Next Issue
Volume 8, September
Previous Issue
Volume 8, July
 
 

Toxins, Volume 8, Issue 8 (August 2016) – 19 articles

Cover Story (view full-size image): Barley is a widespread crop that ranks fourth among the world’s cereals. Barley can be transformed in malt for many brewing, distilling and baking applications. The malt contamination with filamentous fungi, such as Fusarium sp., is the most important factor involved in primary gushing, i.e. an uncontrolled escape of wet foam when opening a beer bottle. Fusarium sp. can produce even mycotoxins, that are a major problem from a safety point of view. This is the first report on the occurrence of F. langsethiae - and of its toxic metabolites T-2 and HT-2 - in malting barley grown in Italy. View this paper.
Photos and drawing from Renzo Alberici, CREA-GPG, Fiorenzuola d’Arda, Italy. Toxins’ formulas from Wikipedia.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1006 KiB  
Article
Occurrence of Fusarium langsethiae and T-2 and HT-2 Toxins in Italian Malting Barley
by Caterina Morcia, Giorgio Tumino, Roberta Ghizzoni, Franz W. Badeck, Veronica M.T. Lattanzio, Michelangelo Pascale and Valeria Terzi
Toxins 2016, 8(8), 247; https://doi.org/10.3390/toxins8080247 - 20 Aug 2016
Cited by 54 | Viewed by 5751
Abstract
T-2 and HT-2 toxins are two of the most toxic members of type-A trichothecenes, produced by a number of Fusarium species. The occurrence of these mycotoxins was studied in barley samples during a survey carried out in the 2011–2014 growing seasons in climatically [...] Read more.
T-2 and HT-2 toxins are two of the most toxic members of type-A trichothecenes, produced by a number of Fusarium species. The occurrence of these mycotoxins was studied in barley samples during a survey carried out in the 2011–2014 growing seasons in climatically different regions in Italy. The percentage of samples found positive ranges from 22% to 53%, with values included between 26 and 787 μg/kg. The percentage of samples with a T-2 and HT-2 content above the EU indicative levels for barley of 200 μg/kg ranges from 2% to 19.6% in the 2011–2014 period. The fungal species responsible for the production of these toxins in 100% of positive samples has been identified as Fusarium langsethiae, a well-known producer of T-2 and HT-2 toxins. A positive correlation between the amount of F. langsethiae DNA and of the sum of T-2 and HT-2 toxins was found. This is the first report on the occurrence of F. langsethiae—and of its toxic metabolites T-2 and HT-2—in malting barley grown in Italy. Full article
(This article belongs to the Special Issue Exposure and Risk Assessment for Mycotoxins)
Show Figures

Graphical abstract

576 KiB  
Case Report
A Single Dose of ViperfavTM May Be Inadequate for Vipera ammodytes Snake Bite: A Case Report and Pharmacokinetic Evaluation
by Tihana Kurtović, Miran Brvar, Damjan Grenc, Maja Lang Balija, Igor Križaj and Beata Halassy
Toxins 2016, 8(8), 244; https://doi.org/10.3390/toxins8080244 - 19 Aug 2016
Cited by 11 | Viewed by 5335
Abstract
ViperfavTM is a commercial F(ab’)2 antivenom prepared against European vipers venom. It is safe and effective for treating envenomation caused by Vipera aspis and Vipera berus. Therapeutic efficacy for treating Vipera ammodytes ammodytes (V. a. ammodytes) envenoming has not been [...] Read more.
ViperfavTM is a commercial F(ab’)2 antivenom prepared against European vipers venom. It is safe and effective for treating envenomation caused by Vipera aspis and Vipera berus. Therapeutic efficacy for treating Vipera ammodytes ammodytes (V. a. ammodytes) envenoming has not been yet described, although protective efficacy has been demonstrated in preclinical studies. We report on a 32-year-old man bitten by V. a. ammodytes who was treated with Viperfav™. Viperfav™ promptly reduced local extension and improved systemic pathological signs, but 24 h after the incident a recurrence of thrombocytopenia occurred despite a favorable pharmacokinetic profile with systemic clearance (1.64 (mL·h−1)·kg−1) and elimination half-life (97 h) among the highest ever reported. The recommended dose of Viperfav™ for V. aspis and V. berus bites may be inadequate for serious V. a. ammodytes envenomations. Following V. a. ammodytes bite, serial blood counts and coagulation profiles should be performed to help guide Viperfav™ treatment, along with supplemental administration as indicated. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

2393 KiB  
Article
Essential Oils Modulate Gene Expression and Ochratoxin A Production in Aspergillus carbonarius
by Rachelle El Khoury, Ali Atoui, Carol Verheecke, Richard Maroun, Andre El Khoury and Florence Mathieu
Toxins 2016, 8(8), 242; https://doi.org/10.3390/toxins8080242 - 19 Aug 2016
Cited by 46 | Viewed by 6695
Abstract
Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, [...] Read more.
Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, cinnamon, thyme, taramira, oregano and rosemary at 1 µL/mL and 5 µL/mL for each E.O.As a matter of fact, their effects on the OTA production and the growth of A. carbonarius S402 cultures were evaluated, after four days at 28 °C on a Synthetic Grape Medium (SGM). Results showed that A. carbonarius growth was reduced up to 100%, when cultured with the E.Os of cinnamon, taramira, and oregano at both concentrations and the thyme at 5 µL/mL. As for the other six E.Os, their effect on A. carbonarius growth was insignificant, but highly important on the OTA production. Interestingly, the fennel E.O at 5 µL/mL reduced the OTA production up to 88.9% compared to the control, with only 13.8% of fungal growth reduction. We further investigated the effect of these E.Os on the expression levels of the genes responsible for the OTA biosynthesis (acOTApks and acOTAnrps along with the acpks gene) as well as the two regulatory genes laeA and vea, using the quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) method. The results revealed that these six E.Os reduced the expression of the five studied genes, where the ackps was downregulated by 99.2% (the highest downregulation in this study) with 5 µL/mL of fennel E.O.As for the acOTApks, acOTAnrps, veA and laeA, their reduction levels ranged between 10% and 96% depending on the nature of the E.O and its concentration in the medium. Full article
Show Figures

Graphical abstract

1645 KiB  
Communication
A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity
by Ma’ayan Israeli, Shahar Rotem, Uri Elia, Erez Bar-Haim, Ofer Cohen and Theodor Chitlaru
Toxins 2016, 8(8), 243; https://doi.org/10.3390/toxins8080243 - 18 Aug 2016
Cited by 7 | Viewed by 4677
Abstract
Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a [...] Read more.
Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. Full article
(This article belongs to the Collection Anthrax Toxins)
Show Figures

Graphical abstract

727 KiB  
Article
Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds
by Young-Sun Moon, Won-Sik Choi, Eun-Sil Park, In Kyung Bae, Sung-Deuk Choi, Ockjin Paek, Sheen-Hee Kim, Hyang Sook Chun and Sung-Eun Lee
Toxins 2016, 8(8), 240; https://doi.org/10.3390/toxins8080240 - 16 Aug 2016
Cited by 49 | Viewed by 5607
Abstract
Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin [...] Read more.
Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and 1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B1 production up to a concentration of 1000 μg/mL. Ten piperine-like synthetic compounds were synthesized that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 μg/mL. This synthetic compound was remarkable because the positive control thiabendazole had no inhibitory effect at this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore, the synthetic compound inhibited aflatoxin production by down-regulating these genes. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

