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Abstract: Host plants excrete a glucosylation enzyme onto the plant surface that  

changes mycotoxins derived from fungal secondary metabolites to glucosylated  

products. Deoxynivalenol-3-glucoside (DON3G) is synthesized by grain uridine  

diphosphate-glucosyltransferase, and is found worldwide, although information on its 

toxicity is lacking. Here, we conducted growth tests and DNA microarray analysis to 

elucidate the characteristics of DON3G. The Saccharomyces cerevisiae PDR5 mutant 

strain exposed to DON3G demonstrated similar growth to the dimethyl sulfoxide control, 

and DNA microarray analysis revealed limited differences. Only 10 genes were extracted, 

and the expression profile of stress response genes was similar to that of DON, in contrast 

to metabolism genes like SER3, which encodes 3-phosphoglycerate dehydrogenase. 

Growth tests with Chlamydomonas reinhardtii also showed a similar growth rate to the 

control sample. These results suggest that DON3G has extremely low toxicity to these 

cells, and the glucosylation of mycotoxins is a useful protective mechanism not only for 

host plants, but also for other species. 
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1. Introduction 

Disease-causing fungi like Fusarium species produce type B trichothecenes, and these mycotoxins 

contaminate grains worldwide. Because these mycotoxins or fungi cause substantial economic losses, 
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pesticides are used to decrease fungal infection at cultivation. Plants possess resistance to fungi and 

mycotoxins by suppressing fungal growth and mycotoxin toxicity. To this end, some plants synthesize 

glycosyltransferases that metabolize secondary metabolites (plant secondary product glycosyltransferases; 

PSPGs) [1]. PSPGs contribute to the metabolism of pesticides or products that are secreted by 

microorganisms. However, the activity is strictly regulated by the specific structure. Thus, 

glucosyltransferase, which is a type of glycosyltransferase, has been reported to be a glucosylation 

enzyme of mycotoxins [2,3]. Recently, the existence of various glucosylated mycotoxins has been 

revealed [4]. However, at present, studies on these mycotoxins are developing; therefore, only a limited 

number of toxicity and detection studies have been reported. Some contamination studies on 

deoxynivalenol-3-glucoside (DON3G; Figure 1) have been published [5,6]. DON3G was detected at a 

level of up to 30 mol % in wheat, and up to 50 mol % in soybean, compared with DON [7]. This study 

also reported that DON3G was detected at higher levels than acetylated-DONs. Meanwhile, the same 

amount of DON3G compared with DON was detected in low-alcohol-content beer [8]. In that study, 

DON3G was also reported to be at a higher level than acetylated-DONs. Despite the contamination 

risk, glucosylated mycotoxin cannot be detected easily and is also not regulated; therefore it is often 

referred to as a masked mycotoxin.  

 

Figure 1. Deoxynivalenol-3-glucoside. 

The toxicity of DON3G varies from DON in several ways. For example, Arabidopsis thaliana 

decreases DON toxicity by expressing barley uridine diphosphate (UDP)-glucosyltransferase. In a DON 

exposure study with UDP-glucosyltransferase-inserted seeds, the level of DON3G significantly increased 

compared with the control sample in the plant extract [3]. Barley UDP-glucosyltransferase-inserted yeast 

cells also acquired DON resistance, and the level of DON3G increased in the culture media over time [2]. 

This means that regardless of the organism species, UDP-glucosyltransferase, which metabolizes DON to 

DON3G, influences mycotoxin resistance. Therefore, by secreting that enzyme onto the plant cell surface, 

feed and food products might be able to protect themselves from some, but not all, mycotoxins.  

The toxicity and risk profile of DON3G is unknown. Berthiller et al. [9] have reported that lactic 

acid bacteria, such as Enterococcus durans, Enterococcus mundtii and Lactobacillus plantarum, 

regenerate DON from DON3G by hydrolysis. In a rat feeding study with DON3G, the recovery rates 

of DON3G from the urine and feces were extremely low, and more than half of the mycotoxin recovered 

from feces was metabolized to DON [10,11]. Also, it has been reported that the microflora in the feces 

metabolize DON3G to DON in several hours, and in 1 day they metabolize it to de-epoxy-DON. 

