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Abstract: Hardened sclerotia (ergots) of Claviceps purpurea contaminate cereal grains and 

contain toxic ergot alkaloids (EA). Information on EA toxicity in ducks is scarce. 

Therefore, the aim of the growth experiment (Day 0–49, n = 54/group) was to titrate the 

lowest observed adverse effect level (LOAEL) for total ergot alkaloids (TEA). A control 

diet was prepared without ergots, and the diets designated Ergot 1 to 4 contained 1, 10, 15 

and 20 g ergot per kg diet, respectively, corresponding to TEA contents of 0.0, 0.6, 7.0, 

11.4 and 16.4 mg/kg. Sensitivity of ducks to EA was most pronounced at the beginning of 

the experiment when feed intake decreased significantly by 9%, 28%, 41% and 47% in 

groups Ergot 1 to 4, respectively, compared to the control group. The experiment was 

terminated after two weeks for ducks exposed to Ergot 3 and 4 due to significant growth 

retardation. Ergot alkaloid residues in edible tissues were lower than 5 ng/g. Bile was 

tested positive for ergonovine (=ergometrine = ergobasine) with a mean concentration of 

40 ng/g. Overall, the LOAEL amounted to 0.6 mg TA/kg diet suggesting that ducks are not 

protected by current European Union legislation (1 g ergot/kg unground cereal grains). 
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1. Introduction 

Ergot alkaloids are the etiologic compounds responsible for the classical signs of ergotism in 

humans and animals [1–3] associated with the presence of ergot as the hardened mycelium of 

Claviceps purpurea in food and feed. Toxicologically, ergot alkaloids potentially interact with 
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serotoninergic, dopaminergic and adrenergic receptors depending on their specific chemical structures [3]. 

Moreover, the combined overall toxic effects of differentially acting individual alkaloids further 

depend on their absolute concentrations and proportions to each other [3]. In addition, the total ergot 

alkaloid (TEA) content of sclerotia from C. purpurea varies largely between nearly zero to 

approximately 10,400 mg/kg (=1.04%) depending on geographic region and harvesting year, cereal 

species, variety and genotype [2,4,5]. This tremendous variation raises questions regarding the 

reliability of the current European Union (EU) regulation regarding the upper limit of 1000 mg ergot  

(C. purpurea) per kg unground cereal grains (=0.1%) as specified by Directive 2002/32/EC for animal 

health protection. Dietary levels of 0.3% ergot caused increased mortality in broilers while in another 

experiment ergot levels of 0.7% were without adverse effects. This apparent contradiction might be 

due to different TEA and support the view that variation in TEA content of ergot clearly determines its 

toxic effects [3]. Consequently, EFSA recommended replacing the physical method by chemical 

analysis. Furthermore, dose response experiments are required where a detailed ergot alkaloid analysis 

of feed is correlated to toxic effects and to a possible alkaloid transfer into edible tissues (carry-over), 

especially in farm animal species hitherto not or only rarely considered, such as ducks. Based on their 

potential interference with neurotransmitters and on the observation that voluntary feed intake is often 

affected by ergot in livestock without showing typical signs of classical ergotism makes feed intake and 

its regulation a suitable endpoint to study ergot effects. 

Therefore, the aim of our study is to test increasing TEA concentrations in diets for growing Pekin 

ducks on voluntary feed intake, growth performance, general health and carry-over of ergot alkaloids 

into edible tissues and other samples such as blood or bile. 

2. Results 

2.1. Composition of Ergoty Rye and Experimental Diets 

The ergoty rye batch was composed of 45.2% ergot and 54.8% rye and contained approximately 

18% crude protein, 20% crude fiber and 32% crude fat (Table 1). The proportion of the ergot-specific 

fatty acid ricinoleic acid (12–OH–C18:1) of the crude fat fraction amounted to 7.4% and corresponded to 

24 g/kg of the ergoty rye. Considering the proportions of the ergoty rye of the whole diets the final 

calculated concentrations of ricinoleic acid in control and Ergot 1 to 4 diets were 0.0, 0.1, 0.5, 0.8 and 

1.1 g/kg, respectively. The TEA content of the ergoty rye amounted to 436 mg/kg (Table 1). The 

proportion of key alkaloids (=sum of those alkaloids for which analytical standards were commercially 

available, i.e., ergonovine, ergotamine, ergocornine, ergocristine, ergocryptine) of TEA was 62%.  

As proportions of TEA, ergonovine, ergotamine, ergocornine, ergocristine and ergocryptine 

constituted 7%, 26%, 5%, 18%, and 5%, respectively. 

The analyzed TEA concentrations were 37%, 28%, 21% and 15% lower than the targeted contents 

in diets Ergot 1 to 4, respectively, whereas the corresponding key alkaloid concentrations were 36%, 

26%, 20% and 14% smaller (Table 2). 
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Table 1. Analyzed composition of the ergoty rye batch No. 15 a. 

