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Abstract: Scorpions, at least the species of the family Buthidæ whose venoms are better 

known, appear as animals that have evolved very little over time. The composition of their 

venoms is relatively simple as most toxins have a common structural motif that is found in 

other venoms from primitive species. Moreover, all the scorpion venom toxins principally 

act on membrