Supplementary Materials: Detection of Cyanotoxins in Algae Dietary Supplements

Audrey Roy-Lachapelle, Morgan Solliec, Maryse F. Bouchard, and Sébastien Sauvé

SI1. Chemicals, reagents and stock solutions

2-methyl-3-methoxy-4-phenylbutyric acid sodium salt (MMPB, purity \geq 94%) was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). 4-phenylbutyric acid (4-PB, purity ≥ 99%), L-BMAA hydrochloride (BMAA, purity ≥ 97%), DL-phenylalanine (PHE, purity ≥ 99%) and nodularin (NOD, \geq 99%) were obtained from Sigma-Aldrich (Oakville, ON, Canada). All selected standards for microcystins (MCs-RR, -YR, -LR, -LY, -LW, -LF and -LA, purity \geq 99%), anatoxin-a (ANA-a, purity \geq 99%) and cylindrospermopsin (CYN, purity \geq 99%) were purchased from Abcam Biochemicals (Cambridge, MA, USA). 2,4 diaminobutyric acid-2,4,4-D3 dihydrochloride (DAB-D3, 99 atom % D) and DL-phenylalanine ring-D₅ (PHE-D₅, purity \geq 98%) were purchased from CDN isotopes (Pointe-Claire, QC, Canada). Ampoule of certified standard solutions of saxitoxin dihydrochloride (STX, 66.3 µM in 3 mM hydrochloric acid) was obtained from the Certified Reference Materials Program (NRC, Halifax, NS, Canada). Potassium permanganate (KMnO4, purity \ge 99,0%), sodium (meta)periodate (NaIO₄, purity \ge 99,0%), sodium bisulfate (purity \ge 95%), sodium hydroxide (NaOH, purity \ge 98%), sodium tetraborate (Borax, purity \ge 99%), dansyl chloride (DNS, purity \geq 99%), citric acid (purity \geq 99.5%), and formic acid (HCOOH, purity \geq 95.0%), hydrochloric acid (HCl, ACS reagent 37%) and sulfuric acid standard solution (1.000 M) were obtained from Sigma-Aldrich (Oakville, ON, Canada). All solvents used were of high performance liquid chromatography (HPLC) grade purity from Fisher Scientific (Whitby, ON, Canada). Deionized/distilled water (dd-H2O) was used recovery evaluation. Compressed air (Ultra Zero Certified grade; \leq 2 ppm water) used as carrier gas for the LDTD desorption was purchased from MEGS Specialty Gases, Inc. (St-Laurent, QC, Canada).

Co	ompounds ^a	Signal Recovery from Matrix Effect ± STD (%)			
	_	Low	High		
1	MMPB b,c	85 ± 11	87 ± 8		
1	ANA-a ^b	90 ± 10	92 ± 9		
	ANA-a	93 ± 5	95 ± 6		
	MC-RR	91 ± 7	94 ± 5		
	MC-YR	94 ± 4	92 ± 5		
2	MC-LR	98 ± 5	102 ± 7		
2	MC-LA	109 ± 8	105 ± 6		
	MC-LY	95 ± 3	91 ± 6		
	MC-LW	103 ± 6	108 ± 8		
	MC-LF	112 ± 9	104 ± 8		
	CYN	108 ± 10	102 ± 7		
3	STX	94 ± 8	98 ± 9		
	BMAA	105 ± 4	109 ± 6		

Table S1. Recoveries from matrix effects of targeted cyanotoxins evaluated at two different concentrations levels ($\mu g g^{-1}$) with standard deviation (STD, n = 3).

^a Validation results are divided between the three methods. Low concentration and High concentrations are respectively set as the follow: 1 and 10 μ g g⁻¹ (1), 0.1 and 10 μ g g⁻¹ (2) and 0.5 and 10 μ g g⁻¹ (3). ^b Analysis using LDTD-APCI-HRMS detection. ^c Results reported as total MCs equivalent.

No.	MCs tot _{a,b}	ANA-aª	ANA-a	DH-ANA-a ^c	E-ANA-a ^c	MC-RR	MC-YR	MC-LR	MC-LA	MC-LY	MC-LW	MC-LF	MCs tot ^d	CYN	STX	BMAA
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	ND	ND	ND	ND	1.6 (12)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	0.21(11)	ND	ND	0.34 (12)	ND	ND	ND	ND	0.25 (9)	ND	ND	ND	0.25	ND	ND	ND
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	0.84 (12)	ND	ND	ND	2.7 (11)	ND	0.53 (7)	0.02 (5)	0.08 (6)	ND	ND	ND	0.63	ND	ND	ND
12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13	0.24 (8)	ND	ND	ND	ND	ND	ND	0.01 (11)	ND	ND	ND	ND	0.01	ND	ND	ND
14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	8.2 (7)	ND	0.15 (7)	1.1 (13)	0.92 (10)	0.4 (9)	ND	4.3 (7)	1.1 (4)	0.02 (8)	ND	ND	5.8	ND	ND	0.04 (8)
16	1.5 (11)	ND	ND	ND	0.07 (9)	ND	ND	1.2 (5)	0.4 (6)	ND	ND	ND	1.6	ND	ND	ND
17	4.1 (9)	0.44 (9)	0.40 (9)	7.2 (12)	ND	ND	0.22 (6)	0.05 (9)	3.2 (4)	ND	ND	ND	3.4	ND	ND	0.55 (5)
18	0.8 (8)	ND	ND	ND	ND	ND	ND	0.52 (7)	ND	ND	ND	ND	0.52	ND	ND	ND

Table S2. Cyanotoxins detection in CB dietary supplements (µg g⁻¹) with relative standard deviation (RSD-%).

ND – Not detected.^a Analysis using LDTD-APCI-HRMS detection.^b Total microcystins determined via MMPB reported as total MCs equivalent.^c Concentrations are expressed as ANA-a equivalents.

S3 of S3

Compounds	RT (min)	Experimental precursor mass (<i>m</i> / <i>z</i>)	Quantification fragment (<i>m/z</i>)	Confirmation fragment (<i>m/z</i>)	NCE ^b (%)
MMPB ^a	NA	207.1019	135.0808	91.0547	30
4-PB ^a	NA	163.0756	91.0546	NA	35
ANA-a ^a	NA	166.1231	149.0965	131.0859	30
PHE-D ₅ ^a	NA	171.1181	154.0917	NA	30
ANA-a	0.96	166.1231	149.0965	131.0859	30
DH-ANA-a	1.01	168.1383	140.1069	164.1068	30
E-ANA-a	1.04	182.1176	133.1010	93.0696	30
MC-RR	2.42	519.7907	135.0804	103.0542	35
MC-YR	2.61	1045.5353	135.0804	213.0870	45
MC-LR	2.68	995.5560	135.0804	213.0870	40
MC-LA	3.43	910.4920	135.0804	213.0870	35
MC-LY	3.77	1002.5188	265.1587	135.0804	40
MC-LW	4.24	1025.5347	891.5199	213.0870	35
MC-LF	4.49	986.5239	213.0870	375.2391	35
NOD	2.45	825.4505	103.0542	NA	45
CYN	1.26	649.1744	194.1291	176.1184	35
STX	2.97	533.1925	204.0877	138.0665	35
BMAA	3.65	585.1836	277.1007	71.0131	30
DAB-D ₃	3.50	588.2024	279.1130	NA	25

 Table S3. Parameters of HRMS detection of target cyanotoxins and internal standards.

NA – Not applicable. ^a Analysis using LDTD-APCI-HRMS detection. ^b Fragmentation energy for precursor ion in HCD cell.