1177 KiB  
Article
Cyanobacterial Neurotoxin BMAA and Mercury in Sharks
by Neil Hammerschlag, David A. Davis, Kiyo Mondo, Matthew S. Seely, Susan J. Murch, William Broc Glover, Timothy Divoll, David C. Evers and Deborah C. Mash
Toxins 2016, 8(8), 238; https://doi.org/10.3390/toxins8080238 - 16 Aug 2016
Cited by 33 | Viewed by 21913
Abstract
Sharks have greater risk for bioaccumulation of marine toxins and mercury (Hg), because they are long-lived predators. Shark fins and cartilage also contain β-N-methylamino-l-alanine (BMAA), a ubiquitous cyanobacterial toxin linked to neurodegenerative diseases. Today, a significant number of shark [...] Read more.
Sharks have greater risk for bioaccumulation of marine toxins and mercury (Hg), because they are long-lived predators. Shark fins and cartilage also contain β-N-methylamino-l-alanine (BMAA), a ubiquitous cyanobacterial toxin linked to neurodegenerative diseases. Today, a significant number of shark species have found their way onto the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. Many species of large sharks are threatened with extinction due in part to the growing high demand for shark fin soup and, to a lesser extent, for shark meat and cartilage products. Recent studies suggest that the consumption of shark parts may be a route to human exposure of marine toxins. Here, we investigated BMAA and Hg concentrations in fins and muscles sampled in ten species of sharks from the South Atlantic and Pacific Oceans. BMAA was detected in all shark species with only seven of the 55 samples analyzed testing below the limit of detection of the assay. Hg concentrations measured in fins and muscle samples from the 10 species ranged from 0.05 to 13.23 ng/mg. These analytical test results suggest restricting human consumption of shark meat and fins due to the high frequency and co-occurrence of two synergistic environmental neurotoxic compounds. Full article
(This article belongs to the Collection Marine and Freshwater Toxins)
Show Figures

Graphical abstract

3202 KiB  
Article
Identification of an Essential Region for Translocation of Clostridium difficile Toxin B
by Shuyi Chen, Haiying Wang, Huawei Gu, Chunli Sun, Shan Li, Hanping Feng and Jufang Wang
Toxins 2016, 8(8), 241; https://doi.org/10.3390/toxins8080241 - 15 Aug 2016
Cited by 10 | Viewed by 6975 | Correction
Abstract
Clostridium difficile toxin A (TcdA) and toxin B (TcdB) are the major virulence factors involved in C. difficile-associated diarrhea and pseudomembranous colitis. TcdA and TcdB both contain at least four distinct domains: the glucosyltransferase domain, cysteine protease domain, receptor binding domain, and [...] Read more.
Clostridium difficile toxin A (TcdA) and toxin B (TcdB) are the major virulence factors involved in C. difficile-associated diarrhea and pseudomembranous colitis. TcdA and TcdB both contain at least four distinct domains: the glucosyltransferase domain, cysteine protease domain, receptor binding domain, and translocation domain. Few studies have investigated the translocation domain and its mechanism of action. Recently, it was demonstrated that a segment of 97 amino acids (AA 1756–1852, designated D97) within the translocation domain of TcdB is essential for the in vitro and in vivo toxicity of TcdB. However, the mechanism by which D97 regulates the action of TcdB in host cells and the important amino acids within this region are unknown. In this study, we discovered that a smaller fragment, amino acids 1756–1780, located in the N-terminus of the D97 fragment, is essential for translocation of the effector glucosyltransferase domain into the host cytosol. A sequence of 25AA within D97 is predicted to form an alpha helical structure and is the critical part of D97. The deletion mutant TcdB∆1756–1780 showed similar glucosyltransferase and cysteine protease activity, cellular binding, and pore formation to wild type TcdB, but it failed to induce the glucosylation of Rho GTPase Rac1 of host cells. Moreover, we found that TcdB∆1756–1780 was rapidly degraded in the endosome of target cells, and therefore its intact glucosyltransferase domain was unable to translocate efficiently into host cytosol. Our finding provides an insight into the molecular mechanisms of action of TcdB in the intoxication of host cells. Full article
Show Figures

Graphical abstract

809 KiB  
Review
Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers
by Lin Xu, Zhaowei Zhang, Qi Zhang and Peiwu Li
Toxins 2016, 8(8), 239; https://doi.org/10.3390/toxins8080239 - 12 Aug 2016
Cited by 44 | Viewed by 6610
Abstract
Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based [...] Read more.
Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing. Full article
(This article belongs to the Collection Biorecognition Assays for Mycotoxins)
Show Figures