Crude Nutrients (g/kg) b Alkaloids (mg/kg) b 

Crude ash 28.8 Ergonovine 31.9 
Crude protein 183.7 Ergometrinine 7.5 

Crude fat 321.8 Ergotamine 113.4 
Crude fiber 203.8 Ergotaminine 38.0 

Starch 32.9 Ergocornine 23.7 
Sugar 14.2 Ergocorninine 10.2 

Fatty acid composition (g/100 g crude fat) Ergocristine 80.1 
Caprylic acid (C8:0) 1.4 Ergocristinine 22.3 
Lauric acid (C12:0) 2.8 Ergocryptine 22.3 

Myristic acid (C14:0) 0.5 Ergocryptinine 19.9 
Palmitic acid (C16:0) 30.2 Ergosine 54.8 

Palmitoleic acid (C16:1) 3.3 Ergosinine 11.7 
Stearic acid (C18:0) 7.8 Total alkaloids c 435.8 
Oleic acid (C18:1) 20.6 Key alkaloids d 271.4 

Linoleic acid (C18:2) 18.2   
Linolenic acid (C18:3) 0.4   
Arachidic acid (C20:0) 1.2   
Behenic acid (C22:0) 0.3   
Erucic acid (C22:1) 0.2   

Ricinoleic acid (12–OH–C18:1) 7.4   
Lignoceric acid (C24:0) 0.1   

a: Ergot batch contained 45.2% ergot and 54.8% rye; b: Based on a dry matter content of 880 g/kg; c: Sum of 

ergonovine, ergotamine, ergocornine, ergocristine, ergocryptine, ergosine and of their -inine isomers; d: Sum of 

ergonovine, ergotamine, ergocornine, ergocristine, ergocryptine. 

Table 2. Composition of the experimental diets (g/kg air dry feed). 

 
Diet 

Control Ergot 1 Ergot 2 Ergot 3 Ergot 4 

Ingredients      
Wheat 417 417 417 417 417 
Barley 146.2 146.2 146.2 146.2 146.2 

Ergot batch 15 (see Table 1) 0 2.2 22.2 33.2 44.2 
Rye 66.4 64.2 44.2 33.2 22.2 

Soy meal 274.5 274.5 274.5 274.5 274.5 
Soy oil 40 40 40 40 40 

Di-Calcium phosphate 30.1 30.1 30.1 30.1 30.1 
Calcium carbonate 7.8 7.8 7.8 7.8 7.8 
Sodium chloride 4.8 4.8 4.8 4.8 4.8 

L-lysine-HCl 1.1 1.1 1.1 1.1 1.1 
L-threonine 0.8 0.8 0.8 0.8 0.8 

DL-methionine 1.3 1.3 1.3 1.3 1.3 
Premix a 10 10 10 10 10 

Calculated composition      

Crude protein 195 195 195 195 195 
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Table 2. Cont. 

 
Diet 

Control Ergot 1 Ergot 2 Ergot 3 Ergot 4 

Crude fat 55.8 55.8 55.8 55.8 55.8 
AMEN (MJ/kg) 11.88 11.9 11.9 11.9 11.9 

Lysine 11 11 11 11 11 
Methionine + cystine 7.5 7.5 7.5 7.5 7.5 

Methionine 4.6 4.6 4.6 4.6 4.6 
Threonine 7.5 7.5 7.5 7.5 7.5 

Tryptophan 2.3 2.3 2.3 2.3 2.3 
Calcium 11 11 11 11 11 

Total phosphorus 9 9 9 9 9 
Sodium 2 2 2 2 2 

Total alkaloids b (mg/kg) 0.0 1.0 9.7 14.5 19.3 
Key alkaloids c (mg/kg) 0.0 0.6 6.0 9.0 12.0 

Analyzed composition 

Dry matter 888 890 880 885 889 
Crude protein 190 192 189 193 191 

Alkaloids (mg/kg)      
Ergonovine <d.l. 0.05 0.45 0.81 1.05 

Ergometrinine <d.l. 0.01 0.10 0.18 0.24 
Ergotamine <d.l. 0.15 2.16 3.08 4.54 

Ergotaminine <d.l. 0.06 0.68 1.02 1.31 
Ergocornine <d.l. 0.03 0.35 0.67 0.83 

Ergocorninine <d.l. 0.01 0.19 0.22 0.25 
Ergocryptine <d.l. 0.04 0.39 0.64 0.94 

Ergocryptinine <d.l. 0.02 0.27 0.44 0.59 
Ergocristine <d.l. 0.12 1.08 1.96 3.01 

Ergocristinine <d.l. 0.04 0.28 0.61 0.82 
Ergosine <d.l. 0.08 0.80 1.36 2.23 

Ergosinine <d.l. 0.03 0.21 0.40 0.58 
Total alkaloids b <d.l. 0.63 6.95 11.39 16.37 
Key alkaloids c <d.l. 0.38 4.43 7.17 10.36 

a: Provided per 1 kg diet: 1.5 g Ca; 1.5 g Na; 12,000 I.E. vitamin A; 3,000 I.E. vitamin D3; 40 mg vitamin E; 

2 mg vitamin B1; 8.5 mg vitamin B2; 6 mg vitamin B6; 25 µg vitamin B12; 3 mg vitamin K3; 50 mg 

nicotinic acid; 15 mg Ca-panthotenate; 200 µg biotin; 500 mg choline chloride; 60 mg Fe; 12 mg Cu;  

110 mg Mn; 80 mg Zn; 1.6 mg J; 0.32 mg Se; b: Sum of ergonovine, ergotamine, ergocornine, ergocristine, 

ergocryptine, ergosine and of their -inin-isomeres; c: Sum of ergonovine, ergotamine, ergocornine, ergocristine, 

ergocryptine; d.l.: detection limit. 

2.2. Feed Intake, Growth Performance and Alkaloid Exposure 

Voluntary feed intake decreased significantly and continuously during the first week of the 

experiment as the ergot content of the diets increased from 0.1, 1.0, and 1.5 to 2.0 and accounted for 

91%, 72%, 59% and 53% of feed consumed compared to the control group (Table 3). The choice 

feeding group consumed the same total amount of feed as the control group. Ducks of this group 
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selected approximately 86% of the control and 14% of the Ergot 4 diet. Ducks of this group effectively 

learned to differentiate between both diets from the second week of the experiment onwards when the 

voluntary intake of the Ergot 4 diet declined to less than 2% and remained at this level until the end of the 

study (Figure 1). 

The feed intake depressing effects of dietary ergot contamination was even more pronounced in week 2 

of the experiment when ducks of Groups Ergot 3 and 4 consumed 51% and 61% less feed than the 

control group, respectively (Table 3). 

In spite of the ergot related feed intake decrease the exposure of the ducks to total ergot alkaloids 

increased linearly with the ergot content of the diets (Table 4). 

Table 3. Performance of ducks exposed to diets containing increasing ergot levels (n = 9). 

Group Ergot (g/kg Diet) 
Feed Intake (g/d) Live Weight Gain (g/d) Feed to Gain Ratio (g/g)

Day 1–7 Day 8–14 Day 1–7 Day 8–14 Day 1–7 Day 8–14 

Control 0 35.1 e 98.5 d 25.7 e 66.6 e 1.370 a 1.479 
Ergot 1 1 31.8 d 94.7 d 23.4 d 62.5 d 1.368 a 1.515 
Ergot 2 10 25.4 c 78.7 c 17.2 c 54.4 c 1.475 b 1.448 
Ergot 3 15 20.8 b 48.7 b 12.5 b 33.3 b 1.672 c 1.466 
Ergot 4 20 18.7 a 38.1 a 10.7 a 24.8 a 1.766 c 1.534 
Choice g 0 and 20 37.3 f 98.6 d 24.5 d 65.1 d 1.524 b 1.516 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 0.065 
PSEM 0.5 1.6 0.5 1.0 0.035 0.022 

a–f: Values with no common superscripts are significantly different within columns (p<0.05); g: Choice 

feeding group: Ducks were offered the diets containing 0 and 20 g ergot/kg diet at the same time for free 

choice; PSEM = pooled standard error of means. 

 

Figure 1. Proportion of ergot contaminated diet voluntarily consumed by ducks offered 

diets containing either 0 or 20 g ergot/kg diet at the same time for free choice (expressed as 

percentage of total feed intake). Proportion in week 1 differed significantly from the 

corresponding proportions in all other experimental weeks (n = 9, p < 0.05). Symbols denote 

mean values and whiskers denote minimum and maximum values. 
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Table 4. Mean daily exposure of ducks to total alkaloids and key alkaloids (µg/kg body weight) (n = 9). 

Group Ergot (g/kg Diet) 
Total Alkaloids Key Alkaloids 

Day 1–7 Day 8–14 Day 1–7 Day 8–14 

Control 0 0 0 0 0 
Ergot 1 1 147 a 137 b 89 a 83 b 
Ergot 2 10 1533 c 1497 c 976 c 953 c 
Ergot 3 15 2408 d 2143 d 1515 d 1348 d 
Ergot 4 20 3331 e 2877 e 2108 e 1821 e 
Choice f 0 and 20 530 b 14 a 335 b 9 a 
p-value  <0.001 <0.001 <0.001 <0.001 
PSEM  45 32 28 20 

Statistics was performed without the control group; PSEM = pooled standard error of means; a–e: Values with 

no common superscripts are significantly different within columns (p < 0.05); f: Choice feeding group:  

Ducks were offered the diets containing 0 and 20 g ergot/kg diet at the same time for free choice. 

Live weight gain reflected the significance relationships as described for feed intake, and this 

decreased significantly with increasing dietary ergot contamination. Although the lowest ergot 

contamination level resulted in a significant adverse effect for feed intake and live weight gain, the 

corresponding feed to gain ratio started to increase significantly at a higher ergot inclusion (Ergot 2) 

during week 1, whereas no significant effect was observed during week 2. 

Performance data from week one of the experiment were further evaluated regressively (Table 3). 

Generally, feed intake and live weight gain decreased with increasing dietary TEA, while feed to gain 

ratio increased. The feed intake and live weight gain decreases seemed to be more pronounced at the 

lowest TEA concentration of 0.6 mg/kg than at all higher concentrations, and suggested linear regressions 

with distinct structure breaks (Figure 2). Interpreting the results of the broken-line regressions revealed 

a decrease of 15.7% and 15% per each 1 mg increase of TEA per kg diet up to the break-points of 1.1 

and 1.4 mg TEA/kg diet, respectively, whereas the corresponding decreases beyond these break-points 

were 1.99% and 2.63% per one mg TEA/kg. Such a distinct structure break could not be identified for 

feed to gain ratio, which continuously increased at 1.8% per one mg TEA increase/kg diet (Figure 2). 

Although no duck died during the first two weeks of the experiment, the magnitude of the decrease 

in feed intake by 50% and more recorded in groups Ergot 3 and 4 prompted us to terminate the 

experiment for these two groups after two weeks. For the remaining four groups, we terminated the 

experiment after the scheduled period of seven weeks. 



Toxins 2015, 7 2012 

 

 

 

Figure 2. Effects of increasing concentrations of total ergot alkaloids in duck diets on feed 

intake (——, y = ((100−15.7x) (x ≤ 1.1)) + ((84.8−1.99x) (x > 1.1)), r² = 0.993,  

RSD = 2.3%), live weight gain (------, y = ((100−15.0x) (x ≤ 1.4)) + ((83.2−2.63x) (x > 1.4)), 

r² = 0.989, RSD = 3.6%) and feed to gain ratio (······, y = 100 + 1.8x, r² = 0.966,  

RSD = 2.4%)) during week 1 of the experiment (expressed as percentage of the  

non-exposed control group). The lowest dietary concentrations of total ergot alkaloids 

(TEA) causing a significant decrease in feed intake and live weight gain (LOAL) amounted 

to 0.6 mg/kg, whereas feed to gain ratio responded with a significant increase at 7 mg 

TA/kg diet (n = 9). Symbols denote mean values and whiskers denote the standard deviation. 

For significance relationships see Table 3. 

Although the decrease in feed intake started to be significant at the lowest ergot inclusion level of 1 g/kg 

during the first two weeks of the experiment in later periods (Day 15–49), the ergot-related decrease 

occurred at the 10-fold higher ergot content of 10 g/kg diet (Table 5). Moreover, as live weight gain  

was not affected by the ergot level the feed to gain ratio was even significantly improved by 8% in this 

period. The choice feeding group performed at the same level as the control group. The ergot exposure 

increased proportionally with the ergot content of the diets in the later period of the experiment. 

Alkaloid exposure increased from week 1 to week 2 and decreased thereafter within the same dietary 

ergot level (Tables 4 and 6). 
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Table 5. Performance of ducks exposed to diets containing increasing ergot levels (n = 9). 

Group Ergot (g/kg diet) 
Feed Intake (g/d) Live Weight Gain (g/d) Feed to Gain Ratio (g/g) 

Day 1–14 Day 15–49 Day 1–49 Day 1–14 Day 15–49 Day 1–49 Day 1–14 Day 15–49 Day 1–49 

CON 0 66.8 c 215.4 b 172.9 b 46.2 d 78.0 68.9 b 1.448 a 2.761 b 2.509 b 
Ergot 1 1 63.2 b 208.9 b 167.3 b 42.9 b,c 77.2 67.4 a,b 1.474 a 2.707 b 2.482 b 
Ergot 2 10 52.1 a 194.2 a 153.6 a 35.8 a 76.6 64.9 a 1.454 a 2.538 a 2.367 a 
Choice e 0 and 20 e 68.0 c 210.4 b 169.7 b 44.8 c,d 76.9 67.7 b 1.518 b 2.737 b 2.507 b 

p-value  <0.001 <0.001 <0.001 <0.001 0.828 0.029 0.001 <0.001 <0.001 
PSEM  1.0 2.9 2.3 0.7 1.1 0.9 0.012 0.028 0.021 

a–d: Values with no common superscripts are significantly different within columns (p < 0.05); e: Choice feeding group: Ducks were offered the diets containing 0 and  

20 g ergot/kg diet at the same time for free choice; PSEM = pooled standard error of means. 

Table 6. Daily exposure of ducks to total alkaloids and key alkaloids in dependence of increasing dietary ergot contents (n = 9). 

Group Ergot (g/kg Diet) 
Key Alkaloids (µg/kg Body Weight) Total Alkaloids (µg/kg Body Weight) 

Day 1–14 Day 15–49 Day 1–49 Day 1–14 Day 15–49 Day 1–49 

Control 0 0 0 0 0 0 0 
Ergot 1 1 68 a 40 b 38 b 112 a 66 b 62 b 
Ergot 2 10 754 c 453 c 413 c 1185 c 712 c 649 c 
Choice d 0 and 20 d 137 b 3 a 23 a 216 b 4 a 36 a 
p-value  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
PSEM  5 2 2 8 3 4 

a–c: Values with no common superscripts are significantly different within columns (p < 0.05); d: Choice feeding group: Ducks were offered the diets containing 0 and  

20 g ergot/kg diet at the same time for free choice; PSEM = pooled standard error of means; Statistics was performed without control group. 
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2.3. Blood Clinical-Chemistry and Hematology 

Gamma-glutamyl-transferase (GGT) was significantly increased approximately twofold in ducks of 

group Ergot 2 when compared to groups Control and Ergot 1 and the choice feeding group (Table 7). 

The activity measured in the latter group was also significantly higher than in Group Ergot 1.  

In contrast, the activities of glutamate dehydrogenase (GLDH) and aspartate aminotransferase (ASAT) 

remained uninfluenced by treatment. Although glucose concentration was not affected by treatments, 

the albumin concentration was significantly higher in the choice feeding group and in Group Ergot 1 

compared to the control group. 

Monocyte proportions were significantly lower in all treatment groups compared to the control 

group, whereas all other leukocytes remained uninfluenced (Table 8). 

2.4. Organ Weights 

Liver weight was significantly increased by 10% in ducks of group Ergot 2 compared to the control 

group, whereas a decrease by 12% was recorded for the livers of the choice feeding group (Table 9). 

Similarly, the weight of the emptied small intestine was significantly lower in the choice feeding group 

compared to all other groups, which insignificantly differed from each other. The weight of the 

abdominal fat decreased as the ergot content increased by 10% and 17% in groups Ergot 1 and 2 compared 

to the control group, respectively. The choice feeding group reached the same level of abdominal fat 

weight as the control group. The gizzard weight was significantly enhanced by approximately 10% in 

the Ergot 2 group compared to the control group, whereas no significant differences were detected for 

the other groups. Although similar relative mean value differences were observed for the glandular 

stomach, they were not significant. The relative weights of the heart, spleen and bursa cloacalis were 

not influenced by treatments. 

2.5. Alkaloid Residues in Physiological Specimens 

Alkaloid concentrations in liver, breast meat and serum were lower than 5 ng/g. Bile collected from 

ducks of group Ergot 2 was the only matrix positive for ergot alkaloids with ergonovine being the only 

detected alkaloid. The mean concentration was 40 ng/g and varied from 35 to 44 ng/g and 

corresponded to a mean ratio of 0.08 (0.05–0.1) between bile and feed concentration of ergonovine. 

3. Discussion 

The most striking observation of the present experiment was the pronounced sensitivity of ducks to 

ergot alkaloids. Ducks responded with adverse effects even to the lowest TEA concentration of 0.6 mg 

per kg diet. These results suggested that ducks obviously respond more sensitive to TEA than other 

poultry species. 
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Table 7. Blood clinical-chemistry of ducks fed diets with increasing ergot levels (n = 18, day 49). 

Group 
Ergot  

(g/kg Diet) 
Gamma-Glutamyl-Transferase 

(U/L) 
Glutamate Dehydrogenase 

(U/L) 
Aspartate Aminotransferase 

(U/L) 
Glucose 

(mMol/L) 
Albumin 

(g/dL) 
Control 0 5.1 a,b 6.1 49.1 10.1 1.4 a 
Ergot 1 1 3.9 a 7.2 46.3 11.1 1.6 b,c 
Ergot 2 10 9.8 c 7.0 51.8 10.0 1.5 a,b 
Choice d 0 and 20 d 5.8 b 5.5 50.9 9.9 1.7 c 
p-value  <0.001 0.330 0.643 0.161 0.002 
PSEM  0.7 0.8 3.3 0.4 0.1 

a–c: Values with no common superscripts are significantly different within columns (p < 0.05); d: Choice feeding group: Ducks were offered diets containing 0 and  
20 g ergot/kg diet at the same time for free choice; PSEM = pooled standard error of means. 

Table 8. White differential blood count (%) of ducks fed diets with increasing ergot levels (n = 18, day 49). 

Group Ergot (g/kg Diet) Lymphocytes Monocytes Heterophiles Eosinophiles Basophils Heterophiles/Lymphocytes 
Control 0 47.7 6.7 b 42.2 1.1 2.3 0.9 
Ergot 1 1 52.4 2.8 a 40.2 0.8 3.9 0.8 
Ergot 2 10 49.9 1.4 a 44.8 0.4 3.6 0.9 
Choice c 0 and 20 c 47.0 2.3 a 47.4 0.6 2.7 1.0 
p-value  0.420 <0.001 0.198 0.197 0.139 0.225 
PSEM  2.5 0.6 2.5 0.2 0.5 0.1 

a,b: Values with no common superscripts are significantly different within columns (p < 0.05); c: Choice feeding group: Ducks were offered diets containing 0 and  
20 g ergot/kg diet at the same time for free choice; PSEM = pooled standard error of means. 

Table 9. Relative weight of organs and abdominal fat (g/kg body weight) of ducks fed diets with increasing ergot levels (n = 18, day 49). 

Group Ergot (g/kg Diet) Liver Heart Small Intestine Spleen Abdominal Fat Gizzard Glandular Stomach Bursa Cloacalis 
Control 0 20.5 b 5.5 20.7 b 0.6 7.1 a,b 29.3 a 2.8 1.1 
Ergot 1 1 21.5 b,c 5.2 19.2 b 0.6 6.4 a 29.1 a 2.8 0.9 
Ergot 2 10 22.5 c 5.5 19.5 a,b 0.6 5.9 a 31.8 b 3.1 1.0 
Choice d 0 and 20 d 18.1 a 5.4 18.5 a 0.6 7.8 b 28.7 a 2.8 1.0 
p-value  <0.001 0.764 0.028 0.655 0.039 0.022 0.178 0.169 
PSEM  0.6 0.2 0.5 0.0 0.5 0.8 0.1 0.1 
a–c: Values with no common superscripts are significantly different within columns (p < 0.05); d: Choice feeding group: Ducks were offered the diets containing 0 and  
20 g ergot/kg diet at the same time for free choice; PSEM = pooled standard error of means. 
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3.1. Dietary Ergot Alkaloids 

The analyzed TEA in the diets were lower than those calculated based on the analysis of the ergoty 

rye mixed into the diets which might be due to several reasons. The generally lower TEA concentrations 

of the diets might be caused by matrix effects of the diet which could give rise to destruction of 

alkaloids by interactions with diet constituents. Other reasons might include a dust associated 

disappearance of TEA during diet mixing or handling. Time effects might also be possible due to the 

time lag between designing and performing the experiment. The deviation from the targeted TEA 

concentrations decreased with increasing dietary ergot inclusion rates suggesting that sampling error 

might also play a role that is known to increase with decreasing concentrations of micro-components 

of a diet. 

3.2. Duck Experiment 

Our experiment demonstrated that ducks responded very sensitively to the presence of ergot 

alkaloids in feed with a significant decrease in voluntary feed intake even at the lowest TEA 

concentration of 0.6 mg/kg diet. Due to this pronounced feed intake-depressing effect, live weight gain 

was influenced in a similar manner. Although both feed intake and live weight gain responded in a 

similar direction, the resulting feed to gain ratio increased at the same time during week 1 of the 

experiment. Therefore, the nutrient and energy utilization was dose dependently compromised during 

the initial period of the experiment. In contrast, during week 2 of the experiment, the feed to gain ratio 

remained uninfluenced and was even decreased during the later periods of the experiment for the 

groups remaining in the experiment. 

The ergot-associated decrease in feed intake might have been caused by several factors. Generally, 

common features of plant alkaloids are their bitter taste and the pharmacological activity. Plant 

alkaloids serve as a chemical defense against herbivory [6] and it is assumed that the ecological role of 

ergot alkaloids is also to protect the fungi from consumption by vertebrate and invertebrate animals [7]. 

Ducks and chickens, compared to pigeons, seem to be particularly sensitive to a bitter taste as indicated by 

a pronounced rejection of a solution of quinine hydrochloride, a model substance for bitterness, at low 

concentrations [8]. Male geese (another waterfowl closely related to ducks), when compared to turkeys, 

Japanese quail and chickens, had a more pronounced response with a decrease in voluntary intake of 

quinine-containing diets in a dose-dependent manner [9]. In discussing the feed intake depressing 

effects of ergot, the presence of further substances with potential anorectic or other toxic acting 

substances in ergot, such as ricinoleic acid, need to be considered. As ricinoleic acid increased with 

dietary ergot and consequently with TEA, it is impossible to assign individual or interactive effects 

conclusively. However, sub-acute toxicity studies with mice and rats fed graded levels of castor oil 

processed from the castor bean plant, Ricinus communis L, which contains approximately 90% 

ricinoleic acid, revealed that dietary proportions of 10% (100g/kg) castor oil did not cause adverse 

effects [10]. That ricinoleic acid might contribute only partly to the overall toxicity of ergot might be 

deduced from stepwise regressions of TEA and ricinoleic acid from ergot on the live weight gain of 

piglets. Although TEA alone could explain 82% of the variation in live weight gain, the additional 

inclusion of ricinoleic acid increased the variation explained to only 86% [11]. Because of the low 
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toxicity in rodents and the rather small contribution of ricinoleic acid to the overall toxicity of ergot, a 

rather low effect might be deduced for the present experiment where the highest dietary ricinoleic acid 

concentration amounted to 1.1 g/kg. 

The chicken is generally believed to avoid toxin-containing diets that had previously caused illness, 

disturbances or discomfort [12]. This general effect might be caused by metabolic signals due to 

ingesting the substance under question besides, or in addition to taste aversion. In the present 

experiment, we found a pronounced decrease in feed intake of ad libitum fed ducks when no chance 

for avoiding the contaminated diets was offered, while choice fed ducks effectively learned to avoid the 

contaminated diet within one week in spite of weekly changes to the positions of the troughs containing 

the uncontaminated and the ergot-containing diet. Besides the bitter taste acting at the ingestive phase, 

metabolic alterations caused by the ergot alkaloid interactions with serotoninergic, dopaminergic and 

adrenergic receptors might also contribute to the post-ingestive modulation of voluntary feed intake. 

Ergot alkaloids are largely capable of permeating the blood-brain barrier [13], which supports the view 

that decrease in feed intake in ad libitum fed ducks and ergot-containing feed rejection in choice fed 

ducks might be mediated by central-nervous signals. Although we failed to detect ergot alkaloids in 

systemic blood, we confirmed the presence of ergonovine in bile, which indicates at least a portal 

absorption while a small fraction might have entered the systemic circulation and eventually the  

blood-brain barrier. 

Recently, it was shown that colon and liver cell lines (HT-29, HepG2) are capable of intense 

hydroxylation at the peptide moiety while the toxico-dynamically relevant ergoline structure remained 

untouched [14]. Thus, the peptide ergot alkaloids ergotamine/ergotaminine and ergocristine/ergocristinine 

were metabolized in this way while the lysergic acid amide derivatives ergonovine/ergonovinine were 

neither taken up by the cells nor metabolized [14,15]. The unaltered structure of ergonovine might 

explain, at least in part, why we could detect solely this ergot alkaloid in bile, as our HPLC-method 

barely detects the free forms of ergot alkaloids, while metabolized forms including lysergic acid escape 

detection. However, the fact that ergonovine/ergonovinine were not taken up either by intestinal or 

hepatic cell lines in these in vitro experiments raises the question on the reasons for the presence  

of ergonovine in bile in our in vivo study. It might be hypothesized that only ergonovine could be 

detected amongst the ergot alkaloids and solely in bile due to absorption of small amounts over a 

longer period of time in combination with its accumulation and its poor metabolism, leaving it 

detectable by our HPLC-method. 

The liver not only plays a role in metabolizing and excretion of ergot alkaloids as discussed above, 

but has also been suggested as a primary target of portally delivered toxins. 

Activities of enzymes in blood that are more or less indicative for hepatic lesions such as γ-glutamyl 

transferase (GGT), glutamate dehydrogenase (GLDH) and the less specific aspartate aminotransferase 

(ASAT) have been shown to respond either not at all (GLDH, GGT) or with an inconsistent and not 

always reproducible increase (ASAT) in piglets fed diets varying largely in the TEA between 3 and  

21 mg/kg [16–20], whereas in calves, fattening bulls and dairy cows no effects on these enzyme 

activities could be detected [21–23]. Also to be considered in evaluating these effects are the differences 

in the pattern of individual alkaloids which are summed up by the TEA content, which was demonstrated 

to play a role for feed intake and live weight gain but was less important for liver lesions [17,19]. 

Broilers were shown to respond with an increase in GGT and ASAT activity when fed diets with TEA of 
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3 and 11 mg/kg diet [20]. In our study, GGT activity in ducks increased significantly at a dietary TEA 

of 7 mg/kg diet, which is approximately 10-fold higher than the diet concentration found to be 

effective for decreasing feed intake, indicating that the liver responds less sensitively than feed intake 

in ducks, also. Interestingly, and in contrast to reports of ergot-associated decreases in blood albumin 

concentration in piglets and broiler chickens [19,20], ducks responded with an increase even at the 

lowest diet concentration of 0.6 mg TEA/kg. As albumin concentration in blood not only reflects the 

liver function with regard to protein synthesis function but might also be affected by  

hemo-concentration or -dilution, the contradictory results should not be overemphasized. 

That the liver obviously responds to TEA at higher dietary concentrations than feed intake or live 

weight gain is further substantiated by the results of liver function tests. These tests are based on the 

hepatic cytochrome P450 (CYP1A2)-catalyzed conversion of stable isotope-labeled substrates to 

labeled CO2, which can be measured in breath. These tests indicated LOAELs of 17 and 21 mg 

TEA/kg diet for male and female piglets, respectively [18] while a literature compilation on the 

relationships between TEA content of the diet and performance revealed an incremental decrease of 

0.9% and 1.24% per each 1 mg increase of TEA per kg diet when feed intake and live weight gain were 

used as response criteria [16]. Based on the corresponding decreases of 15.7% and 15.0% for TEA 

concentrations ≤1.1 and 1.4 mg TEA/kg, and at 1.99% and 2.63% for TEA concentrations higher than 

these break-points, the ducks seem to respond more sensitively to dietary ergot alkaloids than piglets. 

Whether the ergot-associated increase in liver weight relative to body weight is a direct 

consequence of the toxic action of ergot alkaloids or due to a retardation of muscle growth relative to 

the dynamics of weight development of inner organs as a reflection of the ontogenetic allometry 

cannot be answered conclusively as further parameters such as histopathological lesions were not 

recorded. Similarly, the ergot induced increase of the relative gizzard weight might be explained in this 

way although other digestive organs appeared to be unaffected. 

The only conspicuous difference in white blood count was the ergot-related decrease in the 

proportions of monocytes, which might hint at an effect of ergot alkaloids in modulation of immune 

responses. Subcutaneous ergotamine tartrate doses equal or higher than 2 mg/kg body weight resulted 

in the secretion of pro-inflammatory cytokines by LPS stimulated murine splenocytes and 

macrophages, while differential white blood count remained unaffected [24]. In steers, the  

LPS-induced acute phase response was attenuated by intravenous administration of ergotamine, which 

was supposed to result from the ergotamine-associated cortisol increase [25]. Thus, the relevance and the 

nature of the ergot-associated decrease in the monocyte proportions observed in our experiment requires 

further experimental consideration. The general conclusion that poultry tolerates higher levels of ergot 

alkaloids than other non-ruminant livestock [2] was drawn by deriving a NOAEL of 1.4 mg TEA/kg 

diet based on reviewing the literature published since the last EFSA-opinion on ergot alkaloids  

in 2005. However, mainly chickens were considered in the latest EFSA-opinion while no experiments 

on ducks were available at that time. As the lowest dose tested in our experiments caused adverse effects, 

we could not derive a NOAEL. Thus, the NOAEL for ducks is lower than 0.6 mg TEA/kg and consequently 

also markedly lower than that of 1.4 mg TEA/kg diet for chickens, as suggested by EFSA [2]. 

In view of the unreliability of the current feed safety regulations regarding the upper limit of 1000 mg 

ergot (C. purpurea) per kg unground cereal grains (=0.1%), as specified by Directive 2002/32/EC, and 

the significant variation in TEA content of ergot as reviewed by EFSA [2], a risk evaluation for the 
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duck covering this variation and considering the LOAEL of 0.6 mg TEA/kg diet was performed to 

identify those dietary ergot levels where this LOAEL is reached for a particular TEA content of ergot 

(Figure 3). As we failed to derive a NOAEL, the estimated dietary ergot contents indicate ergot levels 

where adverse effects already can be expected. For example, if the ergot alkaloid content of ergot 

reaches approximately 0.6 mg/g the permitted ergot content of 1000 mg/kg feed would also be 

exceeded. However, this is not a realistic scenario as the upper limit applies for pure (unground) cereal 

grains, which do not constitute the whole diet of a duck (see also Table 2). Rather, the cereal content of 

a duck diet varies from a few percent up to more than 50%, which also needs to be considered when 

evaluating the risk of ergot contaminated cereal grains for this poultry species (Figure 3). For example, the 

LOAEL of 0.6 mg TEA/kg diet would correspond to a dietary ergot content of 600 mg/kg diet when the 

diet would consist of 100% of cereal grains contaminated by ergot with a TEA content of 1 mg/g ergot 

(Figure 3). If the same grain batch would be incorporated into the diet at a proportion of 50%, the TEA 

content of the ergot could approximate 2 mg/g. More generally expressed, the area to the right of the 

curve in Figure 3 represents all combinations of TEA content of ergot and dietary ergot content, which 

would exceed the LOAEL. Again, as the curve was constructed based on LOAEL instead of the 

NOAEL, the combinations of dietary ergot content and TEA content of ergot, which would result in 

safe dietary TEA levels, are not known so far but are within the area left of the curve. 

 

Figure 3. Estimation of the ergot proportion in diets for ducks (mg/kg diet) where the 

LOAEL of 0.6 mg TEA/kg diet is reached in dependence on varying TEA contents of  

ergot (mg/g ergot). 

4. Experimental Section 

4.1. Experimental Design and Diets 

The experimental design was a dose-response study. An ergoty rye batch containing 45.2% ergot 

and 54.8% rye was used as ergot source. The control diet was prepared without ergot, and the diets 

Ergot 1 to 4 contained 1, 10, 15 and 20 g ergot per kg diet, respectively, and corresponded to 2.2, 22.2, 

33.2 and 44.2 g of the ergoty rye batch (Tables 1 and 2). All experimental diets were formulated to be 

isoenergetic and isonitrogen based on the main components wheat, barley and soybean meal. 

An additional choice feeding group was offered the control diet along with the diet with the highest 

ergot content (20 g/kg) (Table 10) at the same time. 
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Table 10. Experimental design. 

Group Ergot (g/kg Diet) 
Calculated Alkaloid Concentrations (mg/kg Diet) 

Total Key a 
Control 0 0.0 0.0 
Ergot 1 1 1.0 0.6 
Ergot 2 10 9.7 6.0 
Ergot 3 15 14.5 9.0 
Ergot 4 20 19.3 12.0 
Choice b 0 and 20 0.0 and 19.3 0.0 and 12.0 

a: Sum of ergonovine, ergotamine, ergocornine, ergocristine and ergocryptine; b: Choice feeding group: 
Ducks were offered the diets containing 0 and 20 g ergot/kg diet at the same time for free choice. 

4.2. Growth Experiment 

The study covered the period from hatch until day 49 of age. One day-old unsexed Pekin ducks were 

obtained from the breeding company Stolle GmbH, Westerschep, Germany and randomly assigned to 

the six treatment groups (Table 10). Six ducklings were placed in each of the 54 wood shave bedded 

floor pens with the dimensions of 1 m × 1.2 m, except that the choice feeding group occupied two of these 

pens per simultaneous replication. In total, each treatment group was replicated nine times. Therefore, 

each treatment comprised a total of 54 ducks. Feed and water were offered for ad libitum consumption. 

Temperature and lighting regimes were in accordance with the recommendations of the breeder. 

Duck weight and consumed feed were determined weekly. At the end of the study, after the final 

weighing, 2 ducks per pen were slaughtered by cutting the neck vessels after manual stunning (n = 18 

per group). Mixed trunk blood was collected for preparing blood smears and serum. Liver, heart, small 

intestine, spleen, abdominal fat, gizzard, glandular stomach and Bursa cloacalis were dissected and 

weighed. In addition, breast meat, liver, serum and bile were frozen for later analysis for alkaloid residues. 

Treatments and experiments were conducted according to the European Community regulations 

concerning the protection of experimental animals and were approved by the State Bureau for 

Consumer Protection and Food Safety of Lower Saxony (LAVES) in Oldenburg, Germany. 

4.3. Analyses 

The ergot batch used was analyzed for dry matter, crude protein, crude ash, crude fat, starch and 

sugar according to the official standard methods of the Association of German Agricultural Research 

and Investigation Institutions (VDLUFA) [26]. The experimental diets were analyzed for dry matter 

and crude protein. The ergot batch was further analyzed for fatty acids using gas chromatography, as 

published in detail earlier [27,28]. 

Ergot alkaloids (ergonovine, ergocornine, ergotamine, α-ergocryptine, ergosine, ergocristine and  

their -inine isomers) in ergot, diets, serum, bile, freeze-dried liver and breast meat were analyzed by 

adapting an HPLC based method [29], as described in detail elsewhere [23]. The limit of quantification 

(LOQ) was 5 ng/g at a sample size of 5 g for all specimens. The mean recovery rates varied between 

45% and 139% depending on matrix and specific alkaloid [23]. Measured alkaloid concentrations were not 

corrected for recovery. Ergonovine, ergotamine, ergocristine, ergocornine and ergocryptine standards 

were commercially available for their identification (Sigma-Aldrich Chemie GmbH, Buchs, Switzerland). 

These standards were also used for the identification of their corresponding -inine isomers while ergosine 
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and its isomer were identified through their retention time [30]. Finally, the sum of all identified 

alkaloids (-ine and -inine isomers) is designated herein as total ergot alkaloids (TEA). 

Serum clinical-chemical parameters were determined using test-kits supplied by Merck, Darmstadt, 

Germany: glutamate dehydrogenase (GLDH, EC 1.4.1.3, Merck-1-Test®, 1.03373), γ-glutamyltransferase 

(GGT, EC 2.3.2.2, Granutest® 3, 1.12189.0001), aspartate aminotransferase (ASAT, EC 2.6.1.1, 

Granutest® 3, 12150), glucose (Granutest® 100, 1.12193) and albumin (Granutest®, 1.14819.0001). 

Blood smears were prepared and stained using Wright-Giemsa stain (Sigma-Aldrich Chemie 

GmbH, Steinheim, Germany) for differentiating the white blood cells. Two hundred cells were counted 

using a light microscope (Carl Zeiss Microscopy GmbH, Jena, Germany) at a magnification of 100× 

and differentiated for heterophils, lymphocytes, monocytes, eosinophils, and basophils. Moreover,  

the ratio between heterophils and lymphocytes (H/L ratio) was calculated. 

4.4. Calculations and Statistics 

Daily feed intake was calculated by dividing the feed consumption per pen (difference between 

offered and back-weighed feed) by the number of days and ducks present in the respective period. Daily 

live weight gain was calculated as the difference between two weight records of each individual duck 

divided by the corresponding days. As feed intake could only be recorded on a pen basis, the live 

weight gain and the feed to live weight gain ratio were expressed on that basis as well; i.e., the number 

of replications per treatment equaled nine for each of these three parameters. Mean daily exposure to 

alkaloids was obtained by multiplying the daily feed intake with the analyzed alkaloid concentration in 

feed and dividing by the corresponding mean live (body) weight. 

Organ weights were related to body weight and expressed as g organ weight per kg body weight. 

Data were analyzed according to a one-way factorial design of analysis of variance (ANOVA) 

according to the following model: yij = µ + ai + eij; where yij = jth observation subjected to treatment i; 

µ = overall mean; ai = effect of treatment; eij = residual error. 

In case of a significant treatment effect the individual mean value differences were examined for 

significance by using the Tukey test. All statistics were performed using the Statistica for the Windows 

Operating System, Version 7.1, 1995 (StatSoft Inc., Tulsa, OK, USA). 

5. Conclusions 

The exclusive detection of ergonovine amongst the ergot alkaloids in bile requires further 

experiments to clarify the fate of ergot alkaloids with special consideration of in vivo metabolism and 

analytical detectability of evolving metabolites. 

The lowest TEA concentration of 0.6 mg per kg diet induced adverse effects in ducks suggesting 

that this poultry species is not protected by the current EU legislation (1 g ergot/kg unground cereal 

grains) when the natural variation in TEA content of ergot is taken into account. 
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