Supplementary Materials: Establishment of the Inducible Tet-on System for the Activation of the Silent Trichosetin Gene Cluster in *Fusarium fujikuroi*

Slavica Janevska, Birgit Arndt, Leonie Baumann, Lisa Helene Apken, Lucas Maciel Mauriz Marques, Hans-Ulrich Humpf, Bettina Tudzynski

Figure S1. HPLC-HRMS extracted ion chromatograms (XICs) of trichosetin ($m/z [M + H]^+$ 360.2169, $\Delta ppm = 5$; retention time 16.31 min) for OE::*TF22* transformants T9 and T13 in comparison to the wild type (WT). The strains were grown in liquid culture for 7 days. The y axis is not identical for all XICs to ensure visibility of the analyte in the transformant T13.

Figure S2. Phenotypic analysis of TET::*TF22* double mutants. The wild type (WT), TET::*TF22* and indicated double mutants were grown on solid CM for 3 days. The medium was supplemented with 0, 10 or 50 μ g/mL doxycycline (Dox) for induction of transcription factor (TF) gene expression. T, transformant.

Figure S3. Real-time expression analysis of TET::*TF22* double mutants. The wild type (WT) and two independent transformants (T) of TET::*TF22* single and double mutants were grown on solid CM for 3 days. The medium was supplemented with 0, 10 or 50 μ g/mL doxycycline (Dox) for induction of transcription factor (TF) gene expression. Total RNA was isolated from the harvested mycelium, transcribed into cDNA and the relative expression (RE) of *TF22* was analyzed using the $\Delta\Delta$ Ct method. Error bars (±standard deviation) originate from a technical replicate and expression of TET::*TF22* T10, 50 μ g/mL Dox was arbitrarily set to 1.

Figure S4. HPLC-HRMS analysis of the $\Delta DA/\text{TET}$::*TF22* double mutant. Shown are the extracted ion chromatograms of trichosetin (*m*/*z* [M + H]⁺ 360.2169, Δ ppm = 5). TET::*TF22* and $\Delta DA/\text{TET}$::*TF22* transformants (T) were grown in liquid culture for 2 days, then transcription factor (TF) gene expression was induced with 50 µg/mL doxycycline for an additional 5 days.

Figure S5. Trichosetin plate assay. (a) The wild type (WT), ΔMFS -T and $\Delta TF23$ transformants (T) were grown

on solid CM supplemented with 0, 5 or 10 μ g/mL trichosetin for 4 days. (b) The cultivation was done in triplicate and average colony diameters are shown.

Figure S6. Rice germination assay using H₂O (negative control), the *F. fujikuroi* wild type (WT) as well as one transformant (T) of OE::*TF22*. (a) Surface sterilized rice seedlings were treated with H₂O or fungal suspension for 16 h, then seedlings were incubated for 6 days in the presence of a 12 h light/12 h dark cycle to germinate. Arrows indicate *bakanae* symptoms. (b) Out of 50 seedlings, the germination of only shoot or shoot + root was counted and related to the H₂O control which was set to 100%.

Figure S7. CCK-8 assay on Hep G2 cells applying 0.1-50 μ M equisetin or trichosetin. 1% methanol (MeOH) and 10 μ M T-2 toxin served as negative and positive control, respectively. The data represent mean values (±standard deviation). The significance indicated refers to the solvent-treated control (1% MeOH) calculated with an unequal variances *t*-test; *** statistically highly significant (*p* ≤ 0.001).

Figure S8. HPLC-HRMS extracted ion chromatograms of m/z [M + H]⁺ 376.2118 (calculated for hydroxy- or keto-trichosetin, Δ ppm = 5) for the wild type (WT) and OE::*TF22* T9. The strains were grown in liquid culture for 7 days.