However, the nutrient transition time from enterocytes to mammalian cells is not always the same, and 

the composition of the microflora is different depending on circumstances and/or organisms. Thus, 

intake of DON3G has a risk of DON exposure; hence, similarly to DON, DON3G is thought to be a 
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potential threat. However, the toxicity of DON3G has not gathered much attention. Plant and yeast 

studies have not elucidated sufficiently the toxic character of DON3G, though its phenotypes were 

well observed. Here, we evaluated the toxicity of DON3G using yeast and algae, and a comparison 

between type B trichothecenes was conducted to reveal their toxic character. Yeast growth and DNA 

microarray analysis demonstrated that DON3G has lower toxicity than DON and acetyl-DON, and the 

algae study suggests that DON3G has low toxicity to various species. 

2. Results 

2.1. Yeast Growth with DON3G 

The yeast PDR5 gene encodes the Pdr5 protein, which is a multidrug resistance ATP-binding 

cassette (ABC) transporter that localizes on the plasma membrane. Using a deletion mutant, it has been 

demonstrated that Pdr5 contributes to resistance against trichothecene mycotoxins [12,13]. In these 

studies, we used a PDR5 mutant, pdr5, to evaluate DON3G. Here, first, a yeast growth test was 

conducted. When 30–160 μM mycotoxins were used, DON at >80 μM caused growth inhibition 

(Figure 2a). Conversely, DON3G did not change the growth rate at any concentration, although the 

DON3G samples did not completely correspond with the control sample, which was treated with 

dimethyl sulfoxide (DMSO) (Figure 2c). Because the normal culture medium did not show an 

adequate difference, we next used growth media containing a low concentration of sodium dodecyl 

sulfate (SDS) to increase membrane permeability [14]. The growth curves with 0.01% SDS 

demonstrated that the DON exposure clearly caused growth inhibition compared with the normal 

media (Figure 2b). In contrast, even with SDS, the DON3G samples completely corresponded with 

each growth rate, although the control growth was marginally inhibited (Figure 2d). Inhibition rates of 

DON exposure samples exhibited concentration dependent growth inhibition. Conversely, DON3G did 

not cause any growth change, or was associated with slightly increased growth (Table 1). Regardless 

of the existence of SDS, DON caused significant growth inhibition (p < 0.05), whereas there was no 

growth inhibition with DON3G. The growth test results indicated that DON3G has extremely low 

toxicity against yeast cells. 

2.2. DON3G Influences a Small Number of Genes 

In the previous study, we conducted DNA microarray analysis to compare the toxicities of type B 

trichothecenes at 25 mg/kg, because the molecular weight of DON, nivalenol (NIV) and their 

acetylated products are relatively similar to each other. However, the molecular weight of DON3G is 

nearly 150% compared with the other trichothecenes used in the previous study. Therefore, we applied 

80 μM DON3G, which is a concentration that caused evident growth delay under DON exposure, and used 

the entry to yeast cells for clustering analysis. DNA microarray with t-test analysis (p < 0.05, >1.5-fold) 

between DON3G exposure and the control revealed only 10 genes. SER3, encoding 3-phosphoglycerate 

dehydrogenase, which functions in the serine/glycine biosynthesis pathway, showed decreased 

expression. Similarly, the gene expression of MCH2 (monocarboxylate permease-like protein), EEB1 

(acyl-coenzyme A), YMR230W-A, and an unknown protein also decreased after exposure to DON3G.  
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The stress response genes, ALD6, STP4, SRX1 and ECM13, were induced by DON3G. HXT2 and RGS2, 

protein coding genes that are sensitive to changes in glucose level, also were induced by DON3G (Table 2).  

 

Figure 2. Effect of Deoxynivalenol (DON) and Deoxynivalenol-3-glucoside (DON3G) on 

yeast cell growth. (a) Growth curve under DON exposure in yeast extract peptone dextrose 

(YPD) medium. (b) Growth curve under DON exposure in YPD medium containing 0.01% 

SDS. (c) Growth curve under DON3G exposure in YPD medium. (d) Growth curve under 

DON3G exposure in YPD medium containing 0.01% sodium dodecyl sulfate (SDS). A650, 

absorbance at 650 nm; SDS (+): 0.01% SDS in YPD medium; Bars = SE; n = 3. 

Table 1. Inhibitory rate (%) and inhibitory concentration of each condition. 

