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Abstract: A systematic investigation was conducted in Lake Taihu in autumn of 2013 and 2014, in
order to understand the environmental fate of microcystins (MCs) and evaluate the health risk from
MCs. Samples of water, algal cells, macrophytes, shrimps and fish were taken to detect MCs by
HPLC-MS/MS after solid phase extraction. Widespread MC contamination in water, algal cells,
macrophytes, shrimps and fish was found in Lake Taihu. The ubiquitous presence of MCs in water,
algal cells and biota was found in 100% of samples. MC accumulation was in the order of primary
producer > tertiary consumer > secondary consumer > primary consumer. The highest levels of MCs
in macrophytes, shrimps and fish tissue were found in Potamogeton maackianus, Exopalaemon modestus,
and Hyporhamphus intermedius, respectively. The MCs level in shrimps and the tissues of three fish
species, Neosalanx tangkahkeii taihuensis, Coilia ectenes and silver carp, was closely linked to their
dietary exposure. Ceratophyllum demersum L. was an ideal plant for introduction into lakes to protect
against Microcystis blooms and MCs, due to its ability to absorb nutrients, accumulate large amounts
of MCs and tolerate these toxins compared to other macrophytes. The average daily intakes (ADIs)
of MCs for Exopalaemon modestus and three fish species, Coilia ectenes, Hyporhamphus intermedius
and Carassius carassius, were all above the tolerable daily intakes (TDI) set by the World Health
Organization (WHO), implying there existed potential threats to human health.
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1. Introduction

Cyanobacteria, widely known as blue-green algae, are prokaryotes and are some of the earliest
known organisms [1]. The presence of cyanobacteria dates back 3.5 billion years [1]. Cyanobacteria
have a diverse group and are widely distributed throughout the world’s lakes and reservoirs [2].
Cyanobacterial blooms remain a growing worldwide concern [3–5]. The increase in cyanobacteria
Microcystis producing hepatotoxic microcystins (MCs) has been highly worrisome [5]. Several genera
of cyanobacteria including Microcystis, Anabaena, Oscillatoria, Nostoc and Anabaenopsis could produce
MCs comprising a group of cyclic peptides [6]. Approximately 90 variants of MCs have been identified
up to now [7].

MCs can have detrimental effects on phytoplankton, macrophytes, aquatic animals and even
human beings. MCs inhibit the growth of aquatic organisms (including phytoplankton, macrophytes,
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invertebrates and vertebrates) [8,9], reduce fecundity [9] and accumulate into organisms, including
mussels and fish. MCs have caused mass death of wild animals, livestock and aquatic life in many
places in the world [10–16].

MCs have acutely toxic effects on humans such as jaundice, shock, and abdominal pain, and can
cause death in human beings [1,17,18]. Chronic exposure to microcystins may cause different health
effects, such as liver damage [19], promotion of liver tumour progression [20] and liver cancer [3,21,22].
MCs have been detected in the blood sera of Chinese fishermen with obvious liver damage, because of
exposure to MCs via drinking water and aquatic products [23].

A series of field studies on MC contamination in water and aquatic animals were conducted
in Lake Taihu around 2007 when a notorious heavy cyanobacterial bloom occurred [24–26]. During
the algal bloom crisis in Lake Taihu in 2007, about 2 million people could not access tap water and
had to rely on bottled water for 1 week [27,28]. In the years around 2007, Lake Taihu suffered from
heavy blooms every summer. Extensive studies have been conducted on accumulation of MCs in
fish, shrimps and snails [28–33], but systematic investigation of MCs in the food web including algal
cells, macrophytes, shrimps and fish is scarce. Most of the studies were conducted during heavy
cyanobacterial blooms, and all the results indicated that MC accumulation could pose high risks to
higher trophic levels and human beings. But is it absolutely safe when there is no obvious bloom?
A study in the James River Estuary indicated that potential health risks may exist in non-bloom
periods [34]. Another study in the San Francisco Estuary indicated that Microcystis, even at low
abundance, may have influences on fishery production via toxic and food web at multiple trophic
levels [35]. Although there have not been large cyanobacterial blooms occurred in Lake Taihu since
2008, chlorophyll a concentration and average density of cyanobacteria in Lake Taihu have been
increasing in recent years [36]. Thus, a systematic investigation the fate of MCs in a typical Chinese
lake ecosystem is needed.

In the present study, six species of macrophytes, two species of shrimps and seven species of
fish were investigated. The studied species are either dominant species or common species in Lake
Taihu. The objective of this study was to: (1) explore the environmental fate of MCs in the food web
associated with water, algal cells, macrophytes, shrimps and fish species during autumn in 2013 and
2014; (2) evaluate the risks that MCs pose to aquatic organisms and human beings.

