Supplementary Materials: Detection of *Naja atra* Cardiotoxin Using Adenosine-Based Molecular Beacon

Yi-Jun Shi, Ying-Jung Chen, Wan-Ping Hu and Long-Sen Chang

Figure S1. Time course measurement of FAM intensity (520 nm) of hairpin-shaped MB upon the addition of 100 nM CTX3. The solution containing 10 nM FAM/DABCYL-labeled A₁₂-MB-A₁₂ and 0.6 μM coralyne was incubated with 80 nM CTX3 as indicated time periods.

Figure S2. Effect of CTX isotoxins on fluorescence intensity at 520 nm of a solution containing 10 nM FAM/DABCYL-labeled A₁₂-MB-A₁₂ and 0.6 μM coralyne. The hairpin-shaped MB was titrated with indicated concentration of CTXs.
Figure S3. Fluorescence intensity at 520 nm of A12-MB-A12 was reduced by titrating with CTX isotoxins. FAM/DABCYL-labeled A12-MB-A12 (10 nM) was titrated with indicated concentrations of CTXs.

Figure S4. Molecular model showing the binding of coralyne with CTX3.
Figure S5. Chromatographic separation and MALDI-TOF analyses of CTX3, cobrotoxin, and α-bungarotoxin. (A) Separation of CTX3, cobrotoxin, and α-bungarotoxin from *N. atra* and *Bungarus multicinctus* crude venoms were conducted essentially according to the same manner described in [1,2]; (B) MALDI-TOF analyses of CTXs, cobrotoxin, and α-bungarotoxin.

References