Medium condition Mycotoxin 
Concentrations (μM) 

IC20 * (μM) 
30 80 160 

SDS (−) 
DON 13.3 ± 0.64 ** 14.4 ± 0.15 18.9 ± 0.08 >160 

DON3G 19.7 ± 0.98 20.2 ± 0.84 19.3 ± 2.09 - *** 

SDS (+) 
DON 21.1 ± 1.58 37.4 ± 8.72 71.7 ± 13.54 30.4 

DON3G 9.7 ± 3.84 7.7 ± 1.03 2.7 ± 2.45 - 

* IC20: 20% inhibitory concentration of cell growth. The end time of log phase at DMSO was applied for 

each control of the calculation. ** ± numbers mean standard error n = 3. *** IC was not calculated because 

of unusable parameters. 
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Table 2. Significant gene expression changes revealed by DNA microarray. 

Systematic  

No. 

Gene 

Symbol 

Fold 

Change 
Gene Title Description 

YER081W SER3 0.31 3-phosphoglycerate dehydrogenase Serine and glycine biosynthesis 

YMR230W-A - 0.35 Putative protein of unknown function - 

YKL221W MCH2 0.41 
Protein with similarity to mammalian 

monocarboxylate permeases 
Monocarboxylate transport 

YPL095C EEB1 0.47 
Acyl-coenzymeA:  

ethanol O-acyltransferase 
Fatty acid ethyl ester biosynthesis 

YPL061W ALD6 2.06 Cytosolic aldehyde dehydrogenase Oxidative stress response 

YDL048C STP4 2.25 
Protein containing a Kruppel-type  

zinc-finger domain 
DNA replication stress  

YKL086W SRX1 2.57 Sulfiredoxin 
Oxidative stress resistance  

DNA replication stress 

YOR107W RGS2 3.15 
Negative regulator of glucose-induced 

cAMP signaling 
Glucose response 

YBL043W ECM13 3.39 
Non-essential protein of unknown 

function 
UVA irradiation response 

YMR011W HXT2 5.66 High-affinity glucose transporter 
Induced by low levels of glucose  

Repressed by high levels of glucose 

2.3. Real-Time Polymerase Chain Reaction Analysis 

DNA microarray produces false-positive data that correspond to the significance level. In our study, 

a commercial gene chip in which approximately 5700 target gene probes were mounted was applied, 

and the significance level was set to 5%. Under this condition, statistical analysis permits the presence 

of about 280 false-positive data. Nonetheless, only 10 gene expression changes were extracted in this 

study. To avoid false data, we confirmed the expression profiles by semi-quantitative real-time 

polymerase chain reaction (PCR) analysis. As shown in Figure 3, the genes that showed decreased 

expression after DON3G exposure did not present significant changes compared with the control samples. 

In contrast, these genes were induced by exposure to DON, indicating an opposite trend, except for MCH2, 

which showed the same trend in the real-time PCR assay. SER3 expression showed a significant difference 

between the DON condition and the DON3G condition. As for the DON3G-induced genes, DON induced 

a relatively smaller expression increase than DON3G compared with the control, and the differences were 

significant (unpaired t-test, p < 0.05). 

2.4. Clustering Analysis 

In the type B trichothecene studies, we focused on DON, NIV and their acetylated products as the 

main contaminants rather than DON3G. These compounds were the focus of our previous study in 

which we obtained microarray data using ΔPDR5 yeast cells. Therefore, we compared our previous 

microarray data with the current DON3G data. Because the sampling conditions were not identical, 

each control sample was integrated, and the clustering analysis was processed. Hierarchical clustering 

indicated that the trend of gene expression changes after DON3G exposure was similar to that after  

3-acetyl-deoxynivalenol (3AcDON) or NIV exposure (Figure 4). 
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Figure 3. Semi-quantitative analysis of DNA microarray data. Total RNA that was used in 

the DNA microarray analysis and DON-treated RNA samples were prepared for 

synthesizing cDNA templates. Bars = SE; n = 3. 

 

Figure 4. Clustering analysis of DNA microarray expression data. Except for DON3G,  

the gene expression data of DON, 3AcDON, 15AcDON, NIV and FusX [15] were applied 

by integrating the control condition samples of each condition. 

2.5. Growth Test with Algal Cells 

C. reinhardtii is a single cell green alga that is an autotroph and a heterotroph. Hence, it is used in 

photosynthesis and photoresponse studies as a model cell. It has also been used as a phytotoxicity 

evaluation model for trichothecenes, and NIV has demonstrated moderately high toxicity in these 

studies [16,17]. Sensitivity to NIV has not been reported in yeast cell studies, although a number of 

mammalian cell studies have indicated NIV sensitivity. In our yeast cell study, DON3G also did not 

exhibit significant toxicity (Figure 2). However, C. reinhardtii was anticipated to show DON3G 

sensitivity, because it has differential sensitivity to some mycotoxins. Thus, we next conducted a 

DON3G-exposure test on C. reinhardtii, and examined its growth rate (Figure 5a). 