2. Results

2.1. Spatial Differences of MCs in Water and Algal Cells of Lake Taihu

The average MC concentration in the water of Lake Taihu in autumn of 2013 was 130.4 ˘ 42.6 ng/L,
and it was 140.2 ˘ 83.3 ng/L in autumn of 2014. The water in SC had the highest MC concentration of
202.0 ˘ 71.4 ng/L in autumn of 2013, while there was not much difference in MC levels in the water in
the other three areas of Lake Taihu (Table 1). Water in MLB and SC had higher MC concentrations than
in the other two areas in autumn of 2014 (Table 1). The ratios of MC-LR/MCs and MC-RR/MCs in
water were similar in WC, LC and MLB in 2013, but the ratios of MC-LR/MCs in the water of SC was
much higher than in water from WC, LC and MLB. The ratios of MC-LR/MCs and MC-RR/MCs in
water were similar in WC, SC, LC and MLB in 2014.

The average MC concentrations in algal cells and total MCs were both higher in autumn of 2014
than in autumn of 2013 (p < 0.05). The average MC concentrations in algal cells in autumn of 2013 and
2014 were 629.3 ˘ 999.3 ng/L and 4104.5 ˘ 8086.7 ng/L, respectively. WC had higher MC level of
2491.0 ˘ 1486.1 ng/L in algal cells than SC and LC in 2013 (p < 0.05), and MLB had higher MC in cells,
18,063.3 ˘ 14,974.3 ng/L than SC and LC in 2014 (p < 0.05) (Table 1). The MC-RR/MCs ratio in algal
cells was higher than the MC-LR/MCs and MC-YR/MCs ratios in algal cells of the four areas in 2013
and 2014, except for the MC-LR/MCs ratios in algal cells in LC and MLB in 2013.
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Table 1. MC concentrations in water and algal cells in different areas of Lake Taihu (p < 0.05).

Year Areas MC-RR
(ng/L)

MC-LR
(ng/L)

MC-YR
(ng/L) MCs (ng/L) MC-RR Cell

(ng/L)
MC-LR Cell

(ng/L)
MC-YR Cell

(ng/L) MCs Cell (ng/L) Total MCs (ng/L)

2013 WC 46.9 ˘ 17.2 44.9 ˘ 17.7 36.9 ˘ 10.9 128.8 ˘ 24.0 1796.2 ˘ 2300.6 248.4 ˘ 266.5 446.4 ˘ 548.0 2491.0 ˘ 1486.1 b 2619.8 ˘ 1510.1 b

2013 SC 37.5 ˘ 0.31 113.9 ˘ 66.9 50.6 ˘ 4.8 202.0 ˘ 71.4 87.0 ˘ 62.2 20.9 ˘ 0.1 39.0 ˘ 23.8 146.9 ˘ 38.6 a 348.9 ˘ 110.0 ab

2013 LC 35.5 ˘ 0.8 47.0 ˘ 17.0 33.3 ˘ 5.6 115.8 ˘ 16.2 60.5 ˘ 46.0 115.2 ˘ 111.3 27.8 ˘ 3.9 203.6 ˘ 113.2 a 319.3 ˘ 108.3 a

2013 MLB 36.3 ˘ 5.1 38.2 ˘ 2.7 30.0 ˘ 0.5 104.5 ˘ 7.3 137.6 ˘ 148.7 345.4 ˘ 334.8 44.1 ˘ 30.6 527.2 ˘ 452.9 ab 631.7 ˘ 445.6 ab

2014 WC 35.1 ˘ 2.5 27.8 ˘ 3.3 14.4 ˘ 0.5 77.3 ˘ 5.3 626.1 ˘ 365.9 280.9 ˘ 165.5 43.7 ˘ 18.7 950.8 ˘ 550.1 AB 1028.1 ˘ 555.4 A

2014 SC 90.7 ˘ 15.4 95.1 ˘ 42.2 20.7 ˘ 0.7 206.4 ˘ 58.3 487.5 ˘ 481.7 261.2 ˘ 235.6 35.0 ˘ 24.8 783.7 ˘ 742.1 A 990.1 ˘ 800.4 A

2014 LC 53.8 ˘ 24.1 45.3 ˘ 20.0 13.9 ˘ 7.0 112.9 ˘ 47.6 1087.7 ˘ 1552.1 454.0 ˘ 620.4 68.2 ˘ 76.5 1609.8 ˘ 2248.5 A 1722.8 ˘ 2291.0 A