Figure S9. Overexpression of *TF22* and *TF23* via constitutive *PoliC* promoter from *A. nidulans* as well as overexpression of *eqxD* via constitutive *PglnA* promoter from *F. fujikuroi*. (**a**) The full-length gene *TF22* including 244 bp of the native terminator sequence (*T*) was cloned into *NcoI/Sac*II restricted pNDH-OGG conferring hygromycin B resistance (*hphR*). (**b**) The first 1.2 kb of *TF23* was cloned into *NcoI/Sac*II restricted pNDH-OGG conferring hygromycin B resistance (*hphR*). (**c**) The full-length gene *eqxD* from *F. heterosporum* was cloned into *NcoI/Not*I restricted pNAN-GGT conferring nourseothricin resistance (*natR*). (**d**) The integration of pOE::*TF22* in two independent transformants (T) was checked using primer pairs PoliC_Seq_F2/TF22_OE_R (1.82 kb) and PoliC_Seq_F2/TF22_OE_diag (1.86 kb). OE::*TF22* T9: ectopic integration; OE::*TF22* T13: in locus integration. (**e**) The in locus integration of pOE::*TF23* in two independent transformants (T) was checked using primer pairs PoliC_Seq_F2/D2223_WT_R (1.74 kb). (**f**) The integration of pOE::*TF22_OE_R* (1.82 kb) and eqxD_OE_F/eqxD_OE_R (1.18 kb), respectively. The *F. fujikuroi* wild type (WT) was used as control. *λ*, *λ*/*Hind*III; M: GeneRuler DNA Ladder Mix.

Figure S10. Inducible overexpression of *TF22*. (a) The full-length gene *TF22* was cloned into *NcoI/Not*I restricted pTET conferring nourseothricin resistance (*natR*). For pTET, the TET construct was fused to the constitutive *PoliC* promoter from *A. nidulans*, which encodes the tetracycline-dependent transactivator rtTA2^s-M2 and furthermore, harbors the tetracycline-responsive element TRE. 2 kb of *DDR48* and its upstream sequence targets pTET to the constitutively expressed *DDR48* locus. pTET::*TF22* was transformed into all relevant genetic backgrounds, (**b**) the *F. fujikuroi* wild type (WT), (**c**) ΔPKS -*NRPS1*, (**d**), ΔDA , (**e**) ΔER , (**f**) $\Delta TF23$ and (**g**) ΔMFS -*T*. The presence of pTET and the correct in locus integration in two independent transformants (T) was checked using primer pairs TET_Seq_F/02222_WT_R (1.50 kb) and Tgluc_hiF/TET_ddr_diag_R (2.10 kb), respectively. The WT or the respective deletion mutant was used as control. M: GeneRuler DNA Ladder Mix.

Figure S11. Verification of ΔPKS -*NRPS1* deletion mutants by diagnostic PCR and Southern blot. (**a**) Deletion via homologous recombination with the hygromycin B resistance cassette (*hphR*) was underlined with the amplification of 5' (trpC_T/02219_5diag) and 3' (trpC_P2/02219_3diag) flanks but no amplification of wild-type (WT; 02219_WT_F/02219_WT_R) signal for two independent transformants (T). (**b**) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with *StuI* and the 3' flank was applied for probing. (**c**) Detected signals match the expected 2.07 kb for the WT as well as 5.61 kb for ΔPKS -*NRPS1*. λ : λ /*Hin*dIII, M: GeneRuler DNA Ladder Mix.

Figure S12. Verification of ΔDA deletion mutants by diagnostic PCR and Southern blot. (a) Deletion via homologous recombination with the hygromycin B resistance cassette (*hphR*) was underlined with the amplification of 5' (trpC_T/02220_5diag) and 3' (trpC_P2/02220_3diag) flanks but no amplification of wild-type (WT; 02220_WT_F/02220_WT_R) signal for three independent transformants (T). (b) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with *Eco*RI and the 3' flank was applied for probing. (c) Detected signals match the expected 7.72 kb for the WT as well as 3.38 kb for ΔDA . λ : λ /*Hind*III, M: GeneRuler DNA Ladder Mix.

Figure S13. Verification of ΔER deletion mutants by diagnostic PCR and Southern blot. (a) Deletion via homologous recombination with the hygromycin B resistance cassette (*hphR*) was underlined with the amplification of 5' (trpC_T/02221_5diag) and 3' (trpC_P2/02221_3diag) flanks but no amplification of wild-type (WT; 02221_WT_F/02221_WT_R) signal for three independent transformants (T). (b) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with *Sca*I and the 5' flank was applied for probing. (c) Detected signals match the expected 10.66 kb for the WT as well as 5.26 kb for ΔER . λ : λ /*Hind*III, M: GeneRuler DNA Ladder Mix.

Figure S14. Verification of $\Delta TF23$ deletion mutants by diagnostic PCR and Southern blot. (**a**) Deletion via homologous recombination with the hygromycin B resistance cassette (*hphR*) was underlined with the amplification of 5' (trpC_T/02223_5diag) and 3' (trpC_P2/02223_3diag) flanks but no amplification of wild-type (WT; 02223_WT_F/02223_WT_R) signal for two independent transformants (T). (**b**) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with *Hind*III and the 5' flank was applied for probing. (**c**) Detected signals match the expected 2.87 kb for the WT as well as 4.43 kb for $\Delta TF23$. λ : λ /*Hind*III, M: GeneRuler DNA Ladder Mix.

γ 2.97 kb

Figure S15. Verification of $\Delta MFS-T$ deletion mutants by diagnostic PCR and Southern blot. (a) Deletion via homologous recombination with the hygromycin B resistance cassette (*hphR*) was underlined with the amplification of 5' (trpC_T/02224_5diag) and 3' (trpC_P2/02224_3diag) flanks but no amplification of wild-type (WT; 02224_WT_F/02224_WT_R) signal for three independent transformants (T). (b) For analyzing ectopic integration of deletion constructs, genomic DNA of transformants and WT was digested with *Sca*I and the 5' flank was applied for probing. (c) Detected signals match the expected 5.26 kb for the WT as well as 2.97 kb for $\Delta MFS-T$. λ : λ /*Hin*dIII, M: GeneRuler DNA Ladder Mix.

Figure S16. Analysis of physico-chemical properties and purity of trichosetin. (**a**) UV-spectrum of trichosetin in acetonitrile. (**b**) UV-spectrum of trichosetin in methanol. (**c**) Molar CD spectrum of trichosetin in methanol. (**d**) HPLC-ELSD chromatogram of trichosetin, retention time 21.27 min.

Figure S17. Calibration curve of the semi-quantitative analysis of trichosetin and equisetin, respectively. The analysis was done with HPLC-MS/MS, and OTA was used as internal standard (IS). The corresponding function

of the calibration curves as well as the Pearson correlation coefficient R^2 are given adjacent to the names of the analytes.

Table S1. HPLC-HRMS-CID measurement of trichosetin and the two putative stereoisomers in ΔDA /TET::*TF22*. The precursor ion *m*/*z* 360.22 was fragmented with 40% normalized collision energy (NCE). The highest and second highest fragment ions were fragmented again with 15% NCE. The "?" in the table indicate that the ppm deviation of calculated to measured exact mass was higher than 5 ppm.

,	Frichosetin		Peak @ 16.43 min			Peak @ 18.45 min		
<i>m/z</i> 360.22	@CID40		m/z 360.22	@CID40		m/z 360.22	@CID40	
m∕z of		Intensity	<i>m/z</i> of		Intensity	<i>m/z</i> of		Intensity
product ion	Putative loss	[%]	product ion	Putative loss	[%]	product ion	Putative loss	[%]
342.2062	H_2O	100.0	342.2060	H ₂ O	100.0	342.2060	H ₂ O	100.0
332.2217	CO	35.1	332.2216	CO	43.4	332.2216	СО	27.2
175.1478	$C_8H_{11}O_4N$	17.6	175.1478	$C_8H_{11}O_4N$	14.6	175.1478	$C_{8}H_{11}O_{4}N$	19.4
205.1948	$C_6H_5O_4N$	9.7	205.1948	$C_6H_5O_4N$	8.8	186.0758	$C_{13} H_{18}$	8.0
186.0758	$C_{13}H_{18}$	6.1	186.0758	$C_{13} H_{18}$	5.7	205.1948	$C_6H_5O_4N$	6.6
231.1741	$C_5H_7O_3N$	5.8	189.1635	$C_{13} H_{18}$	4.8	231.1740	$C_5H_7O_3N$	3.3
189.1635	$C_{13}H_{18}$	4.6	231.1740	$C_5H_7O_3N$	4.4	130.0495	$C_{16}H_{22}O$	2.7
130.0496	$C_{16}H_{22}O$	4.3	130.0495	$C_{16}H_{22}O$	2.8	189.1635	$C_{13} H_{18}$	2.6
m/z 332.2	@CID15		m/z 332.2	@CID15		m/z 332.2	@CID15	
<i>m/z</i> of	N	Intensity	m∕z of		Intensity	<i>m/z</i> of	N	Intensity
product ion	Putative loss	[%]	product ion	Putative loss	[%]	product ion	Putative loss	[%]
203.1792	$C_5H_7O_3N$	100.0	177.1635	$C_7 H_9 O_3 N$	100.0	177.1635	$C_7 H_9 O_3 N$	100.0
210.1123	C_9H_{14}	47.2	203.1792	$C_5H_7O_3N$	69.2	203.1791	$C_5H_7O_3N$	80.9
177.1635	$C_7H_9O_3N$	41.7	170.0808	$C_{12}H_{18}$	26.4			
191.1790	$C_6H_7O_3N$	23.3	210.1121	C_9H_{14}	20.0			
276.1591	C_4H_8	18.5	191.1793	$C_6H_7O_3N$	16.5			
130.0495	$C_{16}H_{20}$	10.8						
m/z 342.2	@CID15		m/z 342.2	@CID15		<i>m/z</i> 342.2	@CID15	
<i>m/z</i> of	Dutativo loss	Intensity	<i>m/z</i> of	Dutativa loss	Intensity	<i>m/z</i> of	Dutativo loss	Intensity
product ion	r utative loss	[%]	product ion	r utative loss	[%]	product ion	r utative loss	[%]
342.2060	Precursor Ion	100.0	342.2060	Precursor Ion	100.0	342.2061	Precursor Ion	100.0
213.1635	$C_5H_7O_3N$	57.4	213.1636	$C_5H_7O_3N$	61.0	288.1592	$C_4 H_6$	70.0
286.1435	C_4H_8	46.4	300.1591	$C_3\mathrm{H}_6$	50.6	300.1591	$C_3\mathrm{H}_6$	69.5
288.1591	$C_4 H_6$	45.0	288.1591	C_4H_6	48.3	213.1634	$C_5H_7O_3N$	59.1
300.1591	$C_3 H_6$	42.7	286.1433	C_4H_8	47.7	286.1434	C_4H_8	53.8
187.1478	$C_7H_9O_3N$	30.4	324.1954	$^{2}H_{2}O$	45.8	324.1955	$^{2}H_{2}O$	37.8
324.1959	$^{\rm 2}H_2O$	29.8	187.1477	$C_7H_9O_3N$	45.5	187.1478	$C_7H_9O_3N$	28.9
312.1956	$C H_2 O$	29.5	312.1953	CH_2O	39.8	272.1278	C_5H_{10}	25.1
173.1321	$C_8H_{11}O_3N$	28.3	173.1320	$C_8H_{11}O_3N$	33.6	173.1323	$C_8H_{11}O_3N$	23.0
201.1635	$C_6H_7O_3N$	25.9	201.1635	$C_6H_7O_3N$	27.7	201.1636	$C_6H_7O_3N$	23.0
272.1278	C_5H_{10}	24.8	170.0807	$C_{13}H_{16}$	20.7	312.1957	CH_2O	22.8
246.1123	C_7H_{12}	19.1	156.0650	$C_{14}H_{18}$	13.7	274.1437	$\mathrm{C}_{5}\mathrm{H}_{8}$	17.9
274.1436	$C_5 H_8$	15.1	246.1123	C_7H_{12}	11.6	246.1120	C_7H_{12}	10.4
170.0808	$C_{13}H_{16}$	13.4	272.1279	C_5H_{10}	9.7	170.0812	$C_{13}H_{16}$	7.0
234.1124	C_8H_{12}	12.7				234.1124	C_8H_{12}	6.0
159.1165	$C_{9}H_{13}O_{3}N$	12.6						
156.0652	$C_{14} H_{18}$	12.2						

Table S2. Primer sequences used for the generation of deletion constructs, verification of their homologous integration as well as for probe generation. Introduced overhangs required for yeast recombinational cloning are underlined.

Gene	Primer	Sequence $5' \rightarrow 3'$		
02210	02218_WT_F	GTTAGGCATCAAGTCCATTCTCC		
02218	02218_WT_R	GCGAGAGATTCGTTAAAGCGC		
	02219_5F	GTAACGCCAGGGTTTTCCCAGTCACGACGCCAGATGCATGGTACCATC		
	02219_5R	ATCCACTTAACGTTACTGAAATCTCCAACGATTGATCGAGCAGTTGACC		
	02219_3F	CTCCTTCAATATCATCTTCTGTCTCCGACCAAGTTCCTAAGAGGCCG		
PKS-NRPS1	02219_3R	<u>GCGGATAACAATTTCACACAGGAAACAGC</u> GGCTACGTAATGCAGCTTG		
(02219)	02219_5diag	GCGCGAGGACCTAGCTCAGG		
	02219_3diag	TCGGCATGTTGGTTAACGGC		
	02219_WT_F	CCGAGACACAAGGGACAGCC		
	02219_WT_R	CCTGGAAGGCATCGAGCTCAC		
	02220_5F	GTAACGCCAGGGTTTTCCCAGTCACGACGCCAAGCTTGATGAACAGGCCG		
	02220_5R	ATCCACTTAACGTTACTGAAATCTCCAACGAGTCAAGAGTAATTGGGTCG		
	02220_3F	CTCCTTCAATATCATCTTCTGTCTCCGACTCATTTGTTAGTAACTGGTGG		
DA	02220_3R	GCGGATAACAATTTCACACAGGAAACAGCCGGGATTTACCGAAACAGC		
(02220)	02220_5diag	GTTGGCTCCAGCTGCGATGG		
	02220_3diag	CGACTGCACCGGGTGTGACG		
	02220_WT_F	GGCTCAGGCAATGTCTTCGCC		
	02220_WT_R	CGCCTCCTCATCCGCACC		
	02221_5F	GTAACGCCAGGGTTTTCCCAGTCACGACGGATTTAGGTGCCGAGGTCTTG		
	02221_5R	ATCCACTTAACGTTACTGAAATCTCCAACCTTGAGTTGACAAGAACGC		
	02221_3F	CTCCTTCAATATCATCTTCTGTCTCCGACCAGTCTTCCCAACATCATAAGC		
ER	02221_3R	<u>GCGGATAACAATTTCACACAGGAAACAGC</u> CTAGGATGCATACTACAGACTC		
(02221)	02221_5diag	GGTGAAACTGACAGGGTTGAATG		
	02221_3diag	CAACCAAGGTTAGGTCGCTC		
	02221_WT_F	CGCCTTGGTGGGCACTCC		
	02221_WT_R	GACCTCTGCAAGACCACCCTGC		
TF22	02222_WT_F	GCACACTCCGCCACATGCC		
(02222)	02222_WT_R	GCCTTGAGCGACCTAACCTTGG		
	02223_5F	GTAACGCCAGGGTTTTCCCAGTCACGACGGATAGATGATGAGACGCCC		
	02223_5R	ATCCACTTAACGTTACTGAAATCTCCAACGACGCGATTCCTGGTCCGCC		
	02223_3F	CTCCTTCAATATCATCTTCTGTCTCCGACGATTGTTTCGGCTACAAAGG		
TF23	02223_3R	GCGGATAACAATTTCACACAGGAAACAGCCGGTACACAATCAACCAAC		
(02223)	02223_5diag	GCACAGCCGATTGTGAAGGCC		
	02223_3diag	CGTGAGGAGTCAGTTACGACGG		
	02223_WT_F	GCTGTTCTCGACGGGATTGCC		
	 02223_WT_R	CGGCGTCAGTTCTGTTTCTGGC		
MFS-T	02224_5F	GTAACGCCAGGGTTTTCCCAGTCACGACGGTAGCAACAGCCGTGTTCACG		
(02224)	02224_5R	ATCCACTTAACGTTACTGAAATCTCCAACCTGGGATGATAACACTGC		