The lighting intensity can be adjusted to a photosynthetic photon flux density (PPFD) of 400 to 700 nm, 

and at the same time the wavelength for the lighting source needs to be selected. The growth of  

C. reinhardtii does not show a significant difference between the different wavelength conditions, 
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although the red light (660 nm) contributes to the most efficient growth [17]. In this study, therefore,  

we applied red lighting. DON, acetylated DON (3-acetyl-DON; 3AcDON, 15-acetyl-DON; 15Ac-DON), 

NIV and FusX exposures were examined, as well as DON3G. The cell growth with 80 μM DON3G 

showed a similar curve to that of the DMSO control sample. All the other compounds, except 

3AcDON, demonstrated reduced growth, whereas DON exposure caused complete growth inhibition 

(Figure 5a). When cell growth was examined at the end of the log phase, DON and FusX exposure 

caused significant growth inhibition while NIV and 15AcDON exposure showed a moderate level of 

inhibition (unpaired t-test, p < 0.01, Figure 5b). Conversely, DON3G and 3AcDON did not cause cell 

growth inhibition. 

 

Figure 5. Algal cell growth test with 80 μM of mycotoxins under red light  

(120 μmol·m−2·s−1). The details of the photosynthetic photon flux density (PPFD; 

μmol·m−2·s−1) are described in the Materials and Methods. NIV, nivalenol; 3Ac-DON,  

3-acetyl-DON; 15AcDON, 15-acetyl-DON; FusX, fusarenon-X (4-acetylnivalenol).  

(a) Growth curves of each test exposure. (b) Inhibition rates of algal growth at the end of 

the log phase (144 h). Bars = SE; n = 3.  
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3. Discussion 

Mycotoxins are secondary metabolites produced by pathogenic fungi. They are often glucosylated 

by an enzymatic reaction with β-glucosyl-transferase, which is excreted by the host plant onto the plant 

surface. When glycosylated, mycotoxins exhibit considerably less toxicity; therefore, mycotoxin 

glucosylation is clearly a host plant resistance response. If a mycotoxin causes cellular damage, it is 

natural that the host plant would evolve a mechanism for decreasing the toxicity. For example, it has 

been identified in plant studies that glucosylated DON is less toxic than DON [2,3]. However, it is 

unclear whether the attenuation in toxicity by glucosylation is a plant cell-specific character, because a 

sufficient amount of refined glucosylation product is difficult to obtain for toxicity studies. DON3G 

has been synthesized by an organic chemical technique [5,18], and by a molecular biological 

technique, which is inserted into microbes or plants [19]. However, its availability for study is still 

lower than other mycotoxins; hence, this research is useful for understanding the features of DON3G. 

In our previous study, we examined gene expression changes after exposure to DON, NIV and their 

acetylated products [15]. Therefore, in this study, 80 μM, which was easy to compare with the other 

data, was used for growth tests and DNA microarray analysis. Additionally, 160 μM DON3G was 

applied to elucidate the influence of concentration change on growth. However, DON3G did not cause 

significant growth differences, as opposed to those caused by DON, especially with the addition of 

0.01% SDS to the medium. It is thought that S. cerevisiae Pdr5 is the transporter for trichothecenes 

like DON and T-2 toxin. In contrast, 3AcDON, which is the less toxic product to various cell lines,  

and NIV, which shows high toxicity to mammalian cells, are not affected by Pdr5 deletion. It is likely 

that yeast cells have a number of transporters for stress resistance. Under a multiple transporter scenario, 

it is possible that deletion of Pdr5 would not affect DON3G. 

