GCCTCGTGATACGCACGGCCGCATGATTC
	TET-B-F	GAATCATGCGGCCGTGCGTATCACGAGGC
	TET-B-GFP-R	TTACTTACCTCACCCTTGGAAACCATGGAAACGGTGATGTCTGCTCAAGC
	TET_ddr_F	GATTTGACAACCCCTTCCCCCCAACAAGATTTAGTAGTCGTTGTCACCAC
	TET_ddr_R	GTAACGCCAGGGTTTTCCCAGTCACGACGCTTGATCTGAGTCGATCACC
	TF22_TET_F	CCCGCTTGAGCAGACATCACCGTTTATGTCCACACGGAACAGCC
	TF22_TET_R	TAATCATACATCTTATCTACATACGTCAAAGATTCATCTTTTCTC
	TET_Seq_F	ATTCATCTTCCCATCCAAGAACC
	Tgluc_hiF	CATACGTACATCTGATTTGACAACC
	TET_ddr_diag_R	CTTTCATGGCGAAGCTTCAGGC

Table S4. Primer sequences used for expressional analysis by quantitative real-time PCR. Reference genes: GMT, GDP mannose transporter gene; $R A C$, related actin gene; UBI, ubiquitin gene.

Gene	Primer	Sequence 5' \rightarrow 3'
$\begin{gathered} P K S-N R P S 1 \\ (02219) \end{gathered}$	PKS-NRPS1_RT_F	CTGCTGGTTCAATCGGCCTTCC
	PKS-NRPS1_RT_R	CGGACGCCAAGGAACTTGACG
$\begin{gathered} D A \\ (02220) \end{gathered}$	02220_RT_F	CGCTACGACGCATCCTCTGAGG
	02220_RT_R	GCCCAGGCGCACTCGTAGG
$\begin{gathered} E R \\ (02221) \end{gathered}$	02221_RT_F	GTCAAGTCCTACGGCGCCAGC
	02221_RT_R	CGCCACTGCCTCAGAGTATGGC
$\begin{gathered} T F 22 \\ (02222) \end{gathered}$	02222_RT_F	GCTTGCAGCTCGGAGAACTGCC
	02222_RT_R	GCTCAGCGCTGAAGTCCATCCC
$\begin{gathered} T F 23 \\ (02223) \end{gathered}$	02223_RT_F	CCGGTCTCGGCTCACAGTTTCC
	02223_RT_R	GCAGGTTCCATGGCCATGCC
$\begin{aligned} & M F S-T \\ & (02224) \end{aligned}$	02224_RT_F	GCTGGCACGTGCCATTGTACG
	02224_RT_R	GGAGCGGCATTCTCTTCGCC
$e q x D$	eqxD_RT_F	GGCTCATCTGGAAGGAGGTTCTCG
	eqxD_RT_R	CGCAAGGTGCAGAAAGTCGGTTC
$\begin{gathered} G M T \\ (07710) \end{gathered}$	FGMTRTPCRFW	CGGGCCATTCTCTATTCTTTC
	FGMTRTPCRRV	ATGCTGTGATGGCAACAATG
$\begin{gathered} R A C \\ (05652) \end{gathered}$	FRACRTPCRFW	GAGAACGAGCGTGTCTTGATTGAGCC
	FRACRTPCRRV	TTTCCTCCGCAGAATGAAGAAGGACTC
$\begin{gathered} U B I \\ (08398) \end{gathered}$	FUBRTPCRFW	CCAACCCTGACGATCCTCTTGTGC
	FUBRTPCRRV	TACTTTCGAGTCCACTCCCGAGCTG

Table S5. NMR spectra of trichosetin in MeOH-d 4 , measured with a 600 MHz NMR-spectrometer and referenced to tetramethylsilane. Signals are given in ppm. The number of the corresponding carbon atoms (no. of C) is similar to that reported by Marfori et al. [28]. Multiple proton signals are divided by a semicolon.

no. of C	$\delta^{13} \mathrm{C}$	$\delta^{1} \mathrm{H}$, multiplicity, $\mathbf{J}(\mathbf{H z})$	gHMBC	gCOSY	NOESY
1	204.1, C	-	-	-	-
2	51.4, C	-	-	-	-
3	43.6, CH	3.38, m	-	CH-4, CH-13/14	$\mathrm{CH}-13 / 14, \mathrm{CH}-4, \mathrm{CH}_{3}-12$
4	131.7, CH	5.54, m	C-3, C-6, C-2	CH-3, CH-5	CH-3, CH-5
5	130.4, CH	5.32, m	C-6, C-11, C-7, C-3	CH-4	$\mathrm{CH}_{2}-7, \mathrm{CH}-4$
6	36.1, CH	2.12, broad s	-	$\mathrm{CH}_{2}-7$	$\mathrm{CH}_{2}-7$ (weak)
7	41.7, CH_{2}	$\begin{array}{r} 1.11, \mathrm{td}, 12.72,12.65 \\ 5.09 ; 1.58, \mathrm{~m} \end{array}$	$\begin{array}{r} \mathrm{C}-16, \mathrm{C}-8, \mathrm{C}-6, \mathrm{C}-11, \\ \mathrm{C}-5 \end{array}$	CH-6, CH-8 (weak)	1.58 ppm: $\mathrm{CH}_{3}-16$
8	29.6, CH	1.35, m	overlapped by singulett $\mathrm{CH}_{3}-12$	$\mathrm{CH}_{3}-16$	$\mathrm{CH}_{3}-16$
9	36.5, CH_{2}	$\begin{array}{r} 1.67^{* *}, \mathrm{~d} ; 0.88, \mathrm{qd}, \\ 23.68,12.55,12.55,3.19 \end{array}$	$0.88 \text { ppm: C-10, C-8, }$ $\mathrm{C}-11$	0.88 ppm: $\mathrm{CH}_{2}-10$	Problems with overlapping signals