	02224_3F	CTCCTTCAATATCATCTTCTGTCTCCGACGTACATACTGGGCTTGACAAG			
	02224_3R	<u>GCGGATAACAATTTCACACAGGAAACAGC</u> CATATCCGAGGATACAGGGATC			
	02224_5diag	CCTCCGCCCGTGGATCG			
	02224_3diag	CTAGCGGCCATATTTCGGC			
	02224_WT_F	CCTGGGCTTCGCGCTAGG			
	02224_WT_R	GTGCCGATGATAGGGACGATCC			
02225	02225_WT_F	CGGCGGCCTAGCTGCCC			
02223	02225_WT_R	CGCTAGGAGACTGAGCGAGTTGC			
	hph_F	GTCGGAGACAGAAGATGATATTGAAGGAGC			
hnhD	hph_R	GTTGGAGATTTCAGTAACGTTAAGTGGAT			
прпк	trpC_T	GGAATAGAGTAGATGCCGACCGG			
	trpC_P2	GTGATCCGCCTGGACGACTAAACC			

Table S3. Primer sequences used for the generation and analysis of constitutive and inducible overexpression
vectors. Introduced overhangs required for yeast recombinational cloning are underlined.

Gene	Primer	Sequence $5' \rightarrow 3'$
	TF22_OE_F	CCATCACATCACAATCGATCCAACCATGTCCACACGGAACAGC
*OETE22	TF22_OE_R	GTAACGCCAGGGTTTTCCCAGTCACGACGGGCTCCTGGTTGACGGACG
pOE:: <i>TF22</i>	TF22_OE_diag	GGACCGGTCGTCGCC
	TF22_Seq	GCACACTCCGCCACATGCC
	TF23_OE_F	CCATCACATCACAATCGATCCAACCATGGAGTGGGGGTCCAGGG
»OE. TE22	TF23_OE_R	GTAACGCCAGGGTTTTCCCAGTCACGACGGCGTCTCCAGCACGTAAGGG
poe <i>1125</i>	TF23_Seq	GCTGTTCTCGACGGGATTGCC
	TF23_OE_diag	CGGCGTCAGTTCTGGTTTCTGGC
	eqxD_OE_F	CCCCGTATCACAACCACATTCACAATGTCATCTATCCTTTCGCG
nOE:: aguD	eqxD_OE_R	GTTGACATGGAGCTATTAAATCA TCAACTCTGTACAGGTAGC
pOEeqxD	eqxD_Seq1	GCCACCAAGACGGGCATGG
	eqxD_Seq2	CTTCGGCATGTGTGCTGCAGG
PoliC	PoliC_Seq_F2	GGGAGACGTATTTAGGTGCTAGGG
PglnA	GS_Prom_M	ATGTCGAAGTATCTTCCCTGTGC
	TET-A-PoliC-F	CATCACATCACAATCGATCCAACCATGTCTAGACTGGACAAGAGCAAAGT
	TET-A-R	<u>GCCTCGTGATACGCACGGCCGCATGATTC</u>
	TET-B-F	GAATCATGCGGCCGTGCGTATCACGAGGC
	TET-B-GFP-R	TTACTTACCTCACCCTTGGAAACCATGGAAACGGTGATGTCTGCTCAAGC
	TET_ddr_F	GATTTGACAACCCCTTCCCCCAACAAGATTTAGTAGTCGTTGTCACCAC
pTET:: <i>TF22</i>	TET_ddr_R	GTAACGCCAGGGTTTTCCCAGTCACGACGCTTGATCTGAGTCGATCACC
	TF22_TET_F	CCCGCTTGAGCAGACATCACCGTTTATGTCCACACGGAACAGCC
	TF22_TET_R	TAATCATACATCTTATCTACATACGTCAAAGATTCATCTTTTCTC
	TET_Seq_F	ATTCATCTTCCCATCCAAGAACC
	Tgluc_hiF	CATACGTACATCTGATTTGACAACC
	TET_ddr_diag_R	CTTTCATGGCGAAGCTTCAGGC

Gene	Primer	Sequence 5' → 3'	
PKS-NRPS1	PKS-NRPS1_RT_F	CTGCTGGTTCAATCGGCCTTCC	
(02219)	PKS-NRPS1_RT_R	CGGACGCCAAGGAACTTGACG	
DA	02220_RT_F	CGCTACGACGCATCCTCTGAGG	
(02220)	02220_RT_R	GCCCAGGCGCACTCGTAGG	
ER	02221_RT_F	GTCAAGTCCTACGGCGCCAGC	
(02221)	02221_RT_R	CGCCACTGCCTCAGAGTATGGC	
TF22	02222_RT_F	GCTTGCAGCTCGGAGAACTGCC	
(02222)	02222_RT_R	GCTCAGCGCTGAAGTCCATCCC	
TF23	02223_RT_F	CCGGTCTCGGCTCACAGTTTCC	
(02223)	02223_RT_R	GCAGGTTCCATGGCCATGCC	
MFS-T	02224_RT_F	GCTGGCACGTGCCATTGTACG	
(02224)	02224_RT_R	GGAGCGGCATTCTCTCGCC	
a and D	eqxD_RT_F	GGCTCATCTGGAAGGAGGTTCTCG	
eqxD	eqxD_RT_R	CGCAAGGTGCAGAAAGTCGGTTC	
GMT	FGMTRTPCRFW	CGGGCCATTCTCTATTCTTTC	
(07710)	FGMTRTPCRRV	ATGCTGTGATGGCAACAATG	
RAC	FRACRTPCRFW	GAGAACGAGCGTGTCTTGATTGAGCC	
(05652)	FRACRTPCRRV	TTTCCTCCGCAGAATGAAGAAGGACTC	
UBI	FUBRTPCRFW	CCAACCCTGACGATCCTCTTGTGC	
(08398)	FUBRTPCRRV	TACTTTCGAGTCCACTCCCGAGCTG	

Table S4. Primer sequences used for expressional analysis by quantitative real-time PCR. Reference genes: *GMT*, GDP mannose transporter gene; *RAC*, related actin gene; *UBI*, ubiquitin gene.

Table S5. NMR spectra of trichosetin in MeOH-d₄, measured with a 600 MHz NMR-spectrometer and referenced to tetramethylsilane. Signals are given in ppm. The number of the corresponding carbon atoms (no. of C) is similar to that reported by Marfori et al. [28]. Multiple proton signals are divided by a semicolon.

no. of C	δ ¹³ C	δ ¹ H, multiplicity, J (Hz)	gHMBC	gCOSY	NOESY
1	204.1, C	-	-	-	-
2	51.4, C	-	-	-	-
3	43.6, CH	3.38, m	-	CH-4, CH-13/14	CH-13/14, CH-4, CH ₃ -12
4	131.7, CH	5.54, m	C-3, C-6, C-2	CH-3, CH-5	CH-3, CH-5
5	130.4, CH	5.32, m	C-6, C-11, C-7, C-3	CH-4	CH ₂ -7, CH-4
6	36.1, CH	2.12, broad s	-	CH2-7	CH ₂ -7 (weak)
7	41.7, CH ₂	1.11, td, 12.72, 12.65, 5.09; 1.58, m	C-16, C-8, C-6, C-11, C-5	CH-6, CH-8 (weak)	1.58 ppm: CH ₃ -16
8	29.6, CH	1.35, m	overlapped by singulett CH ₃ -12	CH ₃ -16	CH ₃ -16
9	36.5, CH ₂	1.67**, d; 0.88, qd, 23.68, 12.55, 12.55, 3.19	0.88 ppm: C-10, C-8, C-11	0.88 ppm: CH ₂ -10	Problems with overlapping signals

