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Abstract: The venom from the ectoparasitoid wasp Nasonia vitripennis (Hymenoptera: 

Pteromalidae) contains at least 80 different proteins and possibly even more peptides or other 

small chemical compounds, demonstrating its appealing therapeutic application. To better 

understand the dynamics of the venom in mammalian cells, two high-throughput screening 

tools were performed. The venom induced pathways related to an early stress response and 

activated reporters that suggest the involvement of steroids. Whether these steroids reside 

from the venom itself or show an induced release/production caused by the venom, still 

remains unsolved. The proinflammatory cytokine IL-1β was found to be down-regulated 

after venom and LPS co-treatment, confirming the anti-inflammatory action of N. vitripennis 

venom. When analyzing the expression levels of the NF-κB target genes, potentially not only 

the canonical but also the alternative NF-κB pathway can be affected, possibly explaining 

some counterintuitive results. It is proposed that next to an NF-κB binding site, the promoter 

of the genes tested by the PCR array may also contain binding sites for other transcription 

factors, resulting in a complex puzzle to connect the induced target gene with its respective 

transcription factor. Interestingly, Nasonia venom altered the expression of some drug 

targets, presenting the venom with an exciting therapeutical potential. 
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1. Introduction 

Hymenopteran parasitoids develop at the expense of other arthropods, ultimately killing their host. 

The ectoparasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae) preferably parasitizes pupae 

from flesh flies (Sarcophagidae) and blow flies (Calliphoridae). After locating a suitable host, the female 

wasp injects venom inside the fly pupa and lays her eggs in the space between the pupa and the puparium. 

The injection of this complex mixture of venom compounds prepares the host to present the best possible 

environment for the wasp offspring to survive. Host physiology is altered, in which the host development 

is arrested, its immune system is suppressed, and host metabolism is modified so that it is synchronized 

with the development of parasitoid larvae. 

The venom from N. vitripennis is known to contain (at least) 80 different proteins [1,2], and possibly 

even peptides and other bio-molecules. Over the past century, natural products (NPs) have been the 

source of inspiration for the majority of FDA approved drugs. This is highlighted by the fact that nearly 

50% of all drugs in clinical use are of natural product origin [3]. These interesting chemicals are derived 

from the phenomenon of biodiversity in which the interactions among organisms and their environment 

formulate the diverse complex chemical entities within the organisms that enhance their survival and 

competitiveness [4]. The therapeutic areas of infectious diseases and oncology have benefited from the 

complex molecular scaffolds found in NPs of which the chemical diversity is unmatched by synthetic 

molecules. Animal venoms are a rich source of NPs that have evolved high affinity and selectivity for a 

diverse range of biological targets, especially membrane proteins such as ion channels, receptors, and 

transporters. Therefore, venomics has emerged as an important addition to modern drug discovery  

efforts [5]. Snake venom is a treasure house of toxins that contributes significantly to the treatment of 

many medical conditions and presents a great potential as an anti-tumor agent [6]. The venom and its 

constituents from honey bees have many therapeutic applications ranging from anti-arthritis and  

pain-releasing to anti-cancer effects [7]. Venoms from parasitoid wasps contain a staggering amount of 

toxins, and because they can manipulate cell physiology in diverse ways [8–10], their therapeutic 

potential is interesting to investigate. 

Although the natural hosts of N. vitripennis wasps are insect pupae, one might wonder how the 

venom-induced physiological alterations would translate to a mammalian system. The concept “bugs as 

drugs” emphasizes the interest in mining insects for medicinal drugs [11]. With the intent to explore a 

possible medicinal future, we performed a wide screening of the effects of this Nasonia venom on 

mammalian cellular signaling with high-throughput arrays that are designed for use with mammalian 

cells. However, to further investigate the specific interaction mechanism, Drosophila melanogaster 

could be used as a model system, which is less of a leap from the Nasonia-host insect system. 

Cell-based assays provide a high-performance tool due to their exceptional sensitivity, 

reproducibility, specificity, and signal-to-noise ratio, for assessing the functions of natural products 

under physiological cellular conditions. By screening multiple pathway activities simultaneously, 

relevant pathways for further analysis can quickly be identified. Therefore, possible regulation by the 

complete venom mixture of 45 reporters that represent transcription factors (TFs) that play a central role 

in regulating gene expression, orchestrating a host of cellular processes, and are associated with many 

human diseases were investigated using a reporter array (Cignal™ 45-Pathway Reporter Array, 

SABiosciences, Frederick, MD, USA). Of the 45 pathways, four main research areas were targeted, 
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including cancer, immunity, development, and toxicology. By reverse transfecting human embryonic 

kidney (HEK293T) cells into multi-pathway reporter arrays, the activity of 45 pathways was screened 

upon N. vitripennis venom treatment. Transcriptional activity is monitored by the dual luciferase 

technology that allows for quantification of the degree of activation of each particular signaling pathway 

in a 96 well format By analyzing the effects of the venom on multiple cellular signaling pathways, new 

directions for further investigations with possible biomedical application could be appointed. 

Recently, N. vitripennis venom was shown to exert a suppressive action on the nuclear factor  

kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in murine macrophages [8]. This 

important TF regulates a large number of target genes involved in multiple cellular processes including 

inflammation, immunity, and stress responses [12]. Dysregulation of this signal transduction pathway 

has been associated with inflammatory or autoimmune diseases [13] and cancer [14]. Previous 

investigations showed that lipopolysaccharide (LPS)-induced NF-κB activation in Raw264.7 

macrophages resulted in an inhibition of the inflammatory response when the cells were incubated with 

N. vitripennis venom. By further investigating the interruption of this crucial immune pathway by the 

venom, it appeared that next to the suppression of the NF-κB cascade also the mitogen-activated protein 

kinase (MAPK) and glucocorticoid receptor (GR) signaling pathways were affected. Therefore, in order 

to fully explore venom activities on intracellular signaling after an immune activation, TNFα-induced 

HEK293T cells were incubated with N. vitripennis venom and also analyzed with the reporter array. 