Figure 1

1435 KiB  
Article
Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells
by Angelika Kronhardt, Christoph Beitzinger, Holger Barth and Roland Benz
Toxins 2016, 8(8), 237; https://doi.org/10.3390/toxins8080237 - 10 Aug 2016
Cited by 10 | Viewed by 4345
Abstract
C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the [...] Read more.
C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells’ receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa. Full article
(This article belongs to the Special Issue Novel Pharmacological Inhibitors for Bacterial Protein Toxins)
Show Figures

Graphical abstract

602 KiB  
Review
Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa
by Susan Hall, Catherine McDermott, Shailendra Anoopkumar-Dukie, Amelia J. McFarland, Amanda Forbes, Anthony V. Perkins, Andrew K. Davey, Russ Chess-Williams, Milton J. Kiefel, Devinder Arora and Gary D. Grant
Toxins 2016, 8(8), 236; https://doi.org/10.3390/toxins8080236 - 09 Aug 2016
Cited by 258 | Viewed by 13139
Abstract
Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. [...] Read more.
Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. It has been shown that a large number of the effects to these systems are via the formation of reactive oxygen species. The limitations of studies are, to date, focused on the localized effect of the release of pyocyanin (PCN). It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect. This review highlights the possible manifestations of PCN exposure; however, most studies to date are in vitro. Further high quality in vivo studies are needed to fully assess the physiological manifestations of PCN exposure on the various body systems. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

708 KiB  
Communication
A Rapid Assay to Detect Toxigenic Penicillium spp. Contamination in Wine and Musts
by Simona Marianna Sanzani, Monica Marilena Miazzi, Valentina Di Rienzo, Valentina Fanelli, Giuseppe Gambacorta, Maria Rosaria Taurino and Cinzia Montemurro
Toxins 2016, 8(8), 235; https://doi.org/10.3390/toxins8080235 - 08 Aug 2016
Cited by 10 | Viewed by 5002
Abstract
Wine and fermenting musts are grape products widely consumed worldwide. Since the presence of mycotoxin-producing fungi may greatly compromise their quality characteristics and safety, there is an increasing need for relatively rapid “user friendly” quantitative assays to detect fungal contamination both in grapes [...] Read more.
Wine and fermenting musts are grape products widely consumed worldwide. Since the presence of mycotoxin-producing fungi may greatly compromise their quality characteristics and safety, there is an increasing need for relatively rapid “user friendly” quantitative assays to detect fungal contamination both in grapes delivered to wineries and in final products. Although other fungi are most frequently involved in grape deterioration, secondary infections by Penicillium spp. are quite common, especially in cool areas with high humidity and in wines obtained by partially dried grapes. In this work, a single-tube nested real-time PCR approach—successfully applied to hazelnut and peanut allergen detection—was tested for the first time to trace Penicillium spp. in musts and wines. The method consisted of two sets of primers specifically designed to target the β-tubulin gene, to be simultaneously applied with the aim of lowering the detection limit of conventional real-time PCR. The assay was able to detect up to 1 fg of Penicillium DNA. As confirmation, patulin content of representative samples was determined. Most of analyzed wines/musts returned contaminated results at >50 ppb and a 76% accordance with molecular assay was observed. Although further large-scale trials are needed, these results encourage the use of the newly developed method in the pre-screening of fresh and processed grapes for the presence of Penicillium DNA before the evaluation of related toxins. Full article
(This article belongs to the Collection Understanding Mycotoxin Occurrence in Food and Feed Chains)
Show Figures

Figure 1

2106 KiB  
Article
Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33
by You-Hai Li, Wen-Jin Han, Xi-Wu Gui, Tao Wei, Shuang-Yan Tang and Jian-Ming Jin
Toxins 2016, 8(8), 234; https://doi.org/10.3390/toxins8080234 - 02 Aug 2016
Cited by 13 | Viewed by 5710
Abstract
Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F1-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 [...] Read more.
Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F1-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata. Full article
Show Figures