2014 MLB 111.5 ˘ 94.0 86.5 ˘ 66.0 20.5 ˘ 8.0 218.5 ˘ 168.0 11,624.8 ˘ 9689.1 5679.4 ˘ 4597.4 759.1 ˘ 687.7 18,063.3 ˘ 14,974.3 B 18,281.9 ˘ 15,142.3 B

a, ab, b are symbols whether there were significant differences in different areas of Lake Taihu in 2013; A, AB and B are symbols whether there were significant differences in different
areas of Lake Taihu in 2014. The MCs in the area marked with “a” had significant differences with the area marked with “b”, while it had no significant differences with the area
marked with “ab”. This applies to “A”, “B” and “AB” as well.
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2.2. Accumulation of MCs in Macrophytes of Four Areas of Lake Taihu

There were differences in MC accumulation among different macrophytes. The MC concentration
in Lemna minor in LC in 2013 was as high as 8200.8 ˘ 282.1 ng/g dry weight (dw), while the MC
content in Ceratophyllum inflatum Jao was 183.6 ˘ 6.3 ng/g dw. There were also differences among the
same macrophytes sampled from different locations of Lake Taihu in 2013. The MC concentration of
Potamogeton maackianus in LC in 2013 was 44,727.1 ˘ 1538.6 ng/g dw, while it was 68.4 ˘ 2.4 ng/g dw
in SC of Lake Taihu. The MC concentration in Ceratophyllum inflatum Jao in WC was higher than in
LC in 2013 (Figure 1A). The MC content in Ceratophyllum demersum L. in MLB was much higher
than in WC (Figure 1B). In addition, the MC concentration in Potamogeton maackianus in LC of
2013 was much higher than in MLB and SC (Figure 1C). There were no great differences in MC
contents in Potamogeton maackianus in MLB, LC and SC in 2014 (Figure 1D). Significant positive
relationships were found between MCs in Ceratophyllum and MC-RR in algal cell (p < 0.05). Similar
relation was also observed between MCs in Ceratophyllum and MCs in algal cell (p < 0.05) (Table 2).
No significant relationships were found between MCs in Potamogeton maackianus and MCs in algal cells.
Negative relationship was found between MCs in Ceratophyllum and total MCs in water, while positive
relationship was found between MCs in Potamogeton maackianus and total MCs in water (Table 2).
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Figure 1. MC concentrations in three hydrophyte species from different areas of Lake Taihu in autumn
of 2013 and 2014. (A) Ceratophyllum inflatum Jao in autumn of 2013; (B) Ceratophyllum demersum L. in
autumn of 2013; (C) Potamogeton maackianus in autumn of 2013; (D) Potamogeton maackianus in autumn
of 2014. NA, No data.
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Table 2. Pearson correlations between MC in macrophytes and MC in water and algal cells.

Correlations
Ceratophyllum Potamogeton maackianus

MC-RR MC-LR MC-YR MCs MC-RR MC-LR MC-YR MCs

MC-RR (water) 0.83 0.06 ´0.36 ´0.51 0.55 ´0.53 ´0.58 ´0.38
MC-LR (water) ´0.19 0.36 ´0.92 0.64 ´0.02 ´0.24 ´0.33 ´0.37
MC-YR (water) 0.54 0.21 ´0.69 ´0.09 ´0.19 ´0.01 0.59 0.19

MCs(water) 0.1 ´0.35 0.92 ´0.57 0.27 ´0.46 ´0.4 ´0.4
MC-RR (cells) ´0.93 0.21 ´0.33 0.96 * ´0.27 0.02 0.36 ´0.45
MC-LR (cells) 0.95 ´0.18 0.24 ´0.93 ´0.03 0.03 0.52 0.5
MC-YR (cells) 0.95 * ´0.17 0.22 ´0.92 ´0.14 0.35 0.28 0.71

MCs(cells) ´0.76 0.32 ´0.65 0.98 * ´0.29 ´0.07 0.44 ´0.54
Total MC-RR ´0.36 ´0.27 0.8 ´0.12 ´0.56 0.51 ´0.07 0.21
Total MC-LR ´0.64 ´0.16 0.6 0.24 ´0.68 0.49 ´0.38 ´0.12
Total MC-YR ´0.89 0.003 0.22 0.65 ´0.07 ´0.31 ´0.11 ´0.55

Total MCs 0.95 ´0.09 ´0.01 ´0.8 ´0.08 0.39 0.04 0.75

* p < 0.05.