In 1999, Pahl listed over 150 target genes known to be expressed by the active NF-κB transcription 

factor [15]. To date, this list has been extended by more than 250 extra investigated NF-κB target genes 

and even more than 300 genes are predicted by computer-based methods to have composite  

NF-κB regulatory sites [16]. The majority of proteins encoded by NF-κB target genes participate in the 

host inflammatory and immune responses, which include cytokines and chemokines, as well as receptors 

required for immune recognition, proteins involved in antigen presentation, acute phase proteins, and 

cell adhesion molecules. Many of them are induced by exposure to a wide variety of bacteria, as well as 

hosts of viruses and their respective products. NF-κB, however, is involved in the control of the 

transcription of many genes whose functions extend beyond the immune response, but are involved in 

more general stress responses [17]. Various physiological stress conditions such as liver regeneration 

and hemorrhagic shock can activate NF-κB [18,19]. Also physical stress, in the form of irradiation as 

well as oxidative stress to cells, induces NF-κB, that in turn activates a large variety of stress response 

genes [20]. In fact, NF-κB relays the information of an imminent stress and at the same time enacts a 

response by promoting the transcription of genes whose products alleviate the stress condition. The 

human body is also exposed to environmental hazards and therapeutic drugs, activating NF-κB that in 

turn activates its target genes including many cell surface receptors [21]. Several stimuli, among them 

the cytokine TNFα, can lead to NF-κB activation that exerts anti-apoptotic activities. On the other hand, 

there is ample evidence for apoptosis-promoting functions of NF-κB as well [22,23]. The nature  

of the apoptotic stimulus determines the pro- or anti-apoptotic function of NF-κB. Activation of  

NF-κB can lead to the transcriptional induction of various TF genes, even members of their own  

Rel/NF-κB/IκB family. 

The enormous amount of NF-κB target genes can be categorized in the different groups mentioned 

above, which has been done for the 84 tested genes in the NF-κB Signaling Targets PCR Array. To gain 

broader understanding of the effects of N. vitripennis venom on the immune response, the expression of 
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these key genes responsive to NF-κB signal transduction were analyzed after incubation of Raw264.7 

macrophages with this venom mixture. Additionally, alterations of specific NF-κB signaling target genes 

with a role in inflammatory diseases and oncology could hint at potential therapeutic lead compounds 

present in the venom. 

2. Results and Discussion 

2.1. Effect of Venom on Mammalian Intracellular Signaling 

To investigate the effects of N. vitripennis venom on mammalian intracellular signaling, we screened 

a wide range of signaling pathways for their regulation after 8 h incubation with venom. We utilized a 

commercially available array (Cignal™ 45-Pathway Reporter Array, SABiosciences, Frederick, MD, 

USA) on HEK293T cells. These cells are easily and efficiently transfected with PEI transfection reagent. 

By comparison of two reporter constructs, the pathway-focused TF-responsive Firefly luciferase reporter 

and the constitutively expressing Renilla luciferase construct, activated pathways are identified. This 

dual luciferase technology allows for quantification of the degree of activation of each particular 

signaling pathway in a 96 well format. Since the venom from N. vitripennis was found to suppress the 

NF-κB pathway in fibrosarcoma cells when induced with tumor necrosis factor alpha (TNFα) [8],  

we also used TNFα-induced HEK293T cells in this reporter array to investigate the effects of the venom on 

intracellular signaling when the immune system in these cells is activated. All conditions were performed 

in four replicates and internal positive and negative controls on all plates were fulfilled. 

The significant values with a fold change higher than 2-fold are summarized in Table 1 for the 

following three comparisons: venom-treated versus untreated cells, TNFα-treated versus untreated cells, 

and venom and TNFα co-treated versus TNFα-treated cells. The incubation of cells with N. vitripennis 

venom caused an increased activation of four reporters compared to control cells: the AARE, LXR, 

MEF2 and RXR reporters. The reporter that showed the highest up-regulation was the amino acid 

deprivation (AARE) reporter which is known to be an early response upon stress [24]. Malnutrition, 

various pathological situations, and xenobiotic toxins are able to alter amino acid availability which can 

result in a deficit of certain amino acids and increased uncharged transfer RNAs (tRNAs). Following 

amino acid deprivation, the general control non-derepressible-2 (GCN2) kinase is activated upon 

detection of these accumulated free tRNAs and phosphorylates the translation initiation factor 

(eukaryotic initiation factor 2a), thereby attenuating protein synthesis. Since the endoplasmic reticulum 

(ER) regulates the production and oxidative folding of proteins, this response may prevent further 

accumulation of misfolded proteins and alterations in redox state [25]. Furthermore, phosphorylated 

eIF2a enhances the translation of several mRNAs, including ATF4 which is rapidly induced under  

cell-stress conditions, such as glutathione depletion and oxidative stress. ATF4 is an important regulator 

of several ER stress target genes, amino acid transporters and antioxidants thereby preventing further 

accumulation of reactive oxygen species (ROS) [26]. Interestingly, free amino acids (FAA) were found 

to be up-regulated in the natural host after parasitization by N. vitripennis [27]. They suggested that the 

larval parasitoids use these FAA as a source of direct nutrition. Whether both processes concerning the 

elevation of amino acids in mammalian cells and the insect hosts can be linked together still needs to  

be elucidated. 
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Table 1. Effect of N. vitripennis venom in HEK293T cells, either induced with TNFα or not, 

on the transcriptional activity of reporters of 45 different pathways. Fold regulation (FR) of 

all tested reporters are presented for 3 different comparisons. When p > 0.05, insignificant 

values are between brackets; when |FR| > 2, values are in bold. 

Pathway reporters 
FR  

TNFα-treated 
versus untreated 

FR  
Venom-treated 

versus untreated 

FR  
TNFα- and venom-treated 

versus TNFα-treated 

AARE reporter 1.601 4.081 4.555 
AR reporter −2.613 (1.291) 7.814 

C/EBP reporter (1.274) 1.925 2.507 
CRE reporter 1.779 (1.457) 2.020 
E2F reporter 1.001 (1.012) 3.560 
p53 reporter (2.569) (3.867) 4.177 

EGR1 reporter (−0.911) (1.548) 2.228 
HSR reporter (−0.901) (1.311) 3.999 
GLI reporter −3.073 (−0.240) 7.556 
IRF1 reporter −1.188 (1.287) 2.568 
LXR reporter (−0.342) 2.201 1.622 

MEF2 reporter −1.192 2.023 2.849 
NF-κB reporter 100.640 (−1.272) (1.145) 
Oct4 reporter −2.336 (−1.436) 3.007 
PR reporter 10.676 (−0.126) (1.718) 

RARE reporter (−0.702) (−0.048) 2.3887 
RXR reporter (−0.370) 2.539 (1.379) 

Two other reporters up-regulated by the venom are the LXR and the RXR reporter, that measure the 

transcriptional activity of the Liver X receptor and the Retinoid X receptor, respectively. The natural 

ligands of LXRs are oxygenated forms of cholesterol, while RXRs are activated upon binding with 

vitamin A, derivatives, and rexinoids. The regulation of both receptors through binding with small 

chemical compounds that can pass biological membranes, could imply that compounds other than 

proteins are present in the venom, which can migrate through membranes and bind directly to TFs. 

Today, nothing is known about such compounds in the venom of N. vitripennis, presenting us with an 

unexplored and unexploited source of potentially useful compounds for medicine to further investigate. 

When HEK293T cells were induced for 8 h with TNFα, the activation of two reporters was 

significantly up-regulated, while three were down-regulated compared to control cells. The NF-κB 

reporter was no less than 100 times up-regulated, showing the strong activation of this immune cascade. 

When cells were co-incubated with TNFα together with venom from N. vitripennis, no significant 

alteration in transcriptional activity could be observed compared to cells simply induced with TNFα.  

In L929sA cells however, a significant inhibition of the NF-κB activation was noted by the venom [8]. 

This can possibly be explained by the use of different cell lines, HEK293T cells instead of L929sA cells, 

or other induction times, 8 h instead of 6 h. 

When cells were incubated with TNFα together with venom, no less than 13 of the 45 tested pathways 

showed significant differential transcriptional activity, compared to cells that were only induced with 

TNFα. Interestingly, the AR and the GLI reporter, that show down-regulated transcriptional activity after 
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TNFα treatment, have the highest up-regulated activity (more than seven times higher) when  

co-incubated with N. vitripennis venom. The androgen receptor (AR) is a nuclear receptor that is 

activated by binding androgenic hormones, testosterone, or dihydrotestosterone, again hinting at possible 

presence of small chemical compounds in the venom. The GLI reporter is designed to measure hedgehog 

signaling activity. Interestingly, the sonic hedgehog signaling pathway plays an important role in the 

development of cancer, specifically brain and skin cancer [28]. Analysis of the reporter array also 

revealed that several reporters, like the p53 and HSR reporter involved in stress responses were affected 

by the venom when co-incubated with TNFα for 8 h. In addition, microarray on parasitized insect hosts 

also revealed that transcripts involved in stress, cell death, detoxification, and the MAPK/JNK pathways 

were affected by the venom of N. vitripennis [29]. 

Other interesting reporters involved in inflammation and the immune response showed significant 

alterations in transcriptional activity after co-treatment of HEK293T cells with TNFα and N. vitripennis 

venom. The Interferon Regulatory Factor 1 (IRF1) reporter for instance, is a member of the interferon 

regulatory TF family and serves as a transcriptional activator of interferon alpha, beta, and gamma. IRF1 

is known to regulate host defense against pathogens, tumor prevention, and development of the immune 

system. Accordingly, in the natural host, the venom is known to allow or even stimulate certain 

antimicrobial defenses of the host next to the expected interference of the venom with host melanization 

and coagulation responses [30]. 

The reporter arrays revealed that the venom from N. vitripennis has a wide-spread impact on multiple 

mammalian signaling cascades. However, it would be interesting to investigate what the effect would be 

on transcriptional activity when separate venom compounds would be used to induce the cells. 

Therefore, not only proteins or peptides, but also small chemical compounds like amines or steroids that 

are possibly present in the venom from N. vitripennis, should be isolated from the complete venom 

mixture and further investigated for their effects on the cellular signaling cascades that were found to be 

targeted by the complete venom. 

2.2. Effect of Venom on NF-κB Signaling Targets 

Since previous results on L929sA cells showed clear anti-inflammatory activity of the venom [8],  

we decided to dig deeper in the NF-κB regulating effects of the N. vitripennis venom. Therefore, a PCR 

array experiment was set up to evaluate the expression of NF-κB target genes under different conditions. 

We decided to use Raw264.7 macrophage cells that show activation of the NF-κB signaling cascade 

when stimulated with LPS. We treated these cells with N. vitripennis venom, together with or without 

LPS induction. Significant relative expression of 84 genes was evaluated by RT-qPCR as presented in 

Table S1. The genes that show a significant differential expression of more than 2-fold higher or lower 

in three different comparisons are summarized in Table 2 in which the NF-κB target genes are classified 

according to their properties and/or functions. 
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Table 2. Effect of N. vitripennis venom in Raw264.7 cells, either induced with 

lipopolysaccharide (LPS) or not, on NF-κB signaling targets. Fold regulation of all tested 

NF-κB signaling target genes are presented for 3 different comparisons. When p > 0.05, 

insignificant values are between brackets; when |FR| > 2, values are in bold.  

(Abb = abbreviation; FR = fold regulation). 

NF-κB signaling target genes Abb 

FR  

LPS-treated 

versus 

untreated 

FR  

venom-treated 

versus 

untreated 

FR  

LPS- and venom-

treated versus 

LPS-treated 

Cytokines/chemokines and their modulators 

Chemokine (C–C motif) ligand 22 Ccl22 917.635 (1.032) (−1.532) 

Chemokine (C–C motif) ligand 5 Ccl5 1254.881 (2.107) (1.750) 

Chemokine (C–C motif) receptor 5 Ccr5 1.625 (1.875) (2.346) 

Chemokine (C–X–C motif) ligand 10 Cxcl10 483.835 (2.254) (−1.025) 

Chemokine (C–X–C motif) ligand 3 Cxcl3 111.806 (3.484) (34.595) 

Interleukin 15 Il15 (3.325) (2.527) 13.408 

Interleukin 1α Il1a 1273.082 (2.414) (−1.242) 

Interleukin 1β Il1b 15,647.327 5.885 −4.392 

Interleukin 1 receptor antagonist Il1rn 26.052 (3.074) (−1.145) 

Interleukin 6 Il6 525.452 (2.419) −1.472 

Lymphotoxin A Lta 25.056 (3.037) (1.094) 

Tumor necrosis factor Tnf 36.399 (−1.244) −1.193 

Immunoreceptors 

CD40 antigen Cd40 68.505 9.933 (4.098) 

CD80 antigen Cd80 3.113 (2.621) (2.723) 

CD83 antigen Cd83 (3.545) (2.949) 29.395 

Tumor necrosis factor receptor superfamily, member 1b Tnfrsf1b 22.445 (1.469) (1.708) 

Proteins involved in antigen presentation

Complement component 3 C3 3.651 (2.035) (1.175) 

Complement factor B Cfb 14.677 −(1.007) −4.199 

Cell adhesion molecules 

Intercellular adhesion molecule 1 Icam1 (1.405) (1.212) 17.631 

Vascular cell adhesion molecule 1 Vcam1 (−1.148) (1.387) 3.481 

Acute phase proteins 

Coagulation factor III F3 41.407 (4.466) (−1.979) 

Stress response genes 

NAD(P)H dehydrogenase, quinone 1 Nqo1 (−1.247) 24.637 (3.014) 

Prostaglandin-endoperoxide synthase 2 Ptgs2 698.790 (1.715) (−1.605) 

Superoxide dismutase 2, mitochondrial Sod2 4.919 −1.052 (1.301) 

Regulators of apoptosis 

B-cell leukemia/lymphoma 2 related protein A1a Bcl2a1a 33.896 5.027 (3.713) 

Bcl2-like 1 Bcl2l1 2.677 (1.255) (1.275) 

Baculoviral IAP repeat-containing 2 Birc2 (−1.428) (1.513) 6.288 

Baculoviral IAP repeat-containing 3 Birc3 1.874 (1.558) 3.599 

Fas (TNF receptor superfamily member 6) Fas 11.621 3.261 6.857 

Tnf receptor-associated factor 2 Traf2 (−1.056) 1.983 5.107 
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Table 2. Cont. 

NF-κB signaling target genes Abb 

FR  

LPS-treated 

versus 

untreated 

FR  

venom-treated 

versus  

untreated 

FR  

LPS- and venom-

treated versus  

LPS-treated 

Growth factors, ligands and their modulators 

Colony stimulating factor 1 (macrophage) Csf1 35.675 55.854 117.792 

Colony stimulating factor 2 (granulocyte-macrophage) Csf2 530 (1.548) (−1.436) 

Colony stimulating factor 3 (granulocyte) Csf3 15,821.676 5.486 −31.724 

Platelet derived growth factor, B polypeptide Pdgfb 3.395 (1.479) (1.092) 

Transcription factors and regulators 

Interferon regulatory factor 1 Irf1 2.945 (2.039) 13.953 

Microphthalmia-associated transcription factor Mitf (−1.549) (1.434) 7.247 

Myelocytomatosis oncogene Myc 25.814 17.898 (8.083) 

Nuclear factor of kappa light polypeptide gene enhancer in  

B-cells 1, p105 
Nfkb1 4.526 (1.599) 3.399 

Nuclear factor of kappa light polypeptide gene enhancer in  

B-cells 2, p49/p100 
Nfkb2 (1.368) (1.001) 10.255 

Nuclear factor of kappa light polypeptide gene enhancer in  

B-cells inhibitor, alpha 
Nfkbia 7.963 (1.102) (1.508) 

Reticuloendotheliosis oncogene Rel 2.664 (1.121) 3.864 

Avian reticuloendotheliosis viral (v-rel) oncogene related B Relb (1.334) 3.591 8.675 

Signal transducer and activator of transcription 1 Stat1 2.855 −1.257 (1.111) 

Signal transducer and activator of transcription 3 Stat3 1.517 −1.104 −1.444 

Miscellaneous 

Cyclin D1 Ccnd1 −5.051 −2.667 −7.439 

Growth arrest and DNA-damage-inducible 45 beta Gadd45b 8.330 (2.325) 10.985 

Matrix metallopeptidase 9 Mmp9 17.819 (1.635) −5.805 

LPS stimulation increased transcription of 36 NF-κB target genes in the macrophage cells and  

down-regulated the expression level of one target gene. The highest up-regulated genes can be found in 

the groups of the cytokines/chemokines, stress response genes and growth factors. Several TFs, 

including TFs that take part in the NF-κB cascade, show an elevated transcription level. Previous results 

showed that RT-qPCR on Raw264.7 cells stimulated with N. vitripennis venom resulted in no significant 

effect in mRNA levels of NF-κB inhibitor alpha (IκBα) and A20, that are both early response genes [8]. 

The NF-κB Signaling Targets PCR Array resulted in one NF-κB target gene that showed down-regulated 

expression, and nine that were up-regulated after venom treatment. Remarkable is the up-regulation of 

Relb expression by venom treatment, which could possibly lead to further elevation in expression of 

other NF-κB target genes. On the other hand, the reporter array performed after venom treatment on 

HEK293T cells resulted in the induction of several TFs, like ATF2/3/4 and MEF2 (see Table 1) 

potentially attributing to the up-regulated expression levels shown here. 

Before cells are stimulated with LPS, NF-κB subunits like p50 and p52 can already be bound to  

NF-κB binding sites in the promoters of a number of genes, exhibiting a certain range of expression 

levels [31]. After cellular stimulation with LPS, other NF-κB family members enter the nucleus and bind 
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to those genes and to other genes, leading to enhanced gene transcription. N. vitripennis venom could 

influence this process before cells are stimulated with LPS resulting in the down-regulated expression 

level of NF-κB target gene, cyclin D1. 