Toxins 2017, 9, 126; doi:10.3390/toxins9040126

10	24.0 CH	1 (2 1 47		CH 0	1.63 ppm: CH-13/14,		
10	24.0, CH ₂	1.63, m; 1.47, m	C-9, C-11	CH ₂ -9	CH ₃ -12		
11	38.5, CH	2.68, broad s	-	-	-		
12	18.9, CH ₃	1.32, s	C-11, C-3, C-2, C-1	-	CH ₂ -10, CH-13/14, CH-3		
13	128.3, CH	5.46*, m	C-15, C-3, C-4, C-14	CIL 15 CIL 2	CH ₃ -12, CH ₂ -10, CH ₃ -15,		
14	133.3, CH	5.46*, m	C-15, C-3, C-4, C-13	Сп ₃ -13, Сп-3	CH-3		
15	18.2, CH ₃	1.67**, d, 4.36	C-13, C-14	CH-13/14			
16	23.0, CH ₃	0.82, d, 6.5	C-8, C-9, C-7	CH-8	CH-8		
2'	nd	-	-	-			
3'	nd	-	-	-			
4'	192.3, C	-	-	-			
5'	64.9, nd	nd	-	-			
61	62.4, CH ₂	3.77, dd, 11.53, 4.86;	C-4', C-5'				
0		3.84, dd, 11.51, 2.91					
*	= cannot be se	parated					
**	** = signals overlapping						
nd	= not detected						

Table S6. NMR spectra of trichosetin in MeOH-d₄, measured with a 600 MHz NMR-spectrometer and referenced to tetramethylsilane, in comparison to NMR spectra found in the literature. Signals are given in ppm. The number of the corresponding carbon atoms (no. of C) is similar to that reported by Marfori et al. [28]. Multiple proton signals are divided by a semicolon.

	NMR data	obtained in this study	Kaku	le et al., 2013	Marfori et	al., 2002
no. of C	δ ¹³ C	δ ¹ H, multiplicity, J (Hz)	δ ¹³ C	δ ¹ H, multiplicity, J (Hz)	δ ¹³ C	δ¹H
1	204.1, C	-	204.6		201.5	
2	51.4, C	-	51.5		50	
3	43.6, CH	3.38, m	46.2	3.46, br	46.2	3.43
4	131.7, CH	5.54, m	133.4	5.15, m	132.3	5.23
5	130.4, CH	5.32, m	132.6	5.41, m	131.2	5.44
6	36.1, CH	2.12, broad s	39.9	1.86, m	39.8	1.86
7	41.7, CH ₂	1.11, td, 12.72, 12.65, 5.09; 1.58, m	43.6	1.89, m; 0.89, m	43.4	1.83; 0.86
8	29.6, CH	1.35, m	34.8	1.53, m	34.8	1.49
9	36.5, CH ₂	1.67**, d; 0.88, qd, 23.68, 12.55, 12.55, 3.19	36.9	1.77, m; 1.11 m	36.9	1.78; 1.10
10	24.0, CH ₂	1.63, m; 1.47, m	29.5	2.01, br; 1.08, br	29.2	2.02; 1.07
11	38.5, CH	2.68, broad s	41.3	1.68, m	41.0	1.64
12	18.9, CH ₃	1.32, s	14.2	1.45, s	13.7	1.42
13	128.3, CH	5.46*, m	128.0	5.37, m	127.6	5.38
14	133.3, CH	5.46*, m	127.9	5.26, m	127.9	5.14
15	18.2, CH ₃	1.67**, d, 4.36	17.8	1.52, d, 5.7	18.6	1.56

Toxins 2017, 9, 126; doi:10.3390/toxins9040126

	16	23.0, CH ₃	0.82, d, 6.5	23.0	0.94, d, 6.8	23.2	0.94	
	2'	nd	-	nd		180.9***		
	3'	nd	-	nd		100.7***		
	4'	192.3, C	-	nd		192.9***		
	5'	64.9, nd	nd	nd	nd	64.5	3.76	
	6'	62.4, CH ₂	3.77, dd, 11.53, 4.86; 3.84, dd 11.51, 2.91	62.2	3.79, m; 3.74, m	61.9	3.82; 3.79	
*	= cannot be separated							
**	= signals overlapping							
***	= detected at -80 °C							
nd	= not detected							