Graphical abstract

5640 KiB  
Article
Selective Membrane Redistribution and Depletion of Gαq-Protein by Pasteurella multocida Toxin
by Nathan C. Clemons, Shuhong Luo, Mengfei Ho and Brenda A. Wilson
Toxins 2016, 8(8), 233; https://doi.org/10.3390/toxins8080233 - 01 Aug 2016
Cited by 1 | Viewed by 4777
Abstract
Pasteurella multocida toxin (PMT), the major virulence factor responsible for zoonotic atrophic rhinitis, is a protein deamidase that activates the alpha subunit of heterotrimeric G proteins. Initial activation of G alpha-q-coupled phospholipase C-beta-1 signaling by PMT is followed by uncoupling of G alpha-q-dependent [...] Read more.
Pasteurella multocida toxin (PMT), the major virulence factor responsible for zoonotic atrophic rhinitis, is a protein deamidase that activates the alpha subunit of heterotrimeric G proteins. Initial activation of G alpha-q-coupled phospholipase C-beta-1 signaling by PMT is followed by uncoupling of G alpha-q-dependent signaling, causing downregulation of downstream calcium and mitogenic signaling pathways. Here, we show that PMT decreases endogenous and exogenously expressed G alpha-q protein content in host cell plasma membranes and in detergent resistant membrane (DRM) fractions. This membrane depletion of G alpha-q protein was dependent upon the catalytic activity of PMT. Results indicate that PMT-modified G alpha-q redistributes within the host cell membrane from the DRM fraction into the soluble membrane and cytosolic fractions. In contrast, PMT had no affect on G alpha-s or G beta protein levels, which are not substrate targets of PMT. PMT also had no affect on G alpha-11 levels, even though G alpha-11 can serve as a substrate for deamidation by PMT, suggesting that membrane depletion of PMT-modified G-alpha-q has specificity. Full article
(This article belongs to the Special Issue Pasteurella multocida and Its Virulence Factors)
Show Figures

Graphical abstract

6713 KiB  
Article
Hydrolytic Fate of 3/15-Acetyldeoxynivalenol in Humans: Specific Deacetylation by the Small Intestine and Liver Revealed Using in Vitro and ex Vivo Approaches
by El Hassan Ajandouz, Stéphane Berdah, Vincent Moutardier, Thierry Bege, David Jérémie Birnbaum, Josette Perrier, Eric Di Pasquale and Marc Maresca
Toxins 2016, 8(8), 232; https://doi.org/10.3390/toxins8080232 - 28 Jul 2016
Cited by 38 | Viewed by 5801
Abstract
In addition to deoxynivalenol (DON), acetylated derivatives, i.e., 3-acetyl and 15-acetyldexynivalenol (or 3/15ADON), are present in cereals leading to exposure to these mycotoxins. Animal and human studies suggest that 3/15ADON are converted into DON after their ingestion through hydrolysis of the acetyl moiety, [...] Read more.
In addition to deoxynivalenol (DON), acetylated derivatives, i.e., 3-acetyl and 15-acetyldexynivalenol (or 3/15ADON), are present in cereals leading to exposure to these mycotoxins. Animal and human studies suggest that 3/15ADON are converted into DON after their ingestion through hydrolysis of the acetyl moiety, the site(s) of such deacetylation being still uncharacterized. We used in vitro and ex vivo approaches to study the deacetylation of 3/15ADON by enzymes and cells/tissues present on their way from the food matrix to the blood in humans. We found that luminal deacetylation by digestive enzymes and bacteria is limited. Using human cells, tissues and S9 fractions, we were able to demonstrate that small intestine and liver possess strong deacetylation capacity compared to colon and kidneys. Interestingly, in most cases, deacetylation was more efficient for 3ADON than 15ADON. Although we initially thought that carboxylesterases (CES) could be responsible for the deacetylation of 3/15ADON, the use of pure human CES1/2 and of CES inhibitor demonstrated that CES are not involved. Taken together, our original model system allowed us to identify the small intestine and the liver as the main site of deacetylation of ingested 3/15ADON in humans. Full article
(This article belongs to the Special Issue Exposure and Risk Assessment for Mycotoxins)
Show Figures

Graphical abstract

2005 KiB  
Article
Susceptibility of Broiler Chickens to Coccidiosis When Fed Subclinical Doses of Deoxynivalenol and Fumonisins—Special Emphasis on the Immunological Response and the Mycotoxin Interaction
by Bertrand Grenier, Ilse Dohnal, Revathi Shanmugasundaram, Susan D. Eicher, Ramesh K. Selvaraj, Gerd Schatzmayr and Todd J. Applegate
Toxins 2016, 8(8), 231; https://doi.org/10.3390/toxins8080231 - 27 Jul 2016
Cited by 35 | Viewed by 7867
Abstract
Deoxynivalenol (DON) and fumonisins (FB) are the most frequently encountered mycotoxins produced by Fusarium species in livestock diets. The effect of subclinical doses of mycotoxins in chickens is largely unknown, and in particular the susceptibility of birds to pathogenic challenge when fed these [...] Read more.
Deoxynivalenol (DON) and fumonisins (FB) are the most frequently encountered mycotoxins produced by Fusarium species in livestock diets. The effect of subclinical doses of mycotoxins in chickens is largely unknown, and in particular the susceptibility of birds to pathogenic challenge when fed these fungal metabolites. Therefore, the present study reports the effects of DON and FB on chickens challenged with Eimeria spp, responsible for coccidiosis. Broilers were fed diets from hatch to day 20, containing no mycotoxins, 1.5 mg DON/kg, 20 mg FB/kg, or both toxins (12 pens/diet; 7 birds/pen). At day 14, six pens of birds per diet (half of the birds) were challenged with a 25×-recommended dose of coccidial vaccine, and all birds (challenged and unchallenged) were sampled 6 days later. As expected, performance of birds was strongly affected by the coccidial challenge. Ingestion of mycotoxins did not further affect the growth but repartitioned the rate of reduction (between the fraction due to the change in maintenance and feed efficiency), and reduced apparent nitrogen digestibility. Intestinal lesions and number of oocysts in the jejunal mucosa and feces of challenged birds were more frequent and intense in the birds fed mycotoxins than in birds fed control feed. The upregulation of cytokines (interleukin (IL) IL-1β, IL-6, IL-8 and IL-10) following coccidial infection was higher in the jejunum of birds fed mycotoxins. Further, the higher intestinal immune response was associated with a higher percentage of T lymphocytes CD4+CD25+, also called Tregs, observed in the cecal tonsils of challenged birds fed mycotoxins. Interestingly, the increase in FB biomarker of exposure (sphinganine/sphingosine ratio in serum and liver) suggested a higher absorption and bioavailability of FB in challenged birds. The interaction of DON and FB was very dependent on the endpoint assessed, with three endpoints reporting antagonism, nine additivity, and two synergism. In conclusion, subclinical doses of DON and FB showed little effects in unchallenged chickens, but seem to result in metabolic and immunologic disturbances that amplify the severity of coccidiosis. Full article
(This article belongs to the Collection Fusarium Toxins – Relevance for Human and Animal Health)
Show Figures