2.3. Accumulation of MCs in Shrimp and Fish in MLB of Lake Taihu

The mean MC concentration in shrimps of Lake Taihu in 2013 and 2014 was 84.7 ˘ 31.8
(mean ˘ SD) ng/g dw and 91.4 ˘ 30.5 ng/g dw, respectively. Both Exopalaemon modestus and
Macrobrachium nipponense had slightly higher MC concentrations in 2014 than in 2013 (Figure 2).
Exopalaemon modestus had higher MCs than Macrobrachium nipponense in both 2013 and 2014.
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Figure 2. MC concentrations in two shrimp species sampled in MLB of Lake Taihu.

The average MC concentration in tissue of the same fish species in Lake Taihu sampled in 2013 and
2014 was 59.0 ˘ 14.4 ng/g dw and 90.9 ˘ 20.2 ng/g dw, respectively. The Hyporhamphus intermedius
had MC levels of 269.9 ˘ 9.3 ng/g dw in its tissue, and Coilia ectenes had MC levels of 92.0 ˘ 23.6 ng/g
dw (Figure 3). The cyprinus carpio had MC levels of 59.0 ˘ 2.0 ng/g dw in tissue. There were three fish
species, Neosalanx tangkahkeii taihuensis, Coilia ectenes and silver carp, caught both in 2013 and 2014.
The MC contents of the three species were all higher in 2014 than in 2013, except for those in viscera of
silver carp (Figure 4).
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2.4. Fate of MCs in the Food Web of Lake Taihu

The MC concentration in water of Lake Taihu ranged from 53.1 ng/L to 337.3 ng/L and MC
in algal cells ranged from 118.2 ng/L to 28,651.7 ng/L. Aquatic organisms in this study all had
MCs presence in their bodies (Figure 3). The MC contents in macrophytes of Lake Taihu ranged
from 68.4 ˘ 2.4 ng/g dw to 44,727.1 ˘ 1538.6 ng/g dw. The MC contents in shrimp ranged from
62.3 ˘ 2.1 ng/g dw to 113.0 ˘ 3.9 ng/g dw, while MC in fish tissue ranged from 48.0 ˘ 1.7 ng/g
dw to 269.9 ˘ 9.3 ng/g dw. Extremely high MC contents were found in macrophytes, such as
Ceratophyllum demersum L., Lemna minor and Potamogeton maackianus (Figure 5). Relatively high
MC contents were found in macrophytes, shrimps and fish, such as Ceratophyllum inflatum Jao,
Exopalaemon modestus and Hyporhamphus intermedius (Figure 3). Relatively low MC contents were found
in fish, such as common carp and grass carp (Figure 5). MC-RR was the main congener of MCs in algal
cells, macrophytes, shrimps and fish. The MC-RR in algal cells, macrophytes, shrimps and fish of MLB
accounted for 43% ˘ 25%, 65% ˘ 21%, 45% ˘ 8% and 50% ˘ 17% of MCs, respectively. The MC-LR in
algal cells, macrophytes, shrimps and fish of MLB accounted for 46% ˘ 18%, 17% ˘ 18%, 35% ˘ 11%
and 28% ˘ 20% of MCs, respectively. The MC-LR/MCs ratio of algal cells was significantly higher
than the ratio of macrophytes in MLB (p < 0.05).

Toxins 2016, 8, 170  11 of 16 

 

fish  tissue  were  found  in  Potamogeton  maackianus,  Exopalaemon  modestus,  and  Hyporhamphus 

intermedius, respectively. MCs in their tissues can be associated with the dietary exposure of shrimp 

and three fish species: Neosalanx tangkahkeii taihuensis, Coilia ectenes and silver carp. Further studies 

are necessary to identify the relationship between dietary exposure and MC accumulation in tissue. 

Ceratophyllum demersum L. is an ideal plant to protect against Microcystis blooms and MCs in lakes 

due to its ability to absorb nutrients, accumulate large amounts of MCs and exhibittolerance to MCs, 

compared to other macrophytes. The ADIs of MCs for Exopalaemon modestus and three fish species, 

Coilia ectenes, Hyporhamphus intermedius and Carassius carassius, were all above the TDI proposed by 

WHO, which may pose threats to the health of local residents. Routine monitoring should be applied 

in Lake Taihu to avoid consumption of contaminated water, shrimps and fish. 

5. Materials and Methods 

5.1. Study Area and Sampling Sites 

The most polluted part of Lake Taihu was selected as the study area according to Lake Taihu’s 

eutrophication  status  [33]. Water  and  phytoplankton were  both  sampled  at  12  sites  (Figure  5). 

Macrophytes were sampled in the West coast (WC), South coast (SC), lake centre (LC) and Meiliang 

Bay (MLB) (Figure 5). Shrimps and fish were sampled in MLB (Figure 5). 

 

Figure 5. Sampling sites of water, hydrophytes and aquatic animals in Lake Taihu. TH, Taihu; MLB, 

Meiliang Bay; SC, South coast; WC, West coast; LC, lake centre. 

5.2. Sampling and Processing 

Water samples of Lake Taihu were taken on 24 September 2013 and 24 September 2014, when 

cyanobacterial blooms frequently appeared in the years before. Surface water samples of 2 L were 

collected at 12 sites using plastic bottles and were stored at 4 °C in the dark before laboratory analysis 

(Figure 5). 

In the laboratory, one litre of the sample water was pre‐filtered using glass fibre filters (GF/C, 

Whatman, GE Healthcare UK Limited, Little Chalfont, Bucks, UK) under vacuum within 1 day. The 

filtered water was extracted by solid phase extraction (SPE) according to the procedures from Dai et 

al. [71]. The glass fibre filters were used to detect MCs in the algal cells. The extraction of MCs in algal 

cells followed a previous method [72]. 

Floating and rooted macrophytes were collectedon 24 September 2013 and 24 September 2014. 

Six  macrophytes  were  sampled:  Ceratophyllum  inflatum  Jao,  Ceratophyllum  demersum  L., 

Figure 5. Sampling sites of water, hydrophytes and aquatic animals in Lake Taihu. TH, Taihu; MLB,
Meiliang Bay; SC, South coast; WC, West coast; LC, lake centre.

2.5. Risk of MCs to Local Residents

The exposure routes of MCs to local residents around Lake Taihu are mainly drinking water
and food. A guideline value of 1.0 µg/L for MC-LR was set up in drinking water by [37]. If only
the MC in water was taken into consideration, the MC concentration was much lower than 1.0 µg/L.
However, the total MC in water, including the MC in cells, was much higher than 1.0 µg/L in WC, LC
(2014) and MLB (2014). Dietary exposures of humans to MCs were calculated for 2 shrimp and 7 fish
species (Table 3). The value of 0.04 µg/kg body mass per day derived from World Health Organization
(WHO) [3] was used for tolerable daily intake (TDI) of MC-LR. According to medium lethal doses
(LD50) in mice [38], MC-YR and MC-RR correspond to 0.4 and 0.2 MC-LR equivalents, respectively.
The dry weights were converted to wet weight by coefficients of 5 [23]. Assuming that an average body
mass of an adult is 60 kg in China and the daily consumption of fish muscle is 300g [24], the average
daily intakes (ADIs) of MCs from eating Exopalaemon modestus and Macrobrachium nipponense would be
0.0625 and 0.031 µg MC-LR eq/kg body mass, respectively. The ADIs of Exopalaemon modestus and
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Macrobrachium nipponense are 1.6- and 0.8-fold the tolerable daily intake (TDI) proposed by the WHO.
Exopalaemon modestus accumulated more MCs than Macrobrachium nipponense, but Exopalaemon modestus
was more popularly served than Macrobrachium nipponense by local peoples. The mean daily
intakes of MCs from eating Neosalanx tangkahkeii taihuensis, Coilia ectenes, Hyporhamphus intermedius,
Hypophthalmichthys molitrix, Carassius carassius, Cyprinus carpio and Ctenopharyngodon idella would be
0.027, 0.042, 0.229, 0.032, 0.43, 0.021 and 0.025 µg MC-LReq/kg body mass, respectively, corresponding
to 0.7-,1.1-, 5.7-, 0.8-, 1.1-, 0.5- and 0.6- times the TDI proposed by the WHO.

Table 3. Consumption risk assessment using tolerable daily intake (TDI).

Species
MC in

Edible Parts
(MC-LReq ng/g)

Daily Intake for
a 60 kg Person

(MC-LR eqµg/kg
Body Weight)

ˆLifetime TDI
(0.04 µg/kg Body

Weight/day)

Max Daily Intake
Not Exceeding the

Guideline (g)

Exopalaemon modestus 12.5 0.0625 1.6 192
Macrobrachium nipponense 6.2 0.031 0.8 387
Neosalanx tangkahkeii taihuensis 5.4 0.027 0.7 444
Coiliaectenes 8.4 0.042 1.1 286
Hyporhamphusintermedius 45.8 0.229 5.7 52
Hypophthalmichthys molitrix 6.3 0.032 0.8 381
Carassius carassius 8.6 0.043 1.1 279
Cyprinus carpio 4.2 0.021 0.5 571
Ctenopharyngodon idella 4.9 0.025 0.6 490

3. Discussion

Widespread MC contamination was observed among water, algal cells, macrophytes (6 species),
shrimp (2 species) and fish (7 species) in Lake Taihu in our study. The ubiquitous presence of MCs in
water (100% of samples), algal cells (100% of samples) and aquatic organisms (100% of samples) was
surprising since there were no visible cyanobacterial blooms in most areas of Lake Taihu when we took
those samples (The cyanobacteria abundance of Lake Taihu was 3.5 ˆ 106 cells/L and 7.5 ˆ 107 cells/L
in autumn of 2013 and 2014, respectively). The average ratios of MC-LR/MCs in algal cells were
higher than the ratios of shrimps, fish, and especially macrophytes (p < 0.05). These results indicated
that organisms seem to be able to avoid toxic congeners or efficiently eliminate MCs in their bodies,
given that MC-LR was the most toxic congener among MC-RR, MC-YR and MC-LR [38]. Extremely
high MC contents were found in all macrophytes, which may result from a lack of efficient detox and
elimination mechanisms in their tissue. The high concentration of MCs in macrophytes would pose a
serious risk to the higher trophic level animals in the food web of Lake Taihu.

The MCs in phytoplankton may be eaten by primary consumers, such as filter fish, or secondary
consumers via zooplankton [39]. The macrophytes would be directly eaten by herbivorous fish
(grass carp) or ingested by other fish (crucian carp) and shrimp (Macrobrachium nipponense) as debris.
There are some interesting results in the present study. The primary producers (phytoplankton
and macrophyte) presented very high MC levels in their cells or tissues. The primary consumers
(grass carp, silver carp, etc.) had lower MC concentrations in their tissues. Then the secondary
consumers (Exopalaemon modestus, Macrobrachium nipponense, icefish) had higher MCs in their tissues
than the primary consumers. The highest level consumers in this study (Asian pencil halfbeak, lake
anchovy, etc.) had higher MC concentrations in tissue than the secondary consumers. This might be
because the primary consumers, for example silver carp, ingest algal cells directly, and they may have
evolutionary adaptations to possess high resistance to MC exposure and mechanisms to eliminate
MCs in their body to counteract MCs [40]. The grass carp prefer to eat Hydrilla verticillata rather than
Ceratophyllum demersum [41] and the former species accumulated much lower levels of MCs in this
study. The higher level consumers, such as Hyporhamphus intermedius and Coilia ectenes, do not have a
mechanism to counteract MCs, but they have an inevitable intake of MCs through predation, and thus
they present high MC levels in the body.
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In the present study, considerable differences were found among macrophytes sampled from
different areas of Lake Taihu, and all these differences arose from a distinct increase in the concentration
of either MC-RR or MC-LR (Figure 1). There were great differences in MCs among different macrophyte
species, which was also found by previous researchers [25,42]. The two floating macrophytes
Ceratophyllum demersum L. and Lemna minor had the highest MC concentrations in their tissues. This is
because they float on the surface of water together with algal cells or scum, and they can absorb
the MCs rapidly as soon as MCs were released into water from algal cells [43,44]. This was further
demonstrated by the significant positive relationship between MCs in Ceratophyllum and MCs in
algal cells. Besides, these two plants have the ability to absorb large amounts of nutrients [45,46]
and the MCs may enter into the plant by a similar pathway as nutrients [47]. These two plants
should have priority when macrophytes are introduced to lakes to protect against Microcystis blooms
and MCs, because they play an vital role in elimination of MCs via accumulation in plant tissues,
and Ceratophyllum demersum L. has higher tolerance to MCs compared to other macrophytes such as
Hydrilla verticillata [48]. The negative relationship between MCs in Ceratophyllum and total MCs in
water also indicated that the presence of Ceratophyllum demersum L. contributed to the lower total MCs
in water columns. Another macrophyte, Potamogeton maackianus, one of dominant macrophytes in
Lake Taihu, also showed high concentrations of MCs, indicating that they may play a vital role in
elimination of MCs in Lake Taihu.

Results of both shrimps species showed that living in an environment with higher levels of MCs
(the MC levels in water and algal cells were higher than in other samples) could lead to higher MC
levels accumulated in the bodies of shrimp; a similar result was found in the James River Estuary for
fish and shellfish [34]. The results suggested that levels of MC in tissues of shrimp, shellfish and some
fish species could be associated with dietary exposure for consumers. The results for the three fish
species (Neosalanx tangkahkeii taihuensis, Coilia ectenes and silver carp) caught in both 2013 and 2014
showed that fish living in an environment with higher MC concentrations had more MCs in their
muscle, which was similar to the results for shrimp. The dominant species Hyporhamphus intermedius
and Coilia ectenes, which are both pelagic species, accumulated higher MC levels in their body than
other fish species. This may be because they live in the upper layer of the water body and thus have
more access to algal cells. Meanwhile, they do not have a detox ability similar to that of silver carp.
Therefore, they may pose potential risks to higher trophic animals and human beings [49,50].

Both laboratory and field studies indicate that the presence of MCs in aquatic ecosystemshad
adverse impacts on aquatic plants [42,51–54]. Exposure to MCs could decrease the growth rate
of Lemna gibba [51], Lemna minor and Wolffia arrhiza [54]. Increase of MCs in the water can cause
oxidative stress and had adverse impacts on metabolism of aquatic plants by suppressing the soluble
protein contents [53]. MCs had sublethal effects on aquatic fauna, including zooplankton [55,56],
macroinvertebrates and aquatic insects [57–60]. Malbrouck and Kestemont reviewed the effect of MCs
on fish and discussed the potential consequences in aquatic ecosystems [61]. In early life stages of
fish, exposure to MCs had adverse effects on embryonic hatching, decreased survival and growth rate,
and resulted in histopathological effects. In adults and juveniles, MC exposure could affect growth
rate and had histopathological effects on several organs of fish [61–63]. Besides, the carnivorous fish
are more sensitive to MCs than phytoplanktivorous fish [24,63]. Christoffersen reviewed the values
of microcystin concentrations that have proved lethal or caused significant changes in physiological
or behavioural processes [64]. Fish are the most tolerant (0.5–20 µg toxin¨ mL´1), phytoplankton are
intermediately tolerant (0.05–1 µg toxin mL´1), and macrophytes (Lemna and Elodea) and nano-sized
protozoa (heterotrophic nanoflagellates) are the least tolerant organisms (0.001–0.05 µg toxin¨ mL´1).
According to the MC levels in this study, MCs could cause significant effects on physiological or
behavioural processes, or even death to some macrophytes and nano-sized protozoa in Lake Taihu.
Other studies in Lake Taihu also showed that the Microcystis blooms strongly inhibited the population
growth of the water flea, Daphnia magna, by reducing their survival rates, individual growth rate, or
gross fecundity [65]. In the worst case, cyanobacterial blooms can eliminate filter-feeding zooplankton
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and change the competitive relations among zooplankton, which may undermine the food chain and
destroy the ecological balance in aquatic ecosystems [65,66].

Although the MC concentration in the water of Lake Taihu was much lower than the WHO
guideline value, the MC concentration in algal cells was several times of the guideline value which
maybe released into water during drinking water treatment processes [67,68] and pose risks to human
health. From Table 3, the ADIs of MCs for one shrimp and three fish species exceeded the provisional
TDI proposed by WHO, especially Hyporhamphus intermedius. Compared to previous studies sampled
in blooming periods, the mean daily intakes of MCs were estimated to be 2.2 times the recommended
TDI for MC-LR in Lake Taihu [69]. The MCs consumption risk of fish muscle in blooming periods
was much higher than in non-blooming periods. However, some fish such as Coilia ectenes and
Hyporhamphus intermedius collected from Lake Taihu during non-blooming periods could also pose
risks to human beings. However, there are few studies considering the consumption risk of MC
for children. Mulvenna et al. assessed the consumption risk of MCs taking adults and children
separately [70]. The health guideline values in seafood for MC derived from the study were lower for
children than for adults, indicating that safe seafood for adults is not necessarily safe for children.

4. Conclusions

Widespread MC contamination in water, algal cells, macrophytes, shrimps and fish was observed
in Lake Taihu. MC accumulation followed the order of primary producer > tertiary consumer
> secondary consumer > primary consumer. The highest MCs in macrophytes, shrimp and fish
tissue were found in Potamogeton maackianus, Exopalaemon modestus, and Hyporhamphus intermedius,
respectively. MCs in their tissues can be associated with the dietary exposure of shrimp and three
fish species: Neosalanx tangkahkeii taihuensis, Coilia ectenes and silver carp. Further studies are
necessary to identify the relationship between dietary exposure and MC accumulation in tissue.
Ceratophyllum demersum L. is an ideal plant to protect against Microcystis blooms and MCs in lakes
due to its ability to absorb nutrients, accumulate large amounts of MCs and exhibittolerance to MCs,
compared to other macrophytes. The ADIs of MCs for Exopalaemon modestus and three fish species,
Coilia ectenes, Hyporhamphus intermedius and Carassius carassius, were all above the TDI proposed by
WHO, which may pose threats to the health of local residents. Routine monitoring should be applied
in Lake Taihu to avoid consumption of contaminated water, shrimps and fish.

5. Materials and Methods

5.1. Study Area and Sampling Sites

The most polluted part of Lake Taihu was selected as the study area according to Lake Taihu’s
eutrophication status [33]. Water and phytoplankton were both sampled at 12 sites (Figure 5).
Macrophytes were sampled in the West coast (WC), South coast (SC), lake centre (LC) and Meiliang
Bay (MLB) (Figure 5). Shrimps and fish were sampled in MLB (Figure 5).

5.2. Sampling and Processing

Water samples of Lake Taihu were taken on 24 September 2013 and 24 September 2014, when
cyanobacterial blooms frequently appeared in the years before. Surface water samples of 2 L were
collected at 12 sites using plastic bottles and were stored at 4 ˝C in the dark before laboratory analysis
(Figure 5).

In the laboratory, one litre of the sample water was pre-filtered using glass fibre filters (GF/C,
Whatman, GE Healthcare UK Limited, Little Chalfont, Bucks, UK) under vacuum within 1 day.
The filtered water was extracted by solid phase extraction (SPE) according to the procedures from
Dai et al. [71]. The glass fibre filters were used to detect MCs in the algal cells. The extraction of MCs
in algal cells followed a previous method [72].
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Floating and rooted macrophytes were collectedon 24 September 2013 and 24 September 2014. Six
macrophytes were sampled: Ceratophyllum inflatum Jao, Ceratophyllum demersum L., Hydrillaverticillata,
Lemna minor, Potamogeton maackianus and Eichhornia crassipes (Figure 5). At least 3 individuals per
species were collected. Two species of shrimp, Exopalaemon modestus and Macrobrachium nipponense,
were sampled with the help of local fisherman on 24 September 2013 and 24 September 2014. Seven
fish species including Hyporhamphus intermedius (Asian pencil halfbeak), Neosalanx tangkahkeii taihuensis
(icefish), cyprinus carpio (common carp), Coilia ectenes (lake anchovy), Ctenopharyngodon idella (grass
carp), Carassius carassius (crucian carp) and Hypophthalmichthys molitrix (silver carp) were also sampled
with help from local fisherman on 24 September 2013 and 24 September 2014 (Figure 5). The weight
and length of each shrimp and fish was measured. Then fish was immediately dissected. At least
3individuals per species were prepared. The individuals were mixed and frozen at ´20 ˝C for storage
before MCs quantification. For the fish samples of Ctenopharyngodon idella (grass carp), cyprinus carpio
(common carp), Carassius carassius (crucian carp), and Hypophthalmichthys molitrix (silver carp) muscle
and visceral (the whole inside part of the fish) tissues were taken for analysis. For other species, the
whole fish was taken.

Samples of tissues were lyophilized, crushed and homogenized. Approximately 0.4 g dry weight
(dw) portions were extracted three times with 10 mL water:butanol:methanol=1:4:15 while stirring for
24 h. The extract procedures followed the method from Xie et al. [73].

5.3. MCs Quantification

Microcystins were quantified using the method of [74] with some modification [33]. Samples
in MeOH were injected into an Agilent 6460 QQQ HPLC-MS/MS equipped with an Agilent Zorbax
Eclipse Plus column (C18, 2.1 mm ˆ 50 mm, 1.8 µm). Separation was accomplished using two
phases. Phase A was MeOH and phase B was water with 0.1% formic acid (FA). The flow rate of
the mobile phase was 0.5 mL/min. The temperature of column oven was set at 40 ˝C. For more
detailed information please see [33]. Instrument control, data processing and data analysis were
conducted using Agilent MassHunter software B.04.00 (Agilent Technologies, Inc., Santa Clara, CA,
USA, 2011). The MC concentrations of the samples from Lake Taihu were quantified by comparing
the peak areas of the test samples to those of MC-LR, MC-YR and MC-RR standards from AXXORA
Europe, Switzerland.

5.4. Statistical Analysis

Data were processed using SPSS 17.0 (SPSS, Inc., Chicago, IL, USA, 2008). Analysis of variance
(ANOVA) was applied to find whether significant variation of MCs exists in water, algal cells and
their total MCs between WC, SC, LC and MLB. ANOVA was also applied to find whether significant
variation of MCs exists in water, algal cells and the total MCs between different years. Pearson
correlation analysis was used to examine whether there were significant relationships between MC in
macrophytes and MC in water and algal cells. Data were transformed by log(X + 1) when the ANOVA
and correlation analysis were conducted. The criterion for significance was p < 0.05 and p < 0.01.
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