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Abstract: The inhibitor cystine knot (ICK) is an unusual three-disulfide architecture in 

which one of the disulfide bonds bisects a loop formed by the two other disulfide bridges 

and the intervening sections of the protein backbone. Peptides containing an ICK motif are 

frequently considered to have high levels of thermal, chemical and enzymatic stability due 

to cross-bracing provided by the disulfide bonds. Experimental studies supporting this 

contention are rare, in particular for spider-venom toxins, which represent the largest 

diversity of ICK peptides. We used ω-hexatoxin-Hv1a (Hv1a), an insecticidal toxin from the 

deadly Australian funnel-web spider, as a model system to examine the contribution of the 

cystine knot to the stability of ICK peptides. We show that Hv1a is highly stable when 

subjected to temperatures up to 75 °C, pH values as low as 1, and various organic solvents. 

Moreover, Hv1a was highly resistant to digestion by proteinase K and when incubated in 

insect hemolymph and human plasma. We demonstrate that the ICK motif is essential for 

the remarkable stability of Hv1a, with the peptide’s stability being dramatically reduced 

when the disulfide bonds are eliminated. Thus, this study demonstrates that the ICK motif 

significantly enhances the chemical and thermal stability of spider-venom peptides and 

provides them with a high level of protease resistance. This study also provides guidance to 

the conditions under which Hv1a could be stored and deployed as a bioinsecticide. 

Keywords: inhibitor cystine knot; physicochemical stability; spider toxin; insecticidal toxin; 

ω-hexatoxin-Hv1a; thermal stability; proteolytic degradation 
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1. Introduction 

The inhibitor cystine knot (ICK) is a protein scaffold defined as an antiparallel  sheet stabilized by 

a cystine knot [1,2]. The  sheet typically comprises two  strands, although a third N-terminal strand is 

sometimes present [3] (Figure 1A). The cystine knot itself comprises a ring formed by two disulfide 

bridges (Cys1–Cys4 and Cys2–Cys5) and the intervening sections of peptide backbone, with a third 

disulfide bond (Cys3–Cys6) penetrating the ring to create a pseudo-knot (Figure 1B). The two central 

disulfide bridges emanating from the  strands are tightly packed against one another and they form the 

compact hydrophobic core of ICK peptides [4]. 

 

Figure 1. Inhibitor cystine knot of the spider-venom peptide ω-hexatoxin-Hv1a.  

(A) Schematic of the ICK motif, which comprises an antiparallel  sheet stabilised by a 

cystine knot [1].  strands are shown in green and the six cysteine residues that form the 

cystine knot are labeled 1–6. In spider toxins, the  sheet typically comprises only the two  

strands housing Cys5 and Cys6, although a third N-terminal strand encompassing Cys2 is 

sometimes present [3]. The two “outer” disulfide bonds are shown in green and the “inner” 

disulfide bridge is red. (B) Schematic of the three-dimensional structure of the 37-residue  

spider-venom peptide Hv1a (PDB 1AXH) [5] highlighting the ICK motif. The cystine knot 

comprises a ring formed by two disulfides (Cys1–Cys4 and Cys2–Cys5, green) and the 

intervening sections of polypeptide backbone (gray), with a third disulfide (Cys3–Cys6, red) 

piercing the ring to create a pseudo-knot. The hydrophobic core of the toxin consists 

primarily of the two central disulfide bridges connected to the  strands. (C) Primary 

structure of Hv1a showing the location of the three disulfide bonds and the 10 proteinase K 

cleavage sites predicted by PeptideCutter [6]. 

Peptides containing an ICK motif are found in taxonomically diverse organisms ranging from fungi 

and plants to molluscs and arthropods [1,7], although they are most abundant in the venom of spiders [8].  

ICK-containing peptides are frequently considered to be highly stable over a wide range of 

physicochemical conditions, but very few studies have experimentally examined their stability. The  
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best-studied example is kalata B1, a plant cyclotide whose thermal, chemical and enzymatic stability has 

been examined in detail. Remarkably, it was demonstrated that the cystine knot is more important for 

the stability of this cyclic peptide than its circular backbone [9]. 

The ICK motif is the most common protein architecture found in spider-venom peptides [8], but data 

on the contribution of this motif to the stability of spider toxins is lacking. Thus, in the present study, we 

used the insecticidal spider-venom peptide ω-hexatoxin-Hv1a (Hv1a) as a model ICK peptide and 

explored the contribution of the cystine knot to its physicochemical stability. Hv1a is 37-residue ICK 

peptide isolated from the venom of the lethal Australian funnel-web spider Hadronyche versuta (Figure 

1C). It has been used as a lead for bioinsecticide development due to its ability to selectively block 

invertebrate, but not vertebrate, voltage-gated calcium (CaV) channels [5,8,10–12] and its lack of toxicity 

to bees [13]. Hv1a has high level of biological stability as it is active when expressed in planta [8,14] 

and it is capable of crossing the insect blood brain barrier in order to inhibit CaV channels in the insect 

central nervous system [5,15]. The molecular basis of Hv1a’s inherent biological stability is presumed 

to be its ICK motif but this has not been experimentally demonstrated. 

In order to determine how the cystine knot contributes to the physicochemical stability of Hv1a, we 

compared native Hv1a with reduced and alkylated (linear) Hv1a over a wide range of temperatures, 

solvents and pH conditions, and after incubation in proteinase K, insect hemolymph, and human plasma. 

We show that Hv1a has a high level of chemical and thermal stability and that it is highly resistant to 

proteolytic degradation. Reduction and alkylation of the six cysteine residues that form the cystine knot 

motif of Hv1a completely abrogated the peptide’s resistance to enzymatic degradation and its resistance 

to high temperature and acidic pH. Even the long-term stability of Hv1a in water and organic solvents 

was compromised by loss of the ICK motif. This study reveals that the ICK motif is capable of providing 

spider-venom peptides with a high level of thermal, chemical and biological stability, and it further 

highlights the ICK motif as an excellent scaffold for protein engineering studies directed towards the 

development of peptide drugs and bioinsecticides. 

2. Results and Discussion 

2.1. Thermal Stability 

Figure 2 summarises the stability of Hv1a when incubated for 24 h over a temperature range from 20 

to 95 °C. There was no visible effect on toxin stability for both native and linear Hv1a up to 37 °C 

(Figure 2), but peptide stability decreased at a much faster rate for linear Hv1a at temperatures exceeding 

37 °C. Remarkably, ~71% of native Hv1a remained intact after incubation for 24 h at 75 °C, whereas 

only ~25% of linear Hv1a remained intact under these conditions. In order to determine whether the 

degradation observed at high temperature is reversible, we incubated a sample of Hv1a at 95 °C for 24 h, 

then stored the sample at 20 °C for 3 days prior to HPLC analysis. There was no recovery in the level of 

intact peptide over the 3 days (data not shown), indicating that the degradation observed at 95 °C is 

irreversible. Nevertheless, based on the data shown in Figure 2, Hv1a should be highly stable in the field 

even if employed as a bioinsecticide in climates that reach high temperatures. 
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Figure 2. Thermal stability of Hv1a. Fraction of intact native Hv1a (black circles) and linear 

Hv1a (grey squares), relative to the corresponding 20 °C samples, after incubation at the 

indicated temperatures for 24 h. The dashed line indicates that the Tm under these conditions 

is ~48 °C and ~83 °C for linear and native Hv1a, respectively. Data are mean ± standard 

deviation (SD). In this and subsequent figures, asterisks indicate statistically significant 

differences between native and linear Hv1a (p < 0.05). 

2.2. pH Stability 

Figure 3 shows the stability of Hv1a when incubated for 24 h in buffers with pH ranging from 1 to 

13. Native Hv1a was highly stable at neutral and acidic pH, with essentially no degradation between pH 

1 and 7. However, the peptide began to degrade as the pH approached the pKa of cysteine (~8.3), and 

degradation became very apparent at pH 9 and above. Only 6% of the peptide remained intact after 24 h 

at pH 13 (Figure 3). Additional peaks with higher retention time than Hv1a began to emerge in the  

RP-HPLC chromatograms of samples incubated at pH 8 and higher (data not shown). MALDI mass 

spectrometric analysis revealed that these peaks have the same mass as Hv1a and we therefore conclude 

that these peaks correspond to isoforms of Hv1a resulting from disulfide-bond shuffling at alkaline pH. 

In contrast with native toxin, the linear version of Hv1a was only stable at neutral pH values, with marked 

degradation under both acidic and alkaline conditions. This instability presumably arises from  

well-known processes that impact on protein stability such as asparagine deamidation, aspartate 

isomerisation, and racemisation [16,17]. Interestingly, Hv1a contains an Asn-Gly sequence (Figure 1), 

which has been shown to be highly susceptible to asparagine deamidation [18]. 

The pH of the gut lumen in insects is highly variable, although there is a general trend, particularly 

in exopterygous insects, towards acidic crops, neutral to mildly alkaline midguts, and neutral to acidic 

hindguts [19,20]. Hv1a is stable under all of these pH conditions. However, several orders of 

endopterygote insects such as lepidopterans, coleopterans, and dipterans have highly alkaline midguts 

(pH > 8) [19–21]. This is especially true of lepidopteran larvae that feed on the leaves of trees, where 

the average midgut pH of ~8.7 is believed to provide protection against leaf tannins and two-component 

plant chemical defenses [21,22]. The instability of Hv1a at pH > 8 may therefore compromise its 

effectiveness against lepidopterans and other insects with highly alkaline guts. Nevertheless, it has been 

shown that transgenic expression of Hv1a in tobacco and cotton provides high levels of resistance against 

larvae of the lepidopterans Helicoverpa armigera (cotton bollworms) and Spodoptera littoralis (cotton 

leafworms) [23–25]. Thus, Hv1a must be sufficiently stable within the gut of these lepidopterans that 
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enough toxin is taken up into the hemolymph to cause toxic effects at target sites (i.e., CaV channels) 

within the central nervous system. 

 

Figure 3. pH stability of Hv1a. Fraction of intact native Hv1a (black circles) and linear Hv1a 

(grey squares), relative to the corresponding pH 7 samples, following incubation for 24 h at 

the indicated pH. Dashed line corresponds to 50% intact toxin. The pI of Hv1a and the pKa 

of free cysteine thiol groups are indicated by the arrows. Data are mean ± SD. 

2.3. Chemical Stability 

Figure 4 shows that native Hv1a is highly stable during long-term incubation at room temperature  

(in the dark) in water and different organic solvents (i.e., ethanol, methanol and acetonitrile). In contrast, 

linear Hv1a was unstable over one week in water and all three organic solvents, although stability was 

marginally higher in acetonitrile. This further highlights the importance of the cystine knot for the  

long-term stability of ICK peptides. The long-term stability of Hv1a in organic solvents is useful from a 

bioinsecticide development perspective since insecticides are often formulated with emulsifiers, 

stabilisers, surfactants or other adjuvants that require dissolution in organic solvents [26]. 

2.4. Proteolytic Stability 

Proteinase K is a broad-spectrum serine protease from the fungus Engyodontium album that primarily 

cleaves at peptide bonds on the C-terminal side of aliphatic and aromatic amino acid residues. It is 

commonly used to remove contaminating protein from nucleic acid preparations [27], and consequently 

it provides a stringent test of peptide/protein stability. Hv1a is predicted to contain 10 proteinase K 

cleavage sites dispersed along the entire length of the toxin (see Figure 1C). Thus, as expected, linear 

Hv1a was highly susceptible to proteinase K cleavage, with less than 25% of the peptide remaining intact 

after incubation for just 2 h at 37 °C using a 1:200 molar ratio of proteinase K:Hv1a (Figure 5, grey 

squares). In striking contrast, 74% of native Hv1a remained intact after incubation for 24 h under the 

same conditions (Figure 5, black circles). Thus, the ICK motif of Hv1a provides a very high level of 

resistance against the proteolytic activity of proteinase K. 
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Figure 4. Stability of Hv1a in various solvents. Fraction of intact native Hv1a (black 

columns) and linear Hv1a (grey columns) after incubation for seven days in water and 

organic solvents. Toxin amounts were quantified relative to a control sample incubated for 

one day in water. Dashed line indicates 100% intact toxin. Data are mean ± SD. 

 

Figure 5. Proteolytic stability of Hv1a. Fraction of intact native Hv1a (black circles) and 

linear Hv1a (grey squares) after incubation with proteinase K (1:200 molar ratio) at pH 7.5 

and 37 °C for up to 24 h. The values for native Hv1a were quantified relative to a sample of 

native Hv1a incubated for 24 h under the same conditions without proteinase K. Values for 

linear Hv1a were quantified relative to a sample of linear Hv1a at pH 7.5 incubated for 0 h 

without proteinase K. The dashed line indicates 50% intact toxin. Data are mean ± SD. 

2.5. Stability in Insect Hemolymph 

Since Hv1a is considered a lead peptide for bioinsecticide development [8,13], its stability in insect 

gut and hemolymph is critical in addition to its environmental stability. We therefore examined the 

stability of Hv1a in hemolymph extracted from sawfly larvae and cotton bollworms (i.e., larvae of the 

recalcitrant lepidopteran pest Helicoverpa armigera). Most insects carefully regulate the pH of their 

hemolymph, typically in the range 6.4–6.8 [19,28,29]. The pH of the extracted sawfly hemolymph was 

measured to be 6.68, which is similar to the pH of 6.99 reported for hemolymph from larvae of the 

European pine sawfly Neodiprion sertifer [30]. The hemolymph extracted from H. armigera larvae had 

a pH of 6.45, which is slightly lower than the pH of 6.8 reported for hemolymph from larvae of the 

related lepidopteran H. zea [31]. Although native Hv1a is highly stable at neutral and acidic pH (see 

Figure 3), insect hemolymph contains proteases that can degrade exogenous peptides [32]. Nevertheless, 
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we found that Hv1a is highly stable in insect hemolymph, with 54%–68% of the peptide remaining intact 

after seven days incubation at ambient temperature (~20 °C) in hemolymph from sawfly larvae (Figure 

6A) and bollworms (Figure 6B). In contrast, only 11%–25% of linear Hv1a remained intact after one 

day of incubation with sawfly or bollworm hemolymph (Figure 6A,B, grey squares), again highlighting 

the importance of the cystine knot for providing resistance against chemical degradation and proteases. 

Unfortunately, we were unable examine toxin stability in insect midgut solution, as we found it 

difficult to isolate midgut contents without contamination from foregut, hindgut or hemolymph. 

  

(A) (B) 

Figure 6. Stability of Hv1a in insect hemolymph. Fraction of intact native Hv1a (black 

circles) and linear Hv1a (grey squares) after incubation in (A) sawfly hemolymph and (B) 

bollworm hemolymph for up to seven days at ambient temperature (~20 °C). Native and 

linear Hv1a were quantified relative to control samples that were incubated in water for one 

day. The dashed line indicates 50% intact toxin. Data are mean ± SD. 

 

Figure 7. Stability of Hv1a in human plasma. Fraction of intact native Hv1a (black circles) 

and linear Hv1a (grey squares) after incubation in human plasma for up to seven days at 

ambient temperature (~20 °C). Native and linear Hv1a were quantified relative to control 

samples that were incubated in water for one day. The dashed line indicates 50% intact toxin. 

Data are mean ± SD. 

  



Toxins 2015, 7 4373 

 

 

2.6. Stability in Human Plasma 

Remarkably, we found that Hv1a is even more stable in human plasma than insect hemolymph, with 

~70% of the peptide remaining intact after seven days incubation in plasma at ~20 °C (Figure 7, black 

circles). In contrast, only ~7% of linear Hv1a remained intact after three days incubation in human 

plasma (Figure 7, grey squares). Thus, the cystine knot of Hv1a provides exceptional resistance against 

plasma proteases as well as plasma reductants such as glutathione and serum albumin that can potentially 

reduce disulfides add/or cause disulfide scrambling [33]. 

2.7. Comparison of Hv1a Stability with Other ICK Peptides 

The ICK motif is an unusual protein architecture in which a single disulfide bond is threaded through 

a closed loop formed by two other disulfide bonds and the intervening sections of the polypeptide 

backbone [1,3,7,34]. ICK peptides, also known as knottins [34], have evolved independently in a diverse 

range of terrestrial taxa, including insects, arachnids, fungi, and plants [7], as well as marine cone snails [1], 

sponges [35], horseshoe crabs [36] and sea anemones [37]. This protein fold appears to have been 

evolutionarily favoured for two reasons. First, the ICK motif is highly plastic to sequence  

changes [38,39], which allows it to support a wide variety of disparate functions [7]. Second, although 

it is not a true knot in the mathematical sense, the inhibitor cystine knot is expected to greatly reduce the 

propensity for peptide unfolding, and hence it is generally thought to imbue ICK peptides with a high 

level of physicochemical stability [4,7,40]. 

Surprisingly, very few studies have examined the stability of native knottin peptides in detail, much 

less addressed whether the cystine-knot motif is the underlying cause of unusually high levels of 

chemical, thermal and biological stability. The only systematic study of this kind was performed on 

kalata B1, a plant cyclotide [9]. Cyclotides are macrocyclic plant knottins containing a head-to-tail 

cyclised peptide backbone in addition to a cystine knot motif. Kalata B1 was shown to be highly 

thermostable and extremely resistant to chaotropic agents and proteases. These properties were largely 

retained in an acyclic permutant but not when the disulfide bonds were eliminated by reduction and 

alkylation, which led the authors to conclude that the cystine knot, rather than backbone cyclization, is 

the primary contributor to the remarkable stability of kalata B1 [9]. The same authors demonstrated that 

native conotoxin PVIIA, a knottin peptide from the venom of a marine cone snail, is impervious to 

various endoproteinases but this protease resistance is lost when the cystine knot is eliminated by 

disulfide reduction [9]. Engineered ICK peptides derived from plant knottins or the cystine-knot motif 

of human agouti-related protein were shown to be highly resistant to pepsin and elastase, and have long 

half-lives in rat plasma, but the contribution of the cystine knot to these properties was not  

examined [41,42]. A variety of diverse ICK peptides from sponges [35] and spiders [32] have been 

shown to be resistant to proteases and/or have high levels of stability in human plasma or insect 

hemolymph, but the contribution of the cystine-knot motif to this stability was not examined. 

The current work represents the first systematic study of the contribution of the inhibitor cystine knot 

to the thermal, chemical, and biological stability of a native, non-cyclic knottin. We demonstrated that 

the cystine knot underlies the remarkable resistance of the insecticidal toxin Hv1a to extremes of 

temperature, acidic pH, organic solvents, and both human plasma and insect hemolymph. Highly alkaline 
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pH (>8) was the only condition under which native Hv1a was not considerably more stable than its 

linearised counterpart, presumably due to reduction/scrambling of the disulfide bonds in the cystine knot 

as the pH exceeds the pKa of the cysteine side-chain thiol groups. OAIP-1, an insecticidal knottin from 

tarantula venom, was also found to be susceptible to degradation under alkaline conditions [32]. 

Hv1a was isolated from the venom of the Australian funnel-web spider Hadronyche versuta, a close 

relative of the infamous Sydney funnel-web spider Atrax robustus that is lethal to rodents and primates [43]. 

The lethal component of A. robustus venom is the knottin peptide δ-hexatoxin-Ar1a [44–46], which potently 

delays inactivation of voltage-gated sodium channels [47]. Thus, data from 1961 on the stability of crude 

A. robustus venom [43] can be considered a proxy for the stability of δ-hexatoxin-Ar1a. Wiener found 

that the toxicity to mice of A. robustus venom was not altered after storage for four months at 4 °C, 

incubation at 37 °C for two days, incubation at 100 °C for 1 h, incubation at 100 °C for 20 min in the 

presence of 0.1 M HCl (pH~1), storage for 14 days in 33% acetic acid, and incubation with 0.1% pepsin 

and 0.2% HCl at 40 °C for 2 h [43]. However, incubation of venom for 24 h at pH 8.5 and 37 °C resulted 

in a slight loss of activity, incubation for 2 h at 40 °C with 0.1% trypsin and 0.1% Na2CO3 (pH ~11) 

resulted in a 50% loss of toxicity, and activity was completely lost when venom was incubated with  

0.1 M NaOH (pH~13) for 20 min at 100 °C [43]. Finally, Wiener found that although A. robustus venom 

precipitates in 80% ethanol, the precipitate readily dissolves in water and retains toxicity [43]. Thus,  

A. robustus venom, and by extension the lethal knottin peptide δ-hexatoxin-Ar1a, is stable under the 

same conditions as Hv1a: it is resistant to extremes of temperature, acidic pH, ethanol, and proteases, 

but is susceptible to degradation under highly alkaline conditions. We conclude that these are likely to 

be general properties of spider-venom knottins. 

3. Experimental Section 

3.1. Chemicals 

2-Aminoethanol and triethylphosphine were from Sigma-Aldrich (Castle Hill, NSW, Australia).  

2-Iodoethanol was from Acros Organics (Thermo Fisher Scientific, Geel, Belgium). Proteinase K was 

from Promega (Madison, WI, USA) and synthetic Hv1a was kindly supplied by Vestaron Corporation 

(Kalamazoo, MI, USA). 

3.2. Sample Treatment 

Every condition for each treatment was tested in triplicate for both native and linear Hv1a, and all 

data reported are mean ± SD. Unless otherwise stated, all samples were immediately frozen after 

treatment and then analysed via HPLC. Native Hv1a was linearised by one-step reduction and alkylation 

(RA) of the six Cys residues [48]. Toxin (1 mg) was dissolved in 450 µL of water prior to addition of  

5 µL aminoethanol, 10 µL iodoethanol, 2 µL triethylphosphine (0.1 M solution in tetrahydrofuran), and 

450 µL acetonitrile. After incubation at 37 °C for 2 h, the toxin sample was dried by vacuum 

centrifugation and the fully reduced and alkylated toxin was purified using RP-HPLC on a Shimadzu 

20A series HPLC system (Shimadzu Scientific Instruments, Rydalmere, NSW, Australia). 

All native Hv1a samples were processed using a reverse-phase analytical column (Jupiter C18, 5 µm 

particle size, 300 Å pore size, 150 × 4.6 mm; Phenomenex, Lane Cove, NSW, Australia;) on a Shimadzu 
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20A series HPLC system, with detection at 214 nm. Solvent A (0.1% formic acid in water) and solvent 

B (0.1% formic acid in 90% acetonitrile) were used at a flow rate of 1 mL/min using a gradient of 5% 

solvent B for the first 3 min, 5%–25% solvent B over the next 10 min, then 25%–80% solvent B over 

0.5 min. For all linear Hv1a samples, a VisionHT HILIC column (5 µm particle size, 150 × 4.6 mm; 

Grace, Columbia, MD, USA) was used on a Shimadzu 20A series HPLC system with HILIC-solvent A 

(0.05% triflouracetic acid (TFA) in water) and HILIC-solvent B (90% acetonitrile, 0.043% TFA in 

water). The following gradients were used for the HILIC runs: 85% HILIC solvent B for the first 3 min, 

then 85%–55% HILIC solvent B for another 6 min, then 55%–5% HILIC solvent B for 1 min followed 

by 5% HILIC solvent B for 1 min. Peptide peaks (identified from absorbance at 214 nm) were collected 

manually and molecular masses determined using MALDI mass spectrometry on a 4700 Proteomics 

Analyzer (Applied Biosystems, Foster City, CA, USA) using α-cyano-4-hydroxycinnamic acid (CHCA) 

as matrix. The fractions containing native or linear Hv1a were identified based on molecular mass and 

retention time, then the amount of intact toxin after each treatment was quantified based on peak area. 

3.3. Thermal Stability 

Thermal stability was examined by incubating native (24.7 µM) and linear Hv1a (18.7 µM) for 24 h 

at various temperatures (20, 37, 50, 75 and 95 °C). Following the respective incubation period, samples 

were immediately stored at −20 °C prior to HPLC fractionation. In order to determine whether the effect 

of high temperature is reversible for the native Hv1a, a sample was incubated for 24 h at 95 °C and then 

stored at room temperature for three days before HPLC analysis. All native and linear Hv1a amounts 

were quantified relative to their respective 20 °C sample. 

3.4. pH Stability 

Stability under varying pH conditions was assessed by incubating native (49.4 µM) and linear Hv1a 

(18.7 µM) for 24 h at room temperature in buffers of the following pH/composition (pKa values for the 

relevant species are indicated): (i) pH 1 (50 parts 0.2 M KCl plus 134 parts 0.2 M HCl); (ii) pH 4 (0.2 M 

sodium acetate, pKa 4.76); (iii) pH 7 (100 parts 0.1 M KH2PO4 plus 58.2 parts 0.1 M NaOH; pKa2 7.21); 

(iv) pH 8 (100 parts 0.1 KH2PO4 plus 93.4 parts 0.1 M NaOH; pKa2 7.21); (v) pH 9 (0.1 M Tris-HCl, 

pKa 8.07); (vi) pH 10 (966.4 parts 0.1 M Na2HPO4 plus 33.6 parts 0.1 M NaOH); (vii) pH 13 (50 parts 

0.2 M KCl plus 132 parts 0.2 M NaOH). After the incubation period, native Hv1a samples were desalted 

using a Maxi-Clean SPE column (Large Pore C18; Grace, Columbia, MD, USA) before application onto 

the C18 HPLC column. For desalting, 10 mL of 5% solvent B was used to remove salts then Hv1a was 

eluted with 10 mL of 45% solvent B and lyophilised prior to RP-HPLC analysis. All native and linear 

Hv1a amounts were quantified relative to their respective pH 7 sample. 

3.5. Chemical Stability 

The long-term stability of native (49.4 µM) and linear Hv1a (18.5 µM) in water and organic solvents 

was determined by incubation in Milli-Q water, methanol, ethanol or acetonitrile in the dark for seven 

days at room temperature. All samples were then lyophilised before HPLC analysis. The amounts of 
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native and linear Hv1a were quantified relative to a respective control sample that was incubated in 

Milli-Q water for one day. 

3.6. Proteolytic Stability 

Analysis of the Hv1a sequence using PeptideCutter [6] indicated that it contains more potential 

cleavage sites for proteinase K than any other protease examined (Figure 1C). Accordingly, native Hv1a 

(24.7 µM) was incubated in a pH 7.5 buffer (0.2 M phosphate, 5 mM CaCl2) with proteinase K added at 

a molar ratio of 1:200 (proteinase K:Hv1a). Samples were then incubated at 37 °C for 24 h. An identical 

sample of native Hv1a without proteinase K was used as a negative control and also incubated at 37 °C 

for 24 h. This sample was used as a reference (i.e., set to 100%) for the relative quantification of native 

Hv1a sample incubated in the presence of proteinase K. After the incubation period, native Hv1a samples 

were processed through a Maxi-Clean C18 column prior to HPLC (conditions see above under pH 

stability). Linear Hv1a (6.9 µM) was incubated in a pH 7.5 buffer (0.2 M phosphate, 5 mM CaCl2) with 

proteinase K added at a molar ratio of 1:200 (proteinase K:Hv1a) for a range of different time intervals 

(20 and 40 min, and 1, 2, 5, 8 and 24 h). All linear Hv1a amounts were quantified relative to a sample 

of linear Hv1a in the pH 7.5 buffer (without proteinase K) that was immediately processed through a 

Maxi-Clean C18 column prior to HPLC. All other samples were incubated for the respective incubation 

time before being cleaned through a Maxi-Clean C18 column. 

3.7. Stability in Insect Hemolymph 

Sawfly larvae (Hymenoptera, Pergidae) were collected from Regency Downs, Queensland, Australia. 

Fifth instar H. armigera larvae were purchased from AgBiTech Pty Ltd. (Clifford Gardens, Queensland, 

Australia). A 1.0 mL Terumo Insulin syringe (B-D Ultra-Fine, Terumo Medical Corporation, Somerset, 

NJ, USA) with a fixed 29 gauge needle was used to puncture the insect exoskeleton and collect the 

extruded hemolymph, which was then centrifuged at 4 °C for 10 min at 10,000 rpm to remove insoluble 

material. The pH of supernatant was measured using an Ultra M Micro Combination pH electrode  

(Van London Co., Houston, TX, USA). Native Hv1a (367 µM) and linear Hv1a (154 µM) were dissolved 

in clarified hemolymph, then the samples were incubated for 1–7 days at room temperature (~20 °C). 

Prior to HPLC analysis, all samples were processed through a Maxi-Clean SPE column. A HPLC 

chromatogram of a hemolymph-only control sample was subtracted from each HPLC chromatogram of 

the respective native or linear Hv1a samples in order to account for peaks originating from endogenous 

hemolymph compounds. All native and linear Hv1a amounts were quantified relative to a respective 

control sample that was incubated in Milli-Q water for one day. 

3.8. Stability in Human Plasma 

Native Hv1a (367 µM) or linear Hv1a (116 µM) were incubated for 1–7 days at room temperature 

(~20 °C) in pooled human plasma (Innovative Research, Novi, MI, USA). Native and linear Hv1a 

samples incubated in Milli-Q water for seven days at room temperature (~20 °C) were used as controls. 

Prior to HPLC analysis, samples were processed through a Maxi-Clean SPE column. Native and linear 

Hv1a were quantified relative to a respective control sample that was incubated in Milli-Q water for one day. 
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3.9. Statistical Analyses 

GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA) was used to determine statistically 

significant differences between native and linear Hv1a for each treatment condition using multiple t tests 

followed by a Holm-Sidak correction. p < 0.05 was defined as statistically significant. 

4. Conclusions 

We demonstrated that the insecticidal spider-venom peptide Hv1a is remarkably resistant to chemical 

degradation; the peptide is stable over the pH range 1–8, at temperatures up to 75 °C, and when dissolved 

in a range of organic solvents. Moreover, we found that Hv1a is highly resistant to proteolytic 

degradation, with outstanding stability in insect hemolymph and human plasma, and when incubated 

with proteinase K. These high levels of chemical and proteolytic resistance were completely abolished 

when the toxin’s ICK motif was destroyed by reduction and alkylation of the six cysteine residues. We 

conclude that the ICK motif, which is prevalent in spider-venom peptides, provides these toxins with 

remarkable levels of chemical, thermal, and biological stability. 

The current study also provides a guide to the range of conditions under which Hv1a could be 

formulated and used as a bioinsecticide. Our data show that formulations requiring dissolution in organic 

solvents and/or acidic conditions should not adversely affect the stability of Hv1a. Moreover, we 

demonstrated that Hv1a has a high level of thermal stability, which should facilitate its application in 

the field in high-temperature climates. 
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