Graphical abstract

1912 KiB  
Article
Protection of the Furin Cleavage Site in Low-Toxicity Immunotoxins Based on Pseudomonas Exotoxin A
by Gilad Kaplan, Fred Lee, Masanori Onda, Emily Kolyvas, Gaurav Bhardwaj, David Baker and Ira Pastan
Toxins 2016, 8(8), 217; https://doi.org/10.3390/toxins8080217 - 25 Jul 2016
Cited by 24 | Viewed by 6446
Abstract
Recombinant immunotoxins (RITs) are fusions of an Fv-based targeting moiety and a toxin. Pseudomonas exotoxin A (PE) has been used to make several immunotoxins that have been evaluated in clinical trials. Immunogenicity of the bacterial toxin and off-target toxicity have limited the efficacy [...] Read more.
Recombinant immunotoxins (RITs) are fusions of an Fv-based targeting moiety and a toxin. Pseudomonas exotoxin A (PE) has been used to make several immunotoxins that have been evaluated in clinical trials. Immunogenicity of the bacterial toxin and off-target toxicity have limited the efficacy of these immunotoxins. To address these issues, we have previously made RITs in which the Fv is connected to domain III (PE24) by a furin cleavage site (FCS), thereby removing unneeded sequences of domain II. However, the PE24 containing RITs do not contain the naturally occurring disulfide bond around the furin cleavage sequence, because it was removed when domain II was deleted. This could potentially allow PE24 containing immunotoxins to be cleaved and inactivated before internalization by cell surface furin or other proteases in the blood stream or tumor microenvironment. Here, we describe five new RITs in which a disulfide bond is engineered to protect the FCS. The most active of these, SS1-Fab-DS3-PE24, shows a longer serum half-life than an RIT without the disulfide bond and has the same anti-tumor activity, despite being less cytotoxic in vitro. These results have significance for the production of de-immunized, low toxicity, PE24-based immunotoxins with a longer serum half-life. Full article
(This article belongs to the Collection Immunotoxins 2016)
Show Figures

Graphical abstract

4056 KiB  
Review
Colubrid Venom Composition: An -Omics Perspective
by Inácio L. M. Junqueira-de-Azevedo, Pollyanna F. Campos, Ana T. C. Ching and Stephen P. Mackessy
Toxins 2016, 8(8), 230; https://doi.org/10.3390/toxins8080230 - 23 Jul 2016
Cited by 66 | Viewed by 10163
Abstract
Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and [...] Read more.
Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among “colubrids” is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among “colubrid” venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets. Full article
(This article belongs to the Special Issue Venomics, Venom Proteomics and Venom Transcriptomics)
Show Figures

Graphical abstract

2178 KiB  
Article
Purification and Characterization of a Novel Kazal-Type Trypsin Inhibitor from the Leech of Hirudinaria manillensis
by Yanmei Lai, Bowen Li, Weihui Liu, Gan Wang, Canwei Du, Rose Ombati, Ren Lai, Chengbo Long and Hongyuan Li
Toxins 2016, 8(8), 229; https://doi.org/10.3390/toxins8080229 - 23 Jul 2016
Cited by 6 | Viewed by 5146
Abstract
Kazal-type serine proteinase inhibitors are found in a large number of living organisms and play crucial roles in various biological and physiological processes. Although some Kazal-type serine protease inhibitors have been identified in leeches, none has been reported from Hirudinaria manillensis, which [...] Read more.
Kazal-type serine proteinase inhibitors are found in a large number of living organisms and play crucial roles in various biological and physiological processes. Although some Kazal-type serine protease inhibitors have been identified in leeches, none has been reported from Hirudinaria manillensis, which is a medically important leech. In this study, a novel Kazal-type trypsin inhibitor was isolated from leech H. manillensis, purified and named as bdellin-HM based on the sequence similarity with bdellin-KL and bdellin B-3. Structural analysis revealed that bdellin-HM was a 17,432.8 Da protein and comprised of 149 amino acid residues with six cysteines forming three intra-molecular disulfide bonds. Bdellin-HM showed similarity with the Kazal-type domain and may belong to the group of “non-classical” Kazal inhibitors according to its CysI-CysII disulfide bridge position. Bdellin-HM had no inhibitory effect on elastase, chymotrypsin, kallikrein, Factor (F) XIIa, FXIa, FXa, thrombin and plasmin, but it showed a potent ability to inhibit trypsin with an inhibition constant (Ki) of (8.12 ± 0.18) × 10−9 M. These results suggest that bdellin-HM from the leech of H. manillensis plays a potent and specific inhibitory role towards trypsin. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

3053 KiB  
Review
Biotechnological Trends in Spider and Scorpion Antivenom Development
by Andreas Hougaard Laustsen, Mireia Solà, Emma Christine Jappe, Saioa Oscoz, Line Præst Lauridsen and Mikael Engmark
Toxins 2016, 8(8), 226; https://doi.org/10.3390/toxins8080226 - 23 Jul 2016
Cited by 56 | Viewed by 12402
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to [...] Read more.
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop