
Toxins 2015, 7, 2159-2187; doi:10.3390/toxins7062159 
 

toxins 
ISSN 2072-6651 

www.mdpi.com/journal/toxins 

Review 

Bioinformatics-Aided Venomics 

Quentin Kaas * and David J. Craik 

Institute for Molecular Bioscience, the University of Queensland, Brisbane, QLD 4072, Australia;  

E-Mail: d.craik@imb.uq.edu.au 

* Author to whom correspondence should be addressed; E-Mail: q.kaas@imb.uq.edu.au;  

Tel.: +61-7-3346-2021; Fax: +61-7-3346-2101. 

Academic Editor: Bryan Grieg Fry 

Received: 1 May 2015 / Accepted: 5 June 2015 / Published: 11 June 2015 

 

Abstract: Venomics is a modern approach that combines transcriptomics and proteomics 

to explore the toxin content of venoms. This review will give an overview of computational 

approaches that have been created to classify and consolidate venomics data, as well as 

algorithms that have helped discovery and analysis of toxin nucleic acid and protein 

sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used 

to tackle specific challenges associated with the identification and annotations of toxins. 

Recognizing toxin transcript sequences among second generation sequencing data cannot 

rely only on basic sequence similarity because toxins are highly divergent. Mass 

spectrometry sequencing of mature toxins is challenging because toxins can display a large 

number of post-translational modifications. Identifying the mature toxin region in toxin 

precursor sequences requires the prediction of the cleavage sites of proprotein convertases, 

most of which are unknown or not well characterized. Tracing the evolutionary 

relationships between toxins should consider specific mechanisms of rapid evolution as 

well as interactions between predatory animals and prey. Rapidly determining the activity 

of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and 

molecular modeling approaches give hope that accurate predictions of toxin specificity 

could be made in the near future. 
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1. Introduction 

Animals that use venoms for killing or paralyzing prey or for defense purposes are widespread in 

diverse phyla of the animal kingdom. They are found in nearly all major animal subgroups, including 

vertebrates (e.g., snakes, lizards, fish, toads, frogs, vampire bats, platypus, echidna), mollusks  

(e.g., marine cone snails, terebrids, cuttlefish, octopus, squids), arthropods (e.g., scorpions, spiders, 

centipedes, ticks, ants, wasps, bees), annelids (e.g., leeches), sponges and cnidarian (e.g., jellyfish,  

sea anemones). Animal venoms are a complex mixture of substances, mainly composed of proteins 

and peptides, but also containing lipids, amines and other small molecules [1]. Venom peptides have 

sparked particular interest because of their activity on the nervous system (blockers or agonists of ion 

channels, transporters or receptors) or on membranes (antibacterial, hemolytic). Larger venom proteins 

have enzymatic activity (phospholipase A2, proteases, and oxidases) or modify important 

physiological process such as coagulation (lectins). The venom of a single species can contain 

hundreds to several thousands of active peptides [2,3], and the total pool of unique active peptides in 

venoms is therefore extremely large, probably greater than ten million. For example, hundreds of 

thousands of different active peptides have been proposed to exist in the venoms of the greater than 

700 marine cone snail species [3–5]. Other species extensively studied for their venom content belong 

to more highly diversified orders or sub-orders; for example, there are ~45,400 species of spiders [6], 

~3500 species of snakes [7,8] and ~2000 species of scorpions [9]. 

Animal venoms are one of the richest natural sources of active compounds and have numerous 

pharmacological and medical applications [10]. Toxins are used as pharmaceutical tools (e.g.,  

to characterize ion channels), and also in pharmaceutical applications (e.g., drugs) or biotechnological 

applications (e.g., insecticides) [10]. The cone snail toxin MVIIA is an analgesic drug targeting 

voltage-gated calcium channels (CaV), which is used under the name Prialt®, to treat intractable pain [11]. 

Other toxins are also in development as treatments of various nervous system disorders (epilepsy, pain), 

as well as arthritis, heart and blood pressure disorders and cancer [12,13]. Considerable effort is 

undertaken to discover new toxins with interesting activity, and in the course of this research, 

extensive knowledge on how toxins are produced has been gained. 

In most studied organisms, peptide toxins are stored in venom glands. The cells lining these glands 

produce toxins as precursor proteins, which undergo several maturation steps before being  

secreted [14]. Toxin precursors are first directed to the endoplasmic reticulum (ER), where the ER 

signal peptide region is cleaved. While transiting through the secretory pathway, the truncated toxin 

precursors mature by undergoing several post-translational modifications (PTMs), which include 

excision of the mature region, formation of disulfide bonds between pairs of cysteine residues and 

modifications of side chains or peptide termini, for example hydroxylation of prolines or amidation of 

the C-terminus [15–17]. The formation of disulfide bonds is a particularly important PTM because it 

stabilizes the three-dimensional (3D) structures of toxins, and consequently the number and 

arrangement of the disulfide bonds is commonly used to classify toxins [15]. (The many toxins that do 

not have disulfide bonds are typically classified in families according to their sequence similarities). 

Overall, 15 side-chain PTMs have so far been identified in cone snail toxins [15]. These modifications 

contribute to increasing the chemical diversity of venoms, fine-tuning the specificity for molecular 

targets or helping the maturation of toxins [18]. Studies of toxin evolution have revealed that most 
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animal toxin genes belong to gene superfamilies that probably emerged from duplication of a few 

ancestral genes [19]. The ER signal peptide of toxin precursors shares high sequence similarity within  

a gene superfamily but the mature peptide regions undergo rapid evolution and are consequently more 

divergent [16]. This fundamental knowledge of toxin maturation and evolution has led to  

the development of targeted approaches to discover them. 

 

Figure 1. Computational approaches in venomics. The different themes in this figure are 

discussed in the text. Generalist and specialized databases are a central source of 

information for both the discovery (top) and analysis (bottom) of venoms. Venomics 

computational tools combine data from proteomics and transcriptomics to discover the set 

of toxins in a venom gland. These tools use predictions of mature toxins from 

transcriptomes to support peptide sequencing, and sequencing by mass spectrometry uses 

transcript sequences as a database to rapidly identify peptides and their post-translational 

modifications. Bioinformatics tools use the standardized classification stored in databases 

to analyze transcripts, and phylogenetic analyses can be used to analyze toxin evolutionary 

relationships. Databases in turn record the newly identified toxin peptide and transcript 

sequences. These sequence data can be also used to refine toxin classification, for example 

when a new phylogenetic group of toxins is identified. The molecular target of toxins can 

be suggested by a phylogeny and an evolutionary analysis complemented by the prediction 

of toxin 3D structures. Molecular modeling of target/toxin complexes can be used to 

analyze in great depth structure-activity relationships of toxins. Finally, the affinity of 

these complexes can be predicted from the molecular models. 

Over the last few years, cutting-edge technologies are increasingly being employed in toxin 

research to unravel the pharmacological treasures hidden in animal venoms, dramatically changing  

the landscape of venom exploration [10]. Combined advances in proteomics and transcriptomics now 

give access to nearly complete toxin repertoires of a single venom [20], with this new approach termed  

“venomics” [2,10,21]. Venomics research is driven by techniques rather than by hypotheses [10], with 
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old fractionation methods now replaced with the simultaneous discovery of massive amounts of toxin 

nucleic and protein sequences. This large amount of data cannot be efficiently comprehended without 

the use of computational and statistical methods [22]. This review will first focus on computational 

approaches that have been developed in recent years to help in the discovery and analysis of venom 

proteins and peptides. The main themes discussed are illustrated in Figure 1. Several specialized 

databases provide access to information on toxins, which are used by bioinformatics tools to analyze 

“omics” data and to orient new venomics research. The increased pace at which toxin sequences are 

being discovered is unfortunately not matched by the speed at which their functions are assayed 

because the functional characterization of a single toxin requires significant experimental efforts. Thus, we 

also describe some of the computational approaches that have been developed to suggest and study  

toxin functions. 

2. Databases 

Sequence and structure data on toxins are dispersed and difficult to extract from generalist sequence 

databases such as GenBank [23] because toxin sequences are not always annotated as such or because 

sequences are highly redundant [22]. Generalist databases rely on authors to submit their sequences, 

and consequently a large amount of information is in the peer-reviewed literature but not in  

generalist databases. Some aspects of toxin-centered databases were reviewed recently [24].  

ConoServer (http://www.conoserver.org), ArachnoServer (http://www.arachnoserver.org), and ISOB 

(Indigenous Snake species Of Bangladesh, http://www.snakebd.com/) provide expert annotations on 

the sequences and 3D structures of cone snail, spider, and snake toxins, respectively [25–27]. There 

are currently no equivalent databases for other venomous species, and this absence has been noted as 

impeding venomics efforts [1]. ConoServer, ArachnoServer and ISOB catalog data that are either 

manually extracted from the peer-reviewed literature or semi-automatically retrieved from generalist 

sequence and 3D structure repositories such as UniProtKB [28], GenBank [23], GenPept and  

the Protein Data Bank (PDB) [29]. The origin of each entry in ConoServer, ArachnoServer and ISOB 

can be traced back to the peer-reviewed literature and/or to a generalist database. ConoServer and 

ArachnoServer databases solve naming issues related to toxins that have several names in  

the literature, ultimately giving names to toxins according to cone snail and spider toxin standard 

nomenclatures [15,30]. Another important task of these two databases is to keep track of the rapidly 

evolving toxin classifications, which are frequently amended. In the remainder of this section we now 

give more information on the five most useful publicly available sources of data in venomics, namely 

ConoServer [25,31], ArachnoServer [26,32], ISOB [27], Tox-Prot [33] and ATDB (Animal Toxin 

DataBase) [34]. 

ConoServer [25,31] catalogs 2201 mature toxin sequences, 2837 precursor sequences and 175 3D 

structures of cone snail toxins (as of June 2015), which have been retrieved from public repositories 

and from the peer-reviewed literature. Mature peptide toxin entries, protein and nucleic acid precursor 

entries, and 3D structure entries are linked. All mature peptide toxins, discovered experimentally or 

predicted from the precursor, are entered as independent entries. The prediction of mature peptide 

toxins allows identifying precursor sequences that mature into the same toxin, discovering these 

peptides by mass-spectrometry (MS), and aligning the mature peptides on the database website.  



Toxins 2015, 7 2163 

 

 

The experimental evidence supporting the existence of each toxin, i.e., if it was discovered at  

the protein or nucleotide level, is provided. ConoServer only records experimentally identified PTMs, 

and these are graphically annotated on the sequences of the mature toxins. The biological activity on 

molecular targets are described in terms of IC50, Ki, and percentage of inhibition, and the targets are 

named according to the classification of the International Union of basic and clinical PHARmacology 

(IUPHAR) [35]. The function of a toxin can be queried using the “pharmacological family” 

classification, which describes the type of molecular target and the type of activity, for example  

the κ-conotoxins describe cone snail toxins that block voltage-gated potassium channels. NMR models 

are retrieved from the Biological Magnetic Resonance Bank (BMRB) [36] but some are also directly 

submitted to ConoServer by authors upon request. The database also keeps track of patented sequences 

as well as information on synthetic peptides derived from cone snail toxins; for example, synthesized 

for structure-activity relationship studies. Statistics on the classification schemes, PTMs, and toxins 

per cone snail species are automatically updated. Each entry has a stable identifier, which comprises 

the letter “P” for proteins or “N” for nucleic acids followed by a number. The peer-reviewed 

references that were used to create the database are listed on a single page, providing a convenient 

bibliography on cone snail toxin discovery. Database sequences can be retrieved in FASTA format, 

and all annotations can be downloaded in XML format. The database is regularly updated. 

ArachnoServer [26] catalogs 1464 mature spider toxins, which were retrieved from UniProtKB [28] 

(as of June 2015). Mature toxin PTMs are provided and clearly identified as being experimentally 

validated or predicted by homology. Disulfide bond connectivities are difficult to determine 

experimentally, and ArachnoServer supplies an experimental confidence level for them. The toxin 

molecular targets are described according to the IUPHAR nomenclature [35], and the toxins can be 

browsed according to their molecular targets using a powerful interactive tool. ArachnoServer 

provides experimental values of target inhibition for a large number of entries, and considerable efforts 

have been made to provide comments on toxin functional characterization. Enzymes are described 

using the Enzyme Commission (EC) number and are linked to the MEROPS database [37]. All mature 

toxins in ArachnoServer are named according to the standard nomenclature for spider toxins [30], but 

alternative names found in the literature are also recorded. Each toxin entry has a unique identifier, 

which comprises the two letters “AS” followed by a number. Sequences can be retrieved in FASTA 

format, and every list of entries can be saved in XLS or PDF formats. 

ISOB (http://www.snakebd.com/) [27] catalogs toxins from snakes in Bangladesh. This recently 

created database can be queried by the snake species scientific name as well as by toxins. The database 

interface does not allow searching toxins by name or sequence but they can be listed according to their 

activity, such as serine proteinase, neurotoxin or phospholipase. Information provided for each toxin 

includes its name, functional class, uniprot accession number, reference, protein sequence and 

structural information. When no experimental structure is available, a homology model is generated 

for each toxin. As of June 2015, 76 species of snakes and 419 proteins and toxins are listed in ISOB. 

Tox-Prot (http://www.uniprot.org/program/toxins) [33] is the animal toxin annotation program of 

UniProtKB and aims to systematically annotate animal venom peptides [24]. Some of the annotations 

found in ConoServer and ArachnoServer have been transferred by Tox-Prot into UniProtKB, and links 

between the databases have been created. There are fewer annotated entries in UniProtKB concerning 

cone snail toxins than in ConoServer; for example only 1011 cone snail toxin sequences are annotated 
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in UniProtKB. Each toxin entry in UniProtKB displays less annotation on the functional 

characterization than ArachnoServer or ConoServer. Besides cone snail and spider toxins, Tox-Prot 

stands as the best choice to retrieve information on toxins for the majority of other venomous species. 

Toxin activities are described in comment fields in UniProtKB entry cards. Two ontologies are used to 

describe ion channel and receptor subtypes: IUPHAR [35] and Human Genome Organization (HUGO) 

Gene Nomenclature Committee (HGNC) ontologies. Two other ontologies describe enzymes found in 

venoms: EC numbers and the nomenclature from the International Union of Biochemistry and 

Molecular Biology (IUBMB). 

The animal toxin database (ATDB, http://protchem.hunnu.edu.cn/toxin/) [34] is a meta-database 

that displays information from several databases, including UniProtKB, GenPept and three 

discontinued databases dedicated to scorpion toxins (SCORPION2; [38]), cone snail toxins 

(MOLLUSK) and some snake toxins (svPLA2). ATDB is based on highly detailed ontologies 

describing the toxins and the target ion channels. ATDB toxin ontology describes the function of  

the toxins at different levels: The mode of actions and effects on the molecular targets, the symptoms, 

the pathogenesis (e.g., “Cytolysis/Cell degranulating/Muscle necrosis”) and the functional type of  

the toxins (e.g., “Neurotoxin/Postsynaptic neurotoxin”). The ion channel ontology describes  

the targeted ion channels according to the IUPHAR classification [35], distribution, physiology  

(e.g., “Fast deactivation”) and pharmacology (e.g., “System effects/Pain responses/Inflammatory 

pain”). These detailed ontologies would potentially allow very clever browsing of the database, but  

the interface currently fails to display the corresponding entries for the ion channel ontology.  

The database was last updated in 2009. 

3. Discovery of Toxins from Venom Gland Transcriptomes 

Because of the rapidly decreasing cost of sequencing nucleic acids, especially using massively 

parallel sequencing technologies, a large number of transcriptomic analyses of snake, cone snail, spider, 

scorpion and a few other animal venom glands have been carried out. Besides the discovery of 

pharmaceutically active compounds, these studies are also motivated by academic interests in the genetic 

mechanisms at the origin of toxin families [19] or in the co-evolutions of venoms and preys [39,40]. 

Only a few studies have reported the sequencing of the genomes of venomous species, which is  

a major undertaking because eukaryote genomes are typically large and have numerous tandem 

repeats. Currently, two snake genomes (Burmese python and king cobra) [41,42], two cone snail 

genomes (Conus bullatus and C. consors) [43,44], one scorpion genome [9], one spider genome [45], 

and the genomes of the honeybee [46] and parasitic wasps [47] were reported as being at various stages 

of completion. By contrast, a large number of studies have reported sequencing of the venom gland 

transcriptomes, which are more affordable and the bioinformatics analyses are easier than for sequencing 

genomes. Consequently, we focus here mainly on the analysis of transcriptomes rather than genomes. 

The analysis of the transcriptome of a venom gland proceeds in several steps, which differ only 

slightly from the standard procedure for other tissues [48]: The sequencing reads are first assembled 

into contigs, the functions of contig gene products are predicted by homology, toxin precursors are 

identified among the contigs, toxin precursors are analyzed and classified, and reads and contigs are 

submitted to generalist repositories, such as NCBI SRA, dbEST and/or GenBank [49]. 
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From a bioinformatics point of view, the important characteristics of the different sequencing 

technologies are the length of the reads compared to those of the transcripts, the number of reads, and 

the sequencing error rate. Second generation sequencing technologies, such as 454 GS FLX Titanium 

(454) and Illumina, give access to the sequences of lowly expressed transcripts that were undetected by 

Sanger sequencing methods [50], but the new technologies have a much higher rate of sequencing 

errors. For example, the 454 has an average error rate of 1% [51], and studies that claim observing 

transcript variations supported by only one sequencing read [52], should be viewed with caution. 

Newly discovered transcripts should ideally be supported by proteomics data or other nucleic acid 

sequencing technologies [50]. 

Sequencing reads are typically assembled de novo into larger contigs, and this procedure requires 

discarding low-quality reads. Illumina reads are typically first analyzed for their quality using  

the Illumina quality scores, and this analysis orients the choice of the quality threshold of reads as well 

as the trimming of low quality bases at the 3′ end of all reads. ESTs can be assembled into contigs 

using various software, the most popular being CAP3 [53], Phrap [54] and SeqMan [55]. The most 

popular assemblers for 454 reads are MIRA [56], Newbler (Life Science, Frederick, CO, USA) and 

CLC Genomics Workbench (CLC Bio, Aarhus, Denmark), and popular transcriptome assemblers used 

with Illumina reads are Velvet/Oases [57] and Trinity [58]. De novo assembly, i.e., without a reference 

genome, of second-generation sequencing reads is still considered challenging and should be treated 

with caution. Multigene toxin families display high similarity in part of their sequences [16], and are 

therefore particularly difficult to assemble because similar or even identical read sequences and  

a certain rate of sequencing error are potentially shared between several transcripts. Issues associated 

with second-generation sequencing assemblies are the failure to assemble certain transcripts and  

the creation of spurious contigs (chimeric transcripts). Some studies assess the reliability of assemblies 

by cross validating results from several de novo assemblers [59], but such strategy is highly time 

consuming and not totally conclusive. The choice was made in some studies to avoid assembly 

problems and to search for toxin transcripts directly in the sequencing reads. The distribution of open 

reading frames of cone snail toxin transcripts is indeed similar to the distribution of read lengths 

produced by 454 sequencing technology [50,60]. VTBuilder is a recently developed transcriptome 

assembler that considers relationships between co-evolving sites to avoid building chimeric transcripts, 

and has been shown to be effective at assembling toxin transcripts from Illumina reads [61]. 

Contigs corresponding to toxin transcripts can be identified by similarity with known toxin 

sequences. The potential function of non-toxin contigs is predicted by homology with entries in 

NCBI/nr [49] and/or UniProtKB [28]. Standard annotations of non-toxin sequences include  

the enrichment in gene ontology terms using Blast2GO [62], and the identification of protein families, 

domains and important sites using InterProScan [63]. Proteins belonging to certain metabolic and 

regulatory pathways can also be identified using the KEGG annotation sever [64] and iPath  

explorer [65]. This approach was recently used to suggest that certain metabolic pathways are not 

directly involved with toxin production. For example, one study found that fatty acid synthesis is  

down-regulated in the venom gland of the cone snail Conus geographus [66]. 

Toxin precursors belonging to different gene superfamilies are highly divergent, and toxins 

belonging to previously undescribed gene superfamilies are difficult to identify using sequence 

similarity searches. Profile-based method alignments are more sensitive and have been used in a few 
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studies analyzing venom gland transcriptomes [52,67,68]. For example, Shwartz et al. [68] used  

a sequence profile built with PSI-BLAST [69] to suggest the remote homology between  

toxin venom gland transcripts and other scorpion toxins that are potassium channel blockers.  

Profile-hidden Markov models (pHMMS) were recently used to identify toxin transcripts in cone snail  

transcriptomes [52,67,70,71]. ConoDictor uses pHMMs as well as generalized position-scoring 

matrices to classify cone snail toxin precursors into gene families or superfamilies [70,71], and this 

method has been used to identify toxins from transcriptomic data [72]. The sequence profiles of 

ConoDictor were constructed for signal peptide, pro-region and mature peptide region sorted into 

different groups based on sequence similarity. ConoDictor is an online tool (http://conco.ebc.ee), and it 

is therefore convenient to use. ConoSorter [52] uses several pHMMs to rapidly identify toxin 

transcripts in 454 reads or assembled contigs. Similarly to ConoDictor, the pHMMs of ConoSorter 

were created using HMMER [73], which was run on alignments of manually created clusters of 

transcript regions (signal peptide, pro-region and mature peptide region) for each gene superfamily. 

Alignment clusters were created manually because conventional clustering tools failed to produce 

reliable results, highlighting the extreme divergence between these sequences [52]. ConoSorter is  

a computer script, which needs to be run locally and can handle very large number of sequences.  

A simpler approach was recently employed by Robinson et al. [67]: One pHMM was created for each 

gene superfamily using alignments of all non-redundant sequences in ConoServer, without creating 

clusters [25]. Other approaches to identify toxins in assemblies or reads are based on the knowledge 

that toxins display a limited number of cysteine patterns in their amino acid sequence [59] or adopt  

a limited number of folds [74]. For example, giant ant Dinoponera quadriceps toxins were identified 

by local sequence alignment against the KNOTTIN database [75], which catalogs proteins adopting  

a cystine knot fold [76]. Knoter 1D is an on-line tool that automates this process by predicting cystine 

knot folds based on sequence similarity to known knotted proteins as well as a range of other features, 

such as the number of cysteine residues, the length of sequences between consecutive cysteine residues 

or annotation keywords [75]. Besides sharing similar folds, toxins acting at similar molecular targets 

should display similar sequence features, and ClanTox [77] is a machine learning approach that aims 

to identify ion channel inhibitors using sequence features only. The methods implemented in ClanTox 

combine the results of several decision-stump classifiers using the AdaBoost algorithm [78]  

(boosted-stump classifiers). ClanTox is species independent, as opposed to ConoDictor and 

ConoSorter, and can be used to identify toxin-like sequences. For example, ClanTox was used to 

discover toxin-like proteins in mammalian transcriptomes [79], and some of the identified peptides are 

modulators of cell signaling acting at nicotinic acetylcholine receptors using a three-finger snake toxin 

fold [80,81]. On the basis of convergent evolution of toxins in different phila, Starcevic et al. identified 

sequences motifs that seem to be specifically used by toxins [82]. They used MEME [83] to identify 

748 shared motifs of about 40 amino acids in length, and the pHMM built from alignment of these 

motifs was shown to be able to identify snake PLA2 toxins among other proteins and to generate only 

a limited number of false positives when analyzing transcriptomes of non-venomous animals. 
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4. Discovery of Toxins from Proteomes 

Most of the known toxin peptide sequences were predicted from conceptual translation  

of nucleic acid sequences. Consequently, the majority of toxins cataloged in databases do not  

have any experimental support for them being produced in venoms. For example, only 379 out of  

the 1873 mature toxins recorded in ConoServer have some experimental evidence of being present in 

venom. Nevertheless, support for mature peptide toxin sequences becomes more routinely and rapidly 

provided by modern proteomics experiments, e.g., [20,60]. A major issue in toxin proteomics derives 

from large intra-species and even intra-specimen variability, indicating that understanding the biology 

of the venomous animals is essential to characterize venom content [84,85]. Additionally, each venom 

displays a very large chemical diversity, which can be explained by recently evidenced mechanisms, 

including differential post-translational modification of toxins [86], differential truncations [60], and 

transcription messiness [50]. Transcription messiness is an emerging concept where errors of 

transcriptions cause epimutations, resulting in several proteins with slightly different amino acid 

sequences [87–89]. 

Proteomics approaches to analyze snake venom were recently reviewed [1,90], and the techniques 

discussed in these reviews are generally applicable to other animal venoms. Venoms typically contain 

hundreds of different peptide components [3], and a wide range of combination of chromatography, 

electrophoresis, enzymatic digestions, Edman degradation, or mass spectrometry (MS) techniques 

have been employed to sequence their toxins [1,90]. Edman degradation is the traditional approach to 

sequence peptides, and it still sometimes used for full [91] or partial [92] toxin sequencing.  

Most toxins are very small and can be sequenced at lower cost using tandem MS (MS/MS) [50,60,90], 

but Edman degradation can be useful as a complement to MS, e.g., reference [93], for example helping 

to identify the isobaric amino acids isoleucine/leucine and for N-terminal sequencing. 

Peptide sequences are typically discovered from MS/MS data by (i) complete de novo sequence 

reconstruction, (ii) reconstruction of some partial sequence tags to be searched in a sequence database, 

or (iii) matching spectra predicted from a database of sequences. Complete de novo sequencing is slow 

and its challenging nature is exacerbated by the high frequency of side-chain PTMs. Despite  

the creation of some specific methodologies [94], this strategy is no longer used routinely.  

The identification of peptides in MS/MS spectra using proteins predicted from transcriptomes is now 

standard procedure [50,60,95]. This proteogenomic strategy leads to a higher level of confidence for 

the mature peptide toxin sequences because transcriptomes provide independent validation and also 

help to resolve ambiguities regarding the identification of isobaric residues, i.e., isoleucine and leucine 

residues. The majority of side chain PTMs cannot be predicted from transcript sequences, and these 

PTMs potentially render the identification of peptides more difficult, but the widely used software for 

matching MS data with sequence databases, Mascot (Matrix Science, Boston, MA, USA), ProteinPilot 

(Applied Biosystems, Waltham, MA USA), SEQUEST (Thermo Finnigan, San Francisco, CA, USA), 

and x!tandem [96] readily take into account a very large number of PTMs. The latest developments in 

the field been have been recently reviewed [97,98], and we will focus on bioinformatics methods 

specifically made to analyze venom content. A tool called ConoMass, accessible from the ConoServer 

website, uses a brute force approach to match reconstructed peptide masses from MS data with toxin 

masses predicted from transcriptome analysis [25,60]. ConoMass considers all possible combinations 
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of PTMs that were identified in cone snail toxins to date, with the exception of side chain 

glycosylations, which are very diverse in their occurrence [25,99]. We note that alternative disulfide 

bond connectivities, which can lead to variation in bioactivity [100], cannot be detected via mass 

changes. The identification of peptide using such a simple method, which is also employed by other 

algorithms such as FindMod [101], typically generates a large number of false positives [102]. 

Increased sensitivity of mass spectrometers as well as knowledge of PTMs commonly found in related 

peptides from the same gene superfamily could help to discriminate between alternative toxin 

sequences for each reconstructed mass [60]. 

The quantification of toxins in the venom can be carried out by integration of the area under 

chromatography elution curves. Interestingly, a recent comparison of the quantification from 

proteomes and transcriptomes in the venom gland of a snake showed large discrepancies, possibly 

because once the concentration of a toxin in the glands reaches a certain level, its production is 

repressed [103]. Some toxins predicted to exist from transcriptome data are not found in the proteome, 

and conversely toxins in the proteome have no identified transcripts. It is therefore important to 

cautiously interpret the expression level of transcripts discovered from a transcriptome analysis in 

terms of importance in the venom. Possible explanations of these discrepancies have been  

proposed [1]: Some toxins might not be secreted and will not be found in the venom; the origin of the 

material is different (several venom samples are typically pooled from several animals but RNA 

material is only collected from one specimen); the sensitivity of proteomics is still too low; and some 

types of side chain PTMs might still be unknown. An alternative explanation was proposed in a recent 

study of the origin of the ontogenic shift in venom content of the Central American rattlesnake [104]. 

miRNA levels were shown to be the main factor that modulates venom composition as the relative 

toxin transcriptional activity was similar whatever the development stage. 

5. Bioinformatics Analysis of Toxin Transcripts and Classifications 

The analysis of toxin transcripts typically proceeds by determining the different regions in  

the precursors (ER signal peptide, mature peptide region and pro-regions) as well as the estimation of 

their evolutionary relationships and the structural and functional class of their mature toxins. With  

the increasing number of known toxins, the majority of these tasks can be done by transferring 

annotations by homology. The ER signal peptide boundary is often predicted using SignalP [105], 

which is currently the best method to predict the presence of an ER signal peptide (Mathew correlation 

coefficient of 87%) but is less accurate at predicting the exact position of the cleavage (Mathew 

correlation coefficient of 68%) [105]. Using the knowledge that the ER signal peptide is highly 

conserved within gene superfamilies, an alignment of sequences can alternatively be used to predict 

the ER signal peptide cleavage site. The determination of the mature peptide region in the precursor 

sequence is far more complicated, because we still have limited knowledge on most proprotein 

convertases specific cleavage sites [106]. A “rule of thumb” that has been used in some studies is to 

assume that a cleavage after all basic residues, i.e., arginine or lysine residues, surrounding  

the sequence region containing all cysteine residues, e.g., [107]. This simple strategy captures very 

approximately the cleavage sites of furin-like peptidases, leading to about 50% wrong predictions for 

Cone snail precursors of cysteine rich toxins, and cannot be used for toxins that do not have cysteine 
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residues. A more rigorous approach was implemented in ProP, which is an artificial neural network 

trained to recognize proprotein convertase cleavage sites [108]. ProP is highly accurate at recognizing 

furin-like protease cleavage sites, with 89% balanced accuracy on a large dataset, but has only  

an average 61% balanced accuracy when considering all types of proprotein convertases. Only 113 out 

of 291, i.e., 39%, of experimentally validated cleavages sites surrounding mature cone snail toxin 

regions correspond to furin-like protease cleavage sites, and therefore using ProP to annotate cone 

snail toxin transcripts leads to a significant number of wrong predictions. The number of furin-like 

cleavage sites in spider toxin transcripts is very low, and ProP achieved a sensitivity of 0% in a recent 

study focusing on spider toxins [109]. Two specific tools, ConoPrec [25] and SpiderP [109], have been 

developed to annotate cone snail and spider toxins, respectively. 

ConoPrec is available on the ConoServer website. Cone snail toxin precursor sequences can be 

provided to ConoPrec either as nucleic acid or protein sequences. This tool first determines ER signal 

peptide region using SignalP and then mature peptide regions using a set of regular expression 

corresponding to proprotein convertase cleavage sites [106]. These regular expressions match cleavage 

sites of the well-studied furin proteases as well as cleavage sites from other protease families,  

the specificity of which were only suggested from statistical analysis of alignments of precursor  

sequences [106]. The protease at the origin of some of these cleavages have not yet been identified, 

such as for the “EtoR” cleavages, which do not exist in mammals [106]. Some cleavages seem to be 

specific of some species, for example the “LtoR” cleavages for which a cone snail proprotein 

convertase was isolated [110]. ConoPrec achieved ~80% balanced accuracy for the identification of 

the 291 verified cone snail toxin cleavage sites in ConoServer, and it was also recently benchmarked to 

have similar balanced accuracy for analyzing spider toxin precursors [109]. The ability to achieve high 

accuracy in analyzing precursors from animals other than cone snails indicates that ConoPrec could 

potentially be used generally for all animal venoms. A current limitation of ConoPrec is that it only 

predicts cleavage sites of disulfide-rich toxin precursors. 

SpiderP is a recently developed tool that uses a support vector machine (SVM) to predict  

the location of proprotein convertase cleavage sites in spider toxin precursors [109]. The SVM of 

SpiderP uses Gaussian Radial Basis Function (RBF) kernels and was trained to recognize cleavage 

sites on an eight residue long window. A negative dataset of 8-mers was created using spider 

sequences that are not proprotein convertases. On an independent dataset of 46 spider toxin  

protein precursors, SpiderP achieved an impressive balanced accuracy of 90%. The absence  

of furin-like cleavage sites in spider precursors indicates that this tool will be less efficient  

at analyzing transcriptomes in animals other than spiders. The algorithm can be used on-line on  

the ArachnoServer website. 

Cone snail toxins are classified (i) in terms of gene superfamilies; (ii) according to the pattern of 

their cysteine residues in the primary sequence, which partly reflects the 3D fold of the mature toxins; 

and (iii) using their pharmacological activity, often named with a Greek letter, e.g., α-toxins, are 

blockers of nicotinic acetylcholine receptors. Classifying newly discovered toxins is an important task, 

and ConoPrec classifies cone snail toxin precursors into cysteine frameworks using their pattern of 

cysteines, and it assigns precursors to a gene superfamily if their ER signal peptide is more than 90% 

identical to that of any member of known cone snail gene superfamilies [25]. ConoPrec also 

determines the closest cone snail toxin in the ConoServer database, and this homolog toxin could be 
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used to suggest a pharmacological activity. Three PTMs can be predicted on the basis of specific  

sequence features, including pyroglutamylation of N-terminal glutamine, C-terminal amidation and  

γ-carboxylation of glutamates. 

The conserved ER signal peptide sequence provides definitive support for classifying toxin 

transcripts into gene superfamilies. Bioinformatics tools have been developed to classify cone snail 

toxins into gene superfamilies from partial sequences missing the ER signal peptide. ConoDictor and  

ConoSorter [52,70,71], which were introduced in the section describing the identification of toxins 

from transcriptomic data, determine the closest toxin gene superfamilies using pHMMs and/or 

generalized position specific scoring matrices. [71] Other studies have applied machine-learning 

approaches to extract the mature toxin sequence patterns associated with each cone snail gene 

superfamily. For example, a strategy using pseudo-amino acid composition and multi-class SVM 

achieved 88% correct predictions [111]. The method called IDQD uses an algorithm based on 

Mahalanobis discriminant instead of a SVM and achieved a balanced accuracy of 90% as well [112]. 

Another study used diffusion maps to optimize prediction features, and achieved an overall accuracy 

of 90% [113]. A recent study used an original approach by considering the similarities between small 

subsequences of each sequence compared to the total pool subsequences [114]. This study used SVM 

as a classifier and achieved a balanced accuracy of 98%, according to the authors. 

6. Phylogenies and Evolutionary Analysis 

Transcriptome analyses are often complemented by the establishment of molecular phylogenies 

between related toxin transcripts. Because structure and function tend to be conserved through 

evolution, related toxins display similar properties and a gradation of traits is expected to be associated 

with increasing phylogenetic distances between toxins [115]. For example, snake toxins displaying  

a three-finger scaffold have taxon-specific activity, and toxins belonging to distantly related branches 

display different receptor subtype or target specificity [116]. Establishing the phylogeny of toxin 

sequences could therefore help in determining their function. Describing the evolution of venoms 

relative to prey has also been used to inform the discovery of new toxins with interesting 

pharmaceutical activity [117]; for example, by focusing on studying the venom of fish-hunting cone 

snails [118], or on clades whose venom pool remained so far unexplored [119]. 

Studying the evolution of toxin scaffolds brings some understanding on how folds evolved relative 

to their function. A recent study of scorpion toxins proposed that the Von Willebrand factor C-domain 

fold (SV-SVC) is the ancestral fold from which the inhibitory cystine knot fold (ICK) evolved, which 

in turn gave rise to the disulfide-directed β-hairpin fold (DDH) [39]. Scorpion ICKs and DDHs have 

both been extensively studied for their function, and DDH toxins are more potent on human ryanodine 

receptors than ICK toxins, indicating that selection pressure results in more active compounds [39].  

The loss of cysteine residues 2 and 3 in a clade of snake three-finger toxins led to a greater potency on 

mammalian receptors, which correlated with change of diet and explosion of new toxins  

displaying this modification [116,120]. Hence, molecular phylogeny could help pharmacological  

investigations of animal toxins by suggesting the clades the most likely to contain pharmaceutically  

interesting compounds. 
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6.1. Building Phylogenetic Trees 

Classical phylogenetic analyses of protein or nucleic sequences require the generation of a multiple 

sequence alignment, the accuracy of which has a critical influence on the resulting phylogeny.  

Toxin sequences are often substantially divergent and generating a reliable multiple sequence 

alignment is difficult. Some authors use sequence alignments generated by software such as  

ClustalW [121], which was used to establish the phylogeny of some spider toxins [122] or  

Muscle [123], which was used to study the evolutionary relationships between some cone snail  

toxins [124]. Other authors rely on manual alignments [125]. A common strategy to reduce noise due 

to regions with unreliable alignment is to delete them from the multiple alignments. In some studies, all 

position displaying with gaps are deleted [122], and in some others only positions above a percentage of 

gaps are removed [39,116]. In the study of Sunagar et al. [39], two alignments of ICK and DDH 

sequences, corresponding to two different evolutionary scenarios, were considered, and the main 

conclusions from the two resulting but slightly different phylogenies globally agreed. 

The methods most frequently used to build phylogenetic trees are the neighbor-joining algorithm, 

maximum likelihood, maximum parsimony and Markov chain Monte Carlo Bayesian inference. 

MrBayes is [126] the most popular software for Bayesian inference. The Beast package can also be 

used for Bayesian inference [127]. Beast has a particular focus on calibrated phylogenies incorporating 

a time-scale [127], which was used to establish the phylogeny of four cone snail species based on  

the evolutionary history of gene duplications within a gene superfamily [19]. Maximum likelihood 

analyses of toxins were carried out using PhyML [128], PAUP* (Phylogenetic Analysis Using 

Parsimony) or MEGA (Molecular Evolutionary Genetics Analysis) [129]. MEGA was most often used 

for building maximum parsimony and neighbor joining trees in animal toxin studies. Substitution 

models were automatically selected using ModelGenerator [130], for protein and nucleic acid 

sequences, or ModelTest [131], for nucleic acid sequences only. 

6.2. Evolutionary Analysis 

Determining the positions under selective pressure could help in determining toxin functions.  

For example, positions under strong positive selections were shown to be important for selectivity and 

potency for some scorpion toxins [132]. CODEML of the PAML (Phylogenetic Analysis by Maximum 

Likelihood) package has often been employed to estimate several maximum-likelihood models that 

evaluate the ratio between non-synonymous to synonymous nucleotide substitution rates [133]. 

Another approach to compute this ratio is based on the Nei-Gojobori model [134], which is implemented in 

MEGA [129]. A ratio significantly greater than 1 indicates that the corresponding position is subject to 

positive selection (accelerated mutations, possibly for functional optimization); conversely, a ratio 

smaller than 1 indicates negative selection (slow mutation rates, possibly for maintaining function). 

Fry and colleagues have employed Bayesian statistic methods to access better estimates of selective 

pressure on a range of toxin families [39,84,116] using BEB (Bayes Empirical Bayes) [135] and 

FUBAR (Fast, Unconstrained Bayesian AppRoximation) [136]. They also used an algorithm that 

works at the protein level called TreeSAAP [137] and a range of other algorithms to test episodic 

diversifying selection of toxins and taking into account the influence of recombination events [39,116]. 
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7. Prediction of Toxin Structures and Activities 

The functional characterization of toxins requires significant experimental effort, and consequently 

the majority of known toxins have not been experimentally tested for activity. A common assumption 

is that toxins belonging to the same gene superfamily and displaying the same cysteine framework will 

have similar targets. Whereas this approach often proves to be correct, some toxins sharing high 

sequence similarity have also shown different specificities. For example the spider toxins  

κ-theraphotoxin-Ps1b and β/ω-theraphotoxin-Tp2a share 77% sequence identity, but κ-theraphotoxin-Ps1b 

acts on voltage-gated potassium (KV) and mechanosensitive channels [138,139], whereas  

β/ω-theraphotoxin-Tp2a is only active on voltage-gated sodium (NaV) and CaV channels [140,141].  

This section describes computational methods that could help assign or study toxin activity. 

Toxins seem to adopt a limited number of structural scaffolds and it was initially hypothesized that 

the target selectivity of toxins could be predicted from statistical analysis of toxin sequences for each 

scaffold [22]. An algorithm based on neighbor-joining clustering with annotated scorpion toxins 

precursors was designed to predict ion channel targets, i.e., specificity for NaV, KV, CaV or chloride 

channels [142], but this approach only resulted in 69% specificity. A more recent algorithm based on 

RBF network, which is a type of artificial neural network, achieved 89% accuracy at predicting the ion 

channel targeted by cone snail toxins [143]. This study used the frequency of di-peptide as features, 

and the most significant di-peptide sequences were selected based on the binomial distribution of their 

frequencies [144]. This approach offers hope that such bioinformatics approaches could accurately 

predict the type of targets of each animal toxin. Nevertheless, the prediction of toxin selectivity at the 

subtype level, which is the characteristic that generates most excitement about toxins, seems beyond 

reach using sequence information only. Indeed, a given toxin typically has a wide dynamic range of 

affinities, from picomolar to micromolar, on distinct molecular targets, tremendously complicating the 

prediction of toxin specificity through the sole use of amino acid sequence information. Predicting 

specificity for receptor subtypes requires detailed description of toxin molecular structures and interactions. 

7.1. Molecular Modeling of Toxin Structures 

Toxin structure-activity relationships studies aim to determine the structural features important for 

toxin target activity. Such studies proceed by comparing the 3D structures of wild-type and modified 

peptides to discover shared structural motifs that could be linked to function [115,122]. For example, 

cystine knot spider toxins that interact with the voltage sensors of ion channels display an important 

hydrophobic loop between their first two cystine residues [145] and this knowledge was used to 

suggest the function of newly discovered toxins [122]. Other structural features measured on structures 

are the accessible surface area of each residue and the electrostatic potential created by the toxins in  

a water environment, which could be computed by solving the Poisson–Boltzmann equation. The 3D 

structures of a large number of toxins have been solved by nuclear magnetic resonance (NMR), and 

these structures serve as templates to build homology models [39,116,122,146]. Most homology 

models were built using Modeller [147] or Swiss-Model (http://swissmodel.expasy.org/).  

In the absence of homologous toxins with experimentally determined structures, some studies attempted  

ab initio structural modeling. For example, the I-TASSER (Iterative Threading ASSEmbly Refinement) 
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server [148] was used to model the scorpion toxin MeuTXK(beta)5-NHD(S) [115], and the PEP-FOLD 

server [149] was recently used to model the structure of cone snail toxin Vt3.1 [150]. I-TASSER 

provides a confidence score that can be used to assess if toxins at least adopt similar folds, and this 

score was used recently to suggest the fold adopted by three box jellyfish toxins [151]. In any 

modeling approach, it is important to remember that any given structural motif can be displayed by 

proteins having different activities; for example, the cystine knot scaffold is used by some  

ω-conotoxins to block calcium channels [152]; some κ-conotoxins to block potassium channels [153]; 

and some spider toxins to block sodium channels [154]. 

7.2. Molecular Modeling of Complexes with Molecular Targets 

The molecular targets of toxins are typically very large transmembrane proteins, and there is 

currently only one crystallographic structure of a toxin in complex with its real molecular target:  

The tarantula psalmotoxin bound to a chicken acid-sensing ion channel [155]. Some structures of 

complexes between toxins and some structural surrogates have been determined experimentally [156]. 

Indeed, some cone snail and snake toxins have been co-crystallized with mollusk acetylcholine-binding 

proteins (AChBPs), which are structural homologs of the ligand-binding domain of nicotinic acetylcholine 

receptors (nAChRs) [157]. Molecular modeling is routinely used to gain insights on the molecular 

interactions at the origin of toxin affinity and specificity. The first step of this process is the structural 

modeling of the molecular targets, often performed by homology modeling based on some key experimental 

structures, including the crystal structure of rat KV1.2 [158], the crystal structure of bacterial sodium 

channel NaVAB [159], the electron microscopy structure of torpedo nAChR [160], the crystal structures 

of AChBPs [157] or the crystal structure of chicken ASIC1 channel [161]. Toxins often bind to a specific 

state of their molecular target, and the modeling of this state could be particularly difficult, especially if no 

relevant structural template is available, e.g., toxins binding to specific states of voltage-gated ion channels. 

A determination of the binding mode of toxins binding to nAChR subtypes can confidently be 

modeled by homology on the basis of the conserved binding modes of homologs crystallized in 

complex with AChBP [162–167]. Some toxins are protease inhibitors and the modeling of their 

complexes, e.g., reference [168], can also be made confidently because of the large number of 

crystallographic structures of proteases. In the absence of structural homologs, molecular docking and 

different types of molecular dynamics (MD) simulations have been employed, as recently reviewed in 

detail [169]. The accuracy of such approaches greatly benefits from additional experimental data on 

the interaction, e.g., mutational data on both toxins and receptors, cross-linking experiments or 

interaction studies by NMR. Docking methods combine theoretical and heuristic techniques to produce 

a large number of docked “poses”, which are then clustered and ranked on the basis of a scoring 

function or using knowledge from experiments. The docking software Autodock [170], Gold 

(Statistical Innovations Inc., Belmont, MA, USA), Hex, ZDOCK [171] and HADDOCK [172] are 

among the docking algorithms the most frequently used for toxin binding studies. The ZDOCK scoring 

function allows some structural overlap at the interface, accounting for conformational variations at  

the interface. This method was successfully used to predict the interaction of mambalgin-2 toxin with 

ASIC1 channels, the fuzziness of the docking procedure allowing docking to the desensitized state 

even if the toxins is known to preferentially bind the closed state of the channel [173]. 
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All-atom MD simulations are frequently employed to refine the conformation of models of 

molecular complex resulting from docking as well as to discover the binding modes of toxins. Because 

toxin/target systems typically have more than a hundred thousand atoms, the simulation times are limited 

to 10–100 ns, which is too short to observe spontaneous binding [169], except in some rare cases [174]. 

The use of biasing potentials (for example, harmonic restraints to maintain the toxin at proximity of  

the hypothesized binding site) allowed several studies to successfully propose some toxin binding 

modes [174,175]. An interesting and recent study used coarse-grained (CG) MD simulations instead of 

the standard all-atom MD to simulate the interactions between the spider toxin HaTx1 and a human 

KV2.1 [176]. During a 3 μs un-biased simulation, the HaTx1 first embedded in the phospholipid 

membrane bilayer and then interacted with the voltage-sensing domain of the channel [176]. CG 

representation substantially reduces the number of atoms in the simulated system, and simulations 

using CG force fields can consequently reach considerably longer time scales than all-atom MD 

simulations. Brownian dynamics is another type of simulation that has been used to predict the binding 

mode of several toxins without imposing any arbitrary restraints, and this technique was reviewed 

recently [169]. In this approach, the molecules are maintained partially rigid and water molecules are 

represented implicitly using the Generalized Born model, dramatically decreasing the number of atoms 

in the system [177]. Yu et al. [178] used Brownian dynamics to suggest that the six toxins AgTx2, 

ChTx, KTx, MgTx, NTx, and Pi2 have similar binding modes when bound to KV1.3. The binding 

modes discovered by docking and MD could be experimentally validated by testing the activity of 

toxin variants, as suggested from the molecular models [163]. Another common approach to assess  

the validity of the resulting molecular model is to evaluate if it could be used to qualitatively explain 

mutation studies [164,167,174] or to reproduce absolute binding energies or relative mutational 

energies that have been measured experimentally [162,163,178]. 

7.3. Prediction of Toxin Binding Affinities and Specificities 

As mentioned previously, the current major bottleneck in toxin research is the determination of  

the specificity of individual toxins, and several computational approaches that use extensive MD 

simulations to predict binding affinity could potentially help solve this problem. The most accurate 

method to quantitatively predict the binding affinity between peptides and proteins is the computation 

of potential of mean force (PMF) along unbinding paths sampled using umbrella sampling MD 

simulations [179]. Two recent reviews present, in detail, the use of this technique for studying  

the binding of animal toxins to ion channels [169,180]. The umbrella sampling procedure consists of 

carrying out a series of MD simulations starting at different coordinates along the unbinding pathway. 

The average energy as a function of the reaction coordinate, i.e., the PMF, is then computed for each 

simulation, and the PMFs are finally combined into one using the weighted histogram analysis method 

(WHAM) [181]. In a recent study using this technique, the predicted dissociation constants of  

the toxins Css4 and Cn2 from a NaV were 20 nM and 70 nM, which are comparable to  

the experimental dissociation constants of 1 nM and 40 nM, respectively [182]. In general,  

the dissociation constants predicted using the PMF/umbrella sampling method are within one or two 

orders of magnitude of experimental values [169]. An alternative technique used to build the PMF 

consists of using the Jarzynski equation to analyze a simulation in which unbinding pathways are 
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rapidly sampled using a pulling potential [183]. When applied to a system comprising a toxin and  

a potassium channel, the method was found to be less sensitive and required more simulations to 

converge than the weighted histogram method [184]. Another study that focused on a complex 

between conotoxin ImI and a nAChR used a slower pulling speed and obtained at reasonable 

computational cost a one fold difference between the predicted (−70 kcal/moL) and experimental  

(−9 kcal/mol) binding free energies [164]. 

The PMF-based methods are computationally intensive, and other less accurate methods need to be 

employed to rapidly screen large libraries of toxins. One popular approximation requires sampling  

the conformational ensembles in the unbound and bound states only, and the binding energy is 

approximated by the molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA)  

function [185]. This method was employed to study a system comprising conotoxin ImI and nAChR 

α7, and the predicted mutational energies of 16 ImI variants correlated with experimental values with  

a R2 correlation coefficient of 0.74, which is considered as accurate [162]. MM/PBSA was also 

successfully employed in several other in silico mutational studies of toxin/target systems [163,186]. 

For example, it was recently used to determine the binding sites of the analgesic conotoxin Vc1.1 on 

the α9α10 nAChR subtype, quantitatively predicting the impact of mutations that were later used to 

validate the binding mode experimentally [163]. The MM/PBSA method has a low computational cost 

but can potentially produce large errors depending of the simulation protocol [187]. We anticipate that 

this type of approach could be used to predict the subtype specificity of animal toxins, even if  

the accurate predictions of binding affinities are beyond its scope. 

8. Future Perspective: Integrating the Biology of Venoms and Prediction of Toxin Activity 

Bioinformatics is important at every step of venomics-based discovery. Databases orient venomics 

research by providing a concise overview of current knowledge on toxins, highlighting the venomous 

species or the type of toxins that have higher potential to become drugs, and suggesting what venomics 

fields are still terra incognita. In recent years, specific approaches have been invented to mine 

combined data from transcriptomics and proteomics, dramatically accelerating the pace of toxin 

discovery. These new approaches trade accuracy for speed, and we expect future improvements of  

the quality of experimental data as well as of the reliability assessment of results produced by 

venomics specific software. Our knowledge of venoms has rapidly expanded, and our estimate of  

the number of toxins has increased even more rapidly. We indeed now realize that venom biology is 

important and complex, as exemplified by some observations of extreme intra-specimen venom 

variability. We now also comprehend the complexity of venom chemistry, especially since it is now 

clear that venoms contain many more peptide toxins than there are genes encoding toxins in  

the genome. Currently, the description of these types of diversities is not well managed by venomics 

databases and bioinformatics tools. The aim of venomics efforts is to rapidly discover peptides with 

pharmaceutical activity, but paradoxically the venomics “pipeline” does not incorporate any new 

experimental approach to rapidly assess peptide functions. Computational approaches to predict  

the function of toxins already exist but applying them to the study of all toxins is not practical. Indeed, 

the most accurate computational methods to predict toxin affinities require a computation time higher 
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than measuring activity by electrophysiology. Venomics is in great need of new molecular modeling 

and bioinformatics tools able to suggest the molecular target specificity of toxins. 
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