Transcription of the stress response gene, NAD(P)H dehydrogenase quinone 1 (Nqo1), is nearly  

25 times up-regulated after venom treatment. This gene has been demonstrated to play an important role 

in protecting cells against oxidative stress [32]. Venoms of several animals, including the parasitoid 

wasp Aphidius ervi, are known to cause oxidative stress in their host organism [33,34]. The elevation of 

the Nqo1 gene expression after venom treatment in macrophage cells could therefore suggest a protective 

function. Remarkably, the venom induced transcription of two growth factors, colony stimulating factor 

1 and 3 (Csf1 and Csf3) that stimulate the bone marrow progenitor cells to differentiate into macrophages 

or granulocytes, respectively. These proteins have an important role in innate immunity and 

inflammation [35]. Especially transcription of Csf1 is highly up-regulated (nearly 56 times), which even 

doubles when the cells are immune challenged with LPS. 

However, most differentially expressed genes could be observed when venom was added to the 

macrophage cells, combined with an immune challenge of LPS. Transcription of two of the NF-κB target 

genes, tested by the NF-κB Signaling Target PCR Array, were previously tested by RT-qPCR: IκBα and 

interleukin 6 (IL-6) [8]. Although the suppression of IκBα transcription could not be validated in this 

PCR Array experiment, the 2-fold inhibition of IL-6 transcription on the other hand could be confirmed 

by a 1.5-fold down-regulation in the PCR Array. Transcription of the cytokine IL-1β, produced by 

activated macrophages and an important mediator of inflammatory response, shows a nearly 6-fold  

up-regulation after venom-treatment, while being 4.3 times down-regulated after co-treatment of venom 

and LPS. Apparently, the cells need to be immune challenged, in this case by LPS, in order for the venom 

to be able to suppress the inflammatory response. 

Previous experiments focused on the inhibitory effect of venom on the canonical NF-κB pathway [8], 

in which IκB kinase beta (IKKβ) phosphorylates IκBs at N-terminal sites to trigger their  

ubiquitin-dependent degradation and induce nuclear entry of RelA:p50 dimers [36]. The remark has to 

be made that aside from this classical NF-κB signaling pathway, an alternative non-canonical signaling 

cascade has been identified that activates NF-κB signaling based on processing of the NFκB2:p100 

precursor protein by IKKα [37]. In this alternative NF-κB pathway, the stimulation by LPS (among 

others) results in the nuclear translocation of the dimer RelB:p52 [38]. While many target genes are 

shared between the canonical and the non-canonical pathways, some promoters of NF-κB target genes 

are only recognized by RelB:p52 dimers and not by RelA:p50 dimers [31,39]. Several NF-κB target 

genes can bind multiple members of the NF-κB family, suggesting that they can be activated by both the 

canonical and the non-canonical pathways. For instance, Icam1 and Gadd45b can bind all five members 

of the NF-κB family (p52, p50, Rela, Relb and c-Rel) in U937 cells after LPS stimulation [31]. When 

Raw264.7 cells were treated with N. vitripennis venom, transcription of Icam1 and Gadd45b was  

up-regulated 17.63 and 10.99 times, respectively. Therefore, it can be suggested that N. vitripennis 

venom potentially has an inhibitory effect on the canonical pathway, but a stimulatory effect on the 

alternative NF-κB signaling pathway explaining the up-regulation of some inflammatory genes. This 

hypothesis however needs to be further investigated. Interestingly, N. vitripennis venom up-regulated 

transcription of four different NF-κB subunits when cells were co-treated with LPS, of which Nfkb2 

(p52) and Relb, that take part in the non-canonical NF-κB pathway, show the highest elevations. 
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Interesting is the number of up-regulated NF-κB target genes involved in apoptosis regulation after 

venom and LPS co-treatment. Formesyn and colleagues have previously proven that serine proteases 

and metalloproteases in N. vitripennis venom cause apoptosis in non-host insect cells and suggested their 

possible role in immune related processes [40]. In this PCR array on murine macrophages, pro- as well 

as anti-apoptotic mediators were differentially expressed: Fas activation induces apoptosis [41],  

while Birc2, Birc3 and Traf2 are known for their anti-apoptotic effects [42,43]. 

An acute stimulation, for instance by LPS, is known to create two distinct waves of NF-κB 

recruitment to target promoters: a fast recruitment to immediately accessible promoters and a late 

recruitment to promoters requiring stimulus-dependent modifications in chromatin structure to make 

NF-κB sites accessible [44]. A relatively long (6 h) LPS-treatment was chosen in the PCR Array 

experiment. Unfortunately, possible transient effects caused by N. vitripennis venom, due to the short 

mRNA half-life of many of the early response genes, could not be observed by this experiment and time 

kinetics would need to be performed in order to have a glimpse on the complete venom profile. Next to 

possible time course effects, the mechanistic complexity of the venom can be considerable, since different 

cell lines can show large differences in their responses to specific compounds. Future experiments  

should therefore also incorporate different cell lines together with time kinetics in response to separate 

venom compounds. 

Next to an NF-κB binding site, the promoter of the genes tested by this PCR array may also contain 

binding sites for other TFs. Instead of an up-regulated transcription by NF-κB binding to the promoter, 

expression of these genes can also be targeted by other TFs. When performing a TFSEARCH, the 

promoter sequence of a gene of interest can be screened for possible TF binding sites by correlating this 

sequence against the TRANSFAC MATRIX database. The upstream gene sequence 2000 nucleotides 

before and 50 nucleotides after the start of the gene (where the promoter sequence is assumed to be 

located) is inserted into the TFSEARCH program and an 85.0 threshold is used. 

This was performed for five genes that showed the highest significant up-regulated fold regulation 

(FR) after venom-and LPS-treatment, and for four genes that had a negative FR after venom- and  

LPS-treatment. All nine genes obviously contained the NF-κB binding site, as the genes included in the 

array were previously demonstrated to be NF-κB target genes. The TF binding sites that were predicted 

by the program to be present in all five up-regulated genes were listed in Table 3. This means that the 

up-regulated transcription of these genes, next to NF-κB binding to their promoter, could also be the 

result of binding of these other TFs to their promoters. When looking at these TF binding sites in the 

promoters of the four down-regulated genes, cAMP response element-binding protein (CRE-BP) can be 

a possible candidate for causing the synthesis of several of the tested genes while at the same time not 

having an increasing effect in transcription of Csf3, Mmp9 and Ccnd1, since these genes do not contain 

a binding site for CRE-BP. On the other hand, a role of CCAAT-enhancer-binding proteins (C/EBPs) in 

the activation of NF-κB target genes can also be proposed. C/EBP binding sites can be found in promoter 

regions of several tested genes with an up-regulated transcription, while being absent in the promoters 

of some of the down-regulated genes (see Table 3). Additionally, C/EBPs can interact with p50 

homodimers activating NF-κB target genes, even in the absence of canonical NF-κB activation [45]. 

Interestingly, the reporter array performed on HEK293T cells treated with N. vitripennis venom, also 

showed significant up-regulation of the C/EBP reporter (Table 1). 
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Table 3. TF binding sites that are commonly present in the promoters of 5 up-regulated 

genes tested by the NF-κB Signaling Targets PCR Array, predicted by TFSEARCH 

(threshold 85.0). The presence of these TF binding sites is shown for 4 down-regulated genes 

when cells were treated with venom and LPS. “x” represents the presence of the respective 

TF site in the promoter region of that particular gene. At the bottom, the fold regulations are 

presented for the selected genes. 

NF-κB signaling target genes Cd83 Csf1 IL15 Irf1 Icam1 Il1b Csf3 Mmp9 Ccnd1 

TF binding site 

NF-Kap x x x x x x x x x 

C/EBP x x x x x x x x - 

C/EBPa x x x - x - x x - 

AML-1a x x x x x x x x x 

CdxA x x x x x x x x x 

CRE-BP x x x x x x - - - 

deltaE x x x x x x x x x 

GATA-1 x x x x x x x x x 

GATA-2 x x x x x x x x x 

GATA-3 x x x x x - x x x 

GATA-X x x x x x x x - x 

HSF2 x x x x x x - x - 

MZF1 x x x x x x x x x 

Nkx-2. x x x x x x x x x 

Oct-1 x x x x x x x x - 

SRY x x x x x x x x x 

TATA x x x x x x - x x 

Fold regulation 

venom- and LPS- vs. LPS-treated 29.4 117.8 13.4 14.0 17.6 −4.4 −31.7 −5.8 −7.4 

venom-treated vs. untreated 3.0 55.9 2.5 2.0 1.2 5.9 5.5 1.6 −2.7 

The presence (or absence) of many other TF binding sites in specific gene promoters could possibly 

be an aid to explaining the apparent contradiction between the up-regulation of several inflammatory 

genes by N. vitripennis venom, but at the same time the anti-inflammatory activity of the venom on the 

other hand [8]. Other mechanisms can play a role in the change of gene expression: microRNAs can  

post-transcriptionally bind to the 3′-UTR (untranslated region) of their target mRNAs and repress  

protein production [46], or epigenetic phenomena like DNA methylation or histone modification can 

cause differential gene expression [47]. Until now, none of these processes have been investigated for 

the gene alterations caused by parasitoid venoms. 

It needs to be commented that venom from N. vitripennis is a complex mixture of at least 80 different 

proteins. Maybe even more other venom compounds like peptides or other bio-molecules could be 

present, all having their own effects on gene regulation. Regarding to venomous effects on the complex 

apoptosis process, it would be interesting to see how the separate venom compounds, especially the 

serine proteases and metalloproteases as tested in insect cells [40], would affect the mammalian cell 

death process. However, it would also be interesting to examine what the effects of individual venom 
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compounds would be on mammalian cells, concerning gene regulation, but also with regard to 

translational regulation of the NF-κB pathway. 

Many of the target genes of NF-κB signaling are involved in multiple inflammatory or autoimmune 

diseases. Some of them are promising targets in certain therapies [48,49], while others can themselves 

be used as agents in processes involved in human diseases [50,51]. Interestingly, N. vitripennis venom 

significantly altered the expression of some of these possible drug targets, presenting the venom with an 

exciting potential as therapeutic in several diseases (Table 4). However, keep in mind that the 

physiological processes affected by the complex Nasonia venom only hint at possible interesting 

therapies for human disease conditions. Since until now specific mechanistic insights are lacking,  

further studies focusing on the affected NF-κB targets need to be performed, ideally with the responsible 

venom compounds. 

Table 4. NF-κB target genes that were differentially transcribed and can be a possible drug 

target of N. vitripennis venom. Three different comparisons are presented: venom-treated 

versus untreated, venom- and LPS-treated versus LPS-treated cells and LPS-treated versus 

untreated. When p > 0.05, insignificant values are between brackets; when |FR| >2,  

values are in bold. (Abb = abbreviation; FR = fold regulation; Ref = reference). 

Possible drug targets of venom Abb 

FR  

venom 

versus 

untreated 

FR  

venom- and 

LPS-treated 

versus  

LPS-treated 

FR  

LPS-treated 

versus 

untreated 

Potential targeted  

diseases 
Reference 

NAD(P)H dehydrogenase, quinone 1 Nqo1 24.64 (3.014) (−1.247) acute leukemia [52] 

Cyclin D1 Ccnd1 −2.67 −7.44 −5.05 breast cancer [53] 

Interferon regulatory factor 1 Irf1 (2.039) 13.95 2.95 breast cancer [51] 

Matrix metallopeptidase 9 Mmp9 (1.635) −5.80 17.82 cancer [54] 

Colony stimulating  

factor 3 (granulocyte) 
Csf3 5.49 −31.72 15,821.68 

inflammatory  

arthritis 
[49] 

Interleukin 1 beta Il1b 5.88 −4.39 15,647.33 
autoinflammatory  

diseases 
[55] 

Complement factor B Cfb (−1.007) −4.20 14.68 
complement mediated 

inflammatory diseases 
[56] 

The second highest up-regulated NF-κB target gene transcription tested after the sole addition of 

venom on the cells, was NAD(P)H:quinone oxidoreductase 1 (Nqo1). This enzyme detoxifies quinones 

and reduces oxidative stress. Low activity of this enzyme is associated with increased risk of acute 

leukemia in adults [52]. Inducing this detoxification enzyme in certain mammalian cell types could 

potentially benefit patients suffering from acute leukemia or could prevent people from developing  

this disease. 

For the other venom targets with potential therapeutic application, the cells needed to be immune 

challenged with LPS, offering a possible use in diseases characterized by constitutive activity of  

NF-κB, like autoimmune diseases [57] or many cancers [58]. With regard to anti-inflammatory drugs, 

colony stimulating factor 3 (Csf3) with a nearly 32-fold decrease in transcription after venom and LPS 



Toxins 2015, 7 2063 

 

 

incubation compared to LPS induction, seems to be the most interesting interaction to further investigate. 

This regulator of granulopoiesis has a critical role in driving joint inflammatory diseases, like rheumatoid 

arthritis (RA), and its antagonists may be of therapeutic value [49]. Anti-IL-1β is a commonly used drug 

with the name canakinumab utilized in several auto inflammatory diseases [55]. Previously mentioned 

inhibition of IL-1β transcription by venom- and LPS-treatment may therefore hint at a therapeutic role 

of N. vitripennis venom. 

Intriguingly, the possible anti-cancer role of N. vitripennis venom is displayed by the regulation of 

different NF-κB targets. Transcription of Cyclin D1, involved in the G1-S phase transition of cells,  

is significantly suppressed by N. vitripennis venom, with and without LPS-treatment. Since 

pharmacological inhibition of cyclin D1/CDK4 complexes is suggested to be a useful strategy to inhibit 

the growth of tumors, the potential of N. vitripennis venom in cancer treatments may be valuable to 

further investigate. In contrast, the expression of Irf1 is significantly up-regulated after the co-treatment 

of venom and LPS, which was confirmed in the reporter array showing up-regulated transcriptional 

activity of the IRF1 reporter after co-treatment of venom and TNFα in HEK293T cells. A functional role 

of Irf1 was established in the growth suppression of breast cancer cells and it was implicated in acting 

as a tumor suppressor gene in breast cancer by controlling apoptosis [51]. The potential of N. vitripennis 

venom as therapeutic agent in several oncogenetic diseases is therefore interesting to look at. The 

possible drug targets in Table 4 show the exciting potential of Nasonia venom, but need to be interpreted 

with the necessary precaution. Future studies also require incorporate alterations at the protein level, 

modulations of diverse immune pathways or biological signals and determination of the exact effect of 

the individual responsible venom components. 

3. Experimental Section 

3.1. Isolation of Crude Wasp Venom 

N. vitripennis wasps were reared on pupae of the flesh fly, S. crassipalpis, and maintained at 25 °C 

with a daily 16:8 light:dark cycle. Female wasps were allowed to host feed on flesh fly pupae for 24 h. 

Venom gland reservoirs were dissected into insect saline buffer (ISB) (150 mM NaCl, 10 mM KCl,  

4 mM CaCl2, 2 mM MgCl2, 10 mM Hepes) [59] and centrifuged at 12,000× g for 10 min at 4 °C. The 

supernatant containing the venom was transferred to a clean microcentrifuge tube and stored frozen at 

−70 °C. Total protein in crude venom was determined colorimetrically at 595 nm using a Coomassie 

Protein Assay Reagent (No. 23200, Thermo Fisher Scientific, Rockford, IL, USA). 

3.2. Cell Culture and Treatments 

For the reporter array, human embryonic kidney cells 293T (HEK293T, kind gift from Prof. Kathleen 

Van Craenenbroeck, Ghent University, Ghent, Belgium) were cultured as adherent monolayers in  

25 cm2 flasks in Opti-MEM reduced serum medium without phenol red (Thermo Fisher Scientific, 

Rockford, IL, USA) supplemented with 5% FBS (International Medical Products, Brussels, 1160, 

Belgium) and 100 U/mL penicillin (Thermo Fisher Scientific, Rockford, IL, USA) and 0.1 mg/mL 

streptomycin (Thermo Fisher Scientific, Rockford, IL, USA). Cells were grown in an atmosphere with 

5% CO2 at 37 °C. Prior to the assays, cells were grown in 75 cm2 flasks and cultured in such a way that 
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they are sub confluent prior to collection. The Cignal Finder™ 45-Pathway Reporter Arrays (Qiagen, 

SABiosciences corp., Frederick, MD, USA) consisting of 45 dual luciferase reporter assays, were used 

according to the manufacturer’s instructions. One hour before transfection, fresh Opti-MEM medium 

supplemented with 2% FBS was added to the cells and cells were placed back in the incubator. 

Meanwhile, DNA reporter constructs were first dissolved in 50 μL/mL Opti-MEM and incubated for  

5 minutes at room temperature. Subsequently, PEI transfection reagent (Thermo Fisher Scientific, 

Rockford, IL, USA) was diluted in Opti-MEM without serum or antibiotics, and 50 μL/well was 

dispensed into 96-well white tissue-culture plates. For reverse transfection, freshly grown cells were 

counted and adjusted to 1.4 million cells/mL in Opti-MEM containing 2% FBS and 1% non-essential 

amino acids (NEAA, Thermo Fisher Scientific, Rockford, IL, USA), without antibiotics. Cells (50 μL; 

7 × 104 cells/well) were added to each well and incubated overnight at 37 °C with 5% CO2. Transfection 

media were removed 6–8 h after transfection and replaced with 100 μL fresh Opti-MEM, supplemented 

with 5% FBS and 1% NEAA, and incubated again overnight at 37 °C. One hour prior to venom 

induction, media were removed and replaced with fresh Opti-MEM supplemented with 0.5% FBS and 

1% NEAA. Cells (two array plates) were then induced with N. vitripennis venom at a concentration of 

2.5 μg/mL for 8 h, the other 2 plates were treated with ISB and served as controls. Each plate contains a 

duplicate of the reporter. 

For the PCR array, mouse macrophage-like Raw264.7 cells (kind gift from Prof. Kathleen Van 

Craenenbroeck, Ghent University, Ghent, Belgium) were maintained in RPMI 1640 medium (Thermo 

Fisher Scientific, Rockford, IL, USA) at 37 °C in 5% CO2 humidified air. Medium was supplemented 

with 10% FBS, 100 U/mL penicillin and 0.1 mg/mL streptomycin. Twenty-four hours before induction, 

cells were seeded in multiwell dishes so that they were confluent at the time of the experiment. Raw264.7 

cells were submitted to the following different treatments: untreated; 6-h LPS induction (1 µg/mL); 6 h 

and 15 min incubation with 10 µg/mL of N. vitripennis venom; 6 h LPS induction and 6 h and 15 min 

venom incubation. The 4 treatments were performed in duplicate. 

3.3. Reporter Array Analysis 

Dual-luciferase reporter activity was determined using a dual-luciferase reporter assay system 

(Promega, Madison, WI, USA), following the manufacturer’s instructions using a Victor 3TM 1420 

Multilabel Counter plate reader (PerkinElmer, Waltham, MA, USA). Induced TFs were reported as 

luminescence ratios by dividing the Firefly signal by the Renilla signal. Subsequently, normalization 

was performed using the ratio of control wells on every plate (negative and positive controls). Data was 

evaluated by Student’s t-tests and Mann-Whitney U tests. A value of p < 0.05 was considered statistically 

significant. All statistical analysis were performed with Prism 5.0 (GraphPad Software, Inc., La Jolla, 

CA, USA, 2011). 

3.4. Total RNA Extraction and Reverse Transcription 

RNA was isolated by using TRIzol Reagent (Thermo Fisher Scientific, Rockford, IL, USA) as 

described previously [60]. An on-column DNase digestion was performed and the concentration of RNA 

in all 8 samples was measured. Equal amounts of RNA were reverse-transcribed into cDNA using the 

RT2 First Strand Kit (Qiagen, Frederick, MD, USA) following the manufacturer’s instructions. 
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3.5. Real-Time PCR-Based Array Analysis 

The relative expression of NF-κB signaling target genes was determined in each of the 8 samples by 

RT-qPCR (RT2 Profiler Mouse NF-κB Signaling Targets PCR Array; SABiosciences Corp., Frederick, 

MD, USA) using the qPCR master mix (RT2 SYBR Green; SABiosciences Corp., Frederick, MD, USA) 

according to the supplier’s directions. Mixes were pipetted into 384-well PCR array plates to evaluate 

the expression of 84 NF-κB signaling target genes. RT-qPCR was performed in technical duplicates 

(Roche LightCycler 480, 384-well block, Mannheim, Germany). Raw data from the real-time PCR were 

uploaded using a PCR array data analysis template available at RT2 Profiler PCR Array Data Analysis 

version 3.5 (http://www.sabiosciences.com/pcr/arrayanalysis.php). Quality controls included within the 

array plates confirmed the lack of DNA contamination and successfully tested for RNA quality and PCR 

performance. The integrated Web-based software package for the PCR array system automatically 

performed all comparative threshold cycle (ΔΔCt)-based fold-change calculations from the uploaded 

data. For these calculations, the average expression of 3 housekeeping genes (β-actin, glyceraldehydes-

3-phosphate dehydrogenase and β2-microglobulin) was used for normalization of the data. After 

normalization, the relative expression of each gene was averaged for the 2 samples in each condition. 

Fold regulations in average gene expression were expressed as the difference in expression of  

venom-treated compared with untreated cells, or of venom- and LPS-treated compared with only  

LPS-treated cells. A fold change ≥2.5 with p ≤ 0.05 was considered significant. 

4. Conclusions 

By using high-throughput screening tools such as the reporter and PCR arrays performed here,  

the multi-facetted effects of venom can become visible, pinpointing interesting pathways and targets for 

further investigation. The effect of N. vitripennis venom on 45 intracellular signaling cascades was 

analyzed with a commercially available reporter array in HEK293T cells either immune challenged with 

TNFα or not. Interesting pathways were affected, of which several are related with an early stress 

response and others that need to be activated by steroid compounds. Whether steroids, possibly present 

in the venom, induced these reporters or venom stimulation contributes to the release of steroids in cells, 

still needs to be further investigated. Since most of the affected pathways are involved in multiple 

biological processes, more detailed research needs to be performed on both transcript and protein level 

in order to unravel how the venom affects these processes. In addition, the possible protein interactions 

with other TFs might be investigated, because the composition of the TF complexes influences their 

promoter specificity and hence their target pathways. Furthermore, other induction time points or venom 

concentrations may also provide useful information. The NF-κB Signaling Target PCR Array performed 

on Raw264.7 macrophages treated with N. vitripennis venom and/or LPS uncovered several new ideas 

on how the venom exerts its complex effects. Interestingly, the proinflammatory cytokine IL-1β was 

significantly suppressed after the venom and LPS co-treatment, indicating the anti-inflammatory action 

of the Nasonia venom. Previous data describing the inhibition of the canonical NF-κB pathway by the 

venom [8], is not that obvious when looking at the expression of a large number of NF-κB target genes. 

Several aspects encourage us to be cautious in interpreting the results. The complexity of the venom 

mixture applied on the cells creates multiple crosstalk effects that could be circumvented when working 
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with separate venom compounds. The fact that one time-point was used, only gives a glimpse of the 

complete picture. Additionally, changes in transcription expression do not always translate into the same 

changes at protein level, since alterations in translation efficiency and post-translational modifications 

can lead to a different end-result. Possible effects on the non-canonical NF-κB pathway next to the 

canonical pathway, in addition to the presence of multiple TF sites in the promoter of NF-κB target 

genes, make the puzzle more difficult to solve. However, keeping all these remarks in mind, still several 

interesting hints for future research could be noted, which was the original intent of this experiment. 

Some NF-κB target genes that were differentially expressed by the addition of N. vitripennis venom, 

with or without LPS-treatment, are drug targets of major diseases, hinting to possible future biomedical 

application as therapeutic agent in several human diseases. Performing time kinetics and dose-responses 

by the separated venom compounds seems the logical next step. 
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