The real-time PCR data of SER3 did not indicate a significant difference between the control and 

DON3G treatment, whereas the DNA microarray data did, demonstrating a slight decrease; thus, it 

seems that SER3 expression may not have changed in response to DON3G exposure as expected from 

the microarray result. On the other hand, SER3 was significantly induced by DON exposure; hence, the 

gene expression patterns after DON and DON3G exposure were different. YMR230W-A and EEB1 

had a similar expression trends; however, the differences between the treatments were lower than that 

of SER3. The other tested genes showed similar expression patterns between DON and DON3G, 

although the expression levels were different. Taken together, the gene expression pattern of SER3 may 

be useful for discriminating the toxicity differences between DON and DON3G. 3-Phospho-glycerate 

dehydrogenase, encoded by SER3, plays a role in the metabolism of 3-phospho-glycerate derived from 

the glycolytic system. As the gene expression profile of the glycolytic system changes as a result of 

mycotoxin exposure [20], the change in expression of SER3 may be attributable to that influence. 

However, the induction level of HXT2, which encodes a glucose transporter induced by low glucose 

conditions, was higher by DON3G than by DON. Generally, it is thought that the DON-induced gene 

expression change is larger than that of DON3G; hence, the gene expression pattern of HXT2 is also 

valuable. Most of the detected genes do not encode proteins that localize in mitochondria. Inhibition of 

mitochondrial function causes cell death, which is easy to observe at lethal toxic agent exposures.  

In fact, highly toxic type B trichothecenes like DON decrease the expression of mitochondria ribosomal 

genes [15]. Meanwhile, less toxic mycotoxins like 3AcDON or NIV do not cause such radical 
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expression patterns. Taken together, the data show that DON3G does not affect critical metabolic 

functions. Robust function of mitochondria might be a key point of the more highly induced genes 

after DON3G exposure compared with that of DON. However, more detailed information is necessary 

to elucidate the results of reverse-transcription PCR. A DON trap model by the yeast cell wall layer 

has been reported [21]. Moreover, DON3G has a larger molecular weight and a different structure than 

DON. Therefore, it is possible that the trap efficiency is different. However, we cannot exclude the 

possibility that DON3G affects intercellular components, because DNA stress response genes were 

induced, and cellular metabolism genes like SER3 were repressed. Nevertheless, the stress response 

was significantly limited, suggesting only a marginal strain. Thus, the role of these genes in this study 

remains unresolved. Clarifying their role will elucidate the cellular response mechanism to the toxicity 

of DON3G. When compared with other type B trichothecene mycotoxins, DON3G belonged to the 

low toxicity cluster, which includes 3AcDON and NIV, suggesting that DON3G has a different 

character from the highly toxic mycotoxins DON, 15AcDON and FusX. Taken together, these results 

indicate that the toxicity of DON3G to yeast cells is low. 

The toxicity of DON3G to C. reinhardtii was also not significant. C. reinhardtii is more sensitive to 

type B trichothecene mycotoxins than yeast; especially NIV, which caused significant growth inhibition 

in the toxicity study. This character is similar to that of mammalian cell lines. Moreover, C. reinhardtii is 

a model cell for photo reactions or photosynthesis [22]. Additionally, C. reinhardtii is sensitive to 

continuously high intensity of light, fast water flow, and somewhat high concentrations of DMSO [23]. 

Regardless, the toxicity to C. reinhardtii corresponded to that of yeast. It has been reported that 

glucosylation of mycotoxins contributes to the attenuation of toxicity [3]. Therefore, considering the 

results of this study, it appears that the attenuation effect is not exclusive to host plants. 

Finally, there are some concerns. Barley UDP-glucosyltransferase-introduced A. thaliana increases 

the resistance to DON [3]. On the other hand, when measuring lethality (LD50) using A. thaliana leaf, 

the toxicity of both NIV and FusX was low, while DON and 3AcDON showed a similar level of 

toxicity [24]. Many studies using mammalian or yeast cells indicated a difference between DON and 

3AcDON, and yeast cells were sensitive to FusX but not to NIV. Conversely, NIV sensitivity has been 

reported in a study using mammalian cells. It is apparent that sensitivity to mycotoxins depends on the 

species. Therefore, toxicity evaluation of glucosylated mycotoxins to different species and cell lines is 

even more necessary. 

There are several recent reports regarding glucosylated and other masked mycotoxins [25–27].  

It is thought that the stress response of the host plant functions to attenuate the toxicity of various 

mycotoxins. Mycotoxin-derived cellular lesions are important for fungal invasion of host plants; 

hence, glucosylation may well be one component of the plant’s antifungal resistance arsenal. Because 

of their abundance and potential risk, glucosylated mycotoxins will be the subject of increased study in 

the near future. 
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4. Materials and Methods 

4.1. Chemicals 

Commercial products of the mycotoxins, deoxynivalenol (DON; Santa Cruz, Dallas, TX, USA), 

NIV (Wako, Osaka, Japan), 3AcDON (Sigma, St. Louis, MO, USA), 15AcDON (Santa Cruz),  

FusX (Sigma) and DON3G (Wako) were dissolved in DMSO (Wako) to prepare sample solutions. 

4.2. Biomaterials 

A glycerol stock of yeast Saccharomyces cerevisiae pdr5—plasma membrane ABC transporter 

Pdr5 deletion mutant strain of S. cerevisiae BY4743 (MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 

LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0; Open Biosystems, Huntsville, AL, USA)—was thawed, 

and cells were transferred by an inoculation needle into 5 mL of YPD medium (1% yeast extract,  

2% peptone, and 2% dextrose) in glass tubes. Triplet samples were pre-incubated with 150 rpm 

rotation at 25°C for 2 days. Chlamydomonas reinhardtii wild-type strain 137C was provided by  

Prof. M. Tsuzuki (Department of Applied Life Science, Tokyo University of Pharmacy and Life 

Science, Tokyo, Japan). Algal cells were picked from a slant culture on Tris-acetate-phosphate (TAP) 

medium agar [28] and were inoculated into 100 mL of TAP medium. Culture media were  

pre-incubated with 100 rpm rotation at 25°C, and constant lighting for at least 3 days. 

4.3. Yeast Growth 

Pre-incubated S. cerevisiae PDR5 mutant was diluted in YPD medium. At approximately OD650 = 0.01, 

the cell culture containing DON, DON3G or DMSO was dispensed into a 96-well plate. Each volume of 

mycotoxin was adjusted by adding DMSO. SDS was also added into culture media, and test plates 

were incubated at 25 °C. Optical density, which indicates growth rate, was measured by a plate reader 

(Filter Max F5, Molecular Devices, Sunnyvale, CA, USA). For measuring the inhibition rate of cell 

growth, each sum of area under the growth curve was calculated until the time that corresponded to the 

end of the log phase of growth of the control sample (36 h), and it was divided by that of DMSO data, 

which was set as a control. Inhibition rates were tested by unpaired t-test analysis (p < 0.05) compared 

with DMSO control, respectively. Twenty percent of inhibition concentration (IC20) was calculated by 

using asymptotic line that was derived from time dependent inhibition rates.  

4.4. DNA Microarray Analysis 

Pre-incubated cultures were diluted to OD650 of about 0.85–1.0. Cultures were centrifuged at 1580× 

g for 5 min, and cell pellets were prepared for the RNA study. Total RNA was prepared using a 

commercial kit (FastRNA Pro Red kit, MP Biomedicals, Irvine, CA, USA) following the supplier’s 

instructions. Contaminated genomic DNA was removed by RNeasy mini kit (Qiagen, Venlo,  

The Netherlands). The quality of the total RNA was evaluated with a nucleic acid analyzer (Experion,  

Bio-Rad, Hercules, CA, USA). RNA samples were used for synthesizing labeled RNA with 3’IVT 

Express kit, and DNA microarrays (GeneChip Yeast Genome 2.0 array) were processed according to 

the manufacturer’s instructions (Affymetrix, Santa Clara, CA, USA). The DNA microarray data were 
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transferred into GeneSpring analysis software (ver. 12, Agilent Technologies, Santa Clara, CA, USA). 

Cluster analyses were performed for each condition. After using the MAS5 algorithm to obtain 

summarized probeset-level expression data, the average expression of triplicates was normalized to the 

control condition. An unpaired t-test was used for statistical analysis, and significant differences in 

gene expression were selected using a p value < 0.05. To avoid detection of false positives, a multiple 

testing correction (Benjamini-Hochberg FDR) was applied to obtain corrected p values. Each character 

of a selected gene was confirmed according to the Saccharomyces Genome Database (SGD; 

http://www.yeastgenome.org/). The microarray data set has been assigned the accession number, 

GSE63663, in the Gene Expression Omnibus Database (GEO; http://www.ncbi.nlm.nih.gov/geo/). 

4.5. Real-Time PCR Analysis 

One microgram of genomic DNA-free total RNA, which was used for the microarray analysis, was 

reverse transcribed (PrimeScript first cDNA synthesis kit, Takara Bio, Shiga, Japan). Similarly treated 

DON-exposed samples were also prepared. First strand cDNA was diluted five times with Tris-EDTA, 

pH 8.0. Each 1 μL of cDNA solution was used as a DNA template. Primer sets were designed on 

primer3 (Table 3). The primer set of ACT1, which encodes the actin protein, was used for internal 

control, and the PDR5 primer set was used for negative control. The ACT1 primer set, which has been 

previously reported [29], was prepared. The same volume of mycotoxin-treated sample templates was 

also dispensed on the plate. A total of 19 μL of reaction mix [0.4 μL of 10 μM primer each, 8.2 μL of 

distilled water, 10 μL of 2× Master mix (KAPA SYBR FAST qPCR kit, Kapa Biosystems, Woburn, 

MA, USA)] was added into a PCR plate. Sample plates were processed at 95 °C for 2 min, followed by 

40 cycles of 95 °C for 3 s and 60 °C for 20 s in a thermal cycler (MX3000P, Agilent Technologies, 

Santa Clara, CA, USA). The amplified ACT1 product was used as an internal control, and each 

triplicate was averaged. Unpaired t-test analyses were conducted between control and DON3G samples 

(p < 0.05). One-way analysis of variance analyses were also conducted between control, DON, and 

DON3G samples (p < 0.05) to consider gene expressions of DON. 

4.6. C. reinhardtii Growth 

Light-emitting diode (LED) conditions were manually constructed on an LED platform (SPL-100-CC; 

Revox, Kanagawa, Japan) with red (660 nm) diodes, and the photon flux density was modulated by a 

pulse-width modulation dimmer controller. The spectrum of LED irradiation was measured by an 

illuminance spectrophotometer (CL-500A; Konica Minolta, Tokyo, Japan) as irradiances (W/m2). The total 

irradiances of spectra from 400 to 700 nm were counted and the PPFD of each spectrum condition was 

calculated with the following formula: PPFD (μmol·m−2·s−1) = [irradiance (W/m2) × spectrum (m) × 10−9]/ 

[Planck’s constant (6.626 × 10−34; J.s) × speed of light (2.998 × 108; m/s) × Avogadro constant 

(6.022×1023; mol−1)] × 106. Mycotoxins were added into TAP medium at a final concentration of  

80 μM. The same volume of DMSO was added as a control. For measuring the inhibition rate of cell 

growth, each sum of area under the growth curve was calculated until the time that corresponded to the 

end of the log phase of growth of the control sample (144 h), and it was divided by that of DMSO data, 

which was set as a control. Inhibition rates were tested by unpaired t-test analysis (p < 0.05) compared 

with DMSO control, respectively. 

http://www.ncbi.nlm.nih.gov/geo/
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Table 3. Primer sets for real-time PCR. 

Gene symbol Direction Sequence Product size (bp) 

SER3 
forward TCACCAAAATGTACCAGGTGT 

227 
reverse TGACAGTATGAGAATCGATTGCA 

YMR230W-A 
forward GGATGTGTTACGATGCAGACA 

170 
reverse ATATGGCGCGTTCTTGAAGG 

MCH2 
forward CGTGGGTTTTGCGTACTTTG 

194 
reverse GTGACCTTTAGACTCTCCTAGGT 

EEB1 
forward TCCAGTTACAGGTGAAAACGT 

164 
reverse ACTCATCAAAGCTGCCCAAG 

ALD6 
forward AGATGTTGAAGGCCGGTACC 

185 
reverse TGACGGAAAGAAATGCAGGT 

STP4 
forward TTTGCATTTCGAGTACCCGC 

183 
reverse TGTGTGTATGTATGAGTCGGTG 

SRX1 
forward CTGGGCGTGCGAGTCAAG 

176 
reverse ATGTCGAGACTGCTGCCC 

RGS2 
forward AGGAATTCTCAACTCGGGGA 

173 
reverse TCCACAGATGATGAAGAGGCT 

ECM13 
forward CGAGCAGACGGATGAACTTG 

214 
reverse TACGGAACCATCGTCGACAT 

HXT2 
forward GGGTATGTCTTCATGGGCTGT 

180 
reverse TATAATCTCTTATTCCTCGGAAACTC 

PDR5 
forward ACAGTGAGAGATGGAGAAATTATGG 

170 
reverse GTCCATCTTGGTAAGTTTCTTTTCTT 

ACT1 
forward ATTGCCGAAAGAATGCAAAAGG 

220 
reverse CGCACAAAAGCAGAGATTAGAAACA 
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