10	24.0, CH_{2}	1.63, m; 1.47, m	C-9, C-11	$\mathrm{CH}_{2}-9$	$\begin{array}{r} 1.63 \mathrm{ppm}: \mathrm{CH}-13 / 14, \\ \mathrm{CH}_{3}-12 \end{array}$
11	38.5, CH	2.68 , broad s	-	-	-
12	18.9, CH_{3}	1.32 , s	C-11, C-3, C-2, C-1	-	$\mathrm{CH}_{2}-10, \mathrm{CH}-13 / 14, \mathrm{CH}-3$
13	128.3, CH	5.46*, m	$\mathrm{C}-15, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-14$	$\mathrm{CH}_{3}-15, \mathrm{CH}-3$	$\mathrm{CH}_{3}-12, \mathrm{CH}_{2}-10, \mathrm{CH}_{3}-15,$ CH-3
14	133.3, CH	5.46*, m	C-15, C-3, C-4, C-13		
15	18.2, CH_{3}	1.67**, d, 4.36	C-13, C-14	CH-13/14	
16	23.0, CH_{3}	0.82, d, 6.5	C-8, C-9, C-7	CH-8	CH-8
2^{\prime}	nd	-	-	-	
3^{\prime}	nd	-	-	-	
$4 '$	192.3, C	-	-	-	
$5 '$	64.9, nd	nd	-	-	
$6{ }^{\prime}$	62.4, CH_{2}	$\begin{array}{r} 3.77, \text { dd, } 11.53,4.86 \\ 3.84, \text { dd, } 11.51,2.91 \end{array}$	C-4', C-5'		
$\begin{aligned} * & =\text { cannot be separated } \\ * * & =\text { signals overlapping } \\ \text { nd } & =\text { not detected } \end{aligned}$					

Table S6. NMR spectra of trichosetin in MeOH-d 4 , measured with a 600 MHz NMR -spectrometer and referenced to tetramethylsilane, in comparison to NMR spectra found in the literature. Signals are given in ppm. The number of the corresponding carbon atoms (no. of C) is similar to that reported by Marfori et al. [28]. Multiple proton signals are divided by a semicolon.

	NMR data obtained in this study		Kakule et al., 2013		Marfori et al., 2002	
no. of C	$\delta^{13} \mathrm{C}$	$\delta^{1} \mathrm{H}$, multiplicity, $\mathbf{J}(\mathbf{H z})$	$\delta^{13} \mathrm{C}$	$\delta^{1} \mathbf{H}$, multiplicity, $\mathbf{J}(\mathrm{Hz})$	$\delta^{13} \mathrm{C}$	$\delta^{1} \mathrm{H}$
1	204.1, C	- -	204.6		201.5	
2	51.4, C	-	51.5		50	
3	43.6, CH	3.38, m	46.2	3.46, br	46.2	3.43
4	131.7, CH	5.54, m	133.4	5.15, m	132.3	5.23
5	130.4, CH	5.32, m	132.6	5.41, m	131.2	5.44
6	36.1, CH	2.12, broad s	39.9	1.86, m	39.8	1.86
7	41.7, CH_{2}	$\begin{array}{r} 1.11, \mathrm{td}, 12.72,12.65,5.09 \\ 1.58, \mathrm{~m} \end{array}$	43.6	$1.89, \mathrm{~m} ; 0.89, \mathrm{~m}$	43.4	1.83; 0.86
8	29.6, CH	1.35, m	34.8	1.53, m	34.8	1.49
9	$36.5, \mathrm{CH}_{2}$	$\begin{array}{r} 1.67^{* *}, \mathrm{~d} ; 0.88, \mathrm{qd}, 23.68 \\ 12.55,12.55,3.19 \end{array}$	36.9	1.77, m; 1.11 m	36.9	1.78; 1.10
10	24.0, CH_{2}	$1.63, \mathrm{~m} ; 1.47$, m	29.5	2.01, br, 1.08, br	29.2	2.02; 1.07
11	38.5, CH	2.68 , broad s	41.3	1.68, m	41.0	1.64
12	18.9, CH_{3}	1.32, s	14.2	1.45, s	13.7	1.42
13	128.3, CH	5.46*, m	128.0	5.37, m	127.6	5.38
14	133.3, CH	5.46*, m	127.9	5.26, m	127.9	5.14
15	18.2, CH_{3}	$1.67 * *, d, 4.36$	17.8	1.52, d, 5.7	18.6	1.56

	16	23.0, CH_{3}	0.82, d, 6.5	23.0	0.94, d, 6.8	23.2	0.94
	2^{\prime}	nd	-	nd		180.9***	
	$3 '$	nd	-	nd		100.7***	
	$4 '$	192.3, C	-	nd		192.9***	
	$5 '$	64.9, nd	nd	nd	nd	64.5	3.76
	$6{ }^{\prime}$	62.4, CH_{2}	3.77, dd, 11.53, 4.86; 3.84, dd 11.51, 2.91	62.2	$3.79, \mathrm{~m} ; 3.74$, m	61.9	3.82; 3.79
** *** nd	$\begin{aligned} & =\mathrm{ca} \\ & =\mathrm{sig} \\ & =\mathrm{de} \\ & =\mathrm{no} \end{aligned}$	e separate verlapping at $-80^{\circ} \mathrm{C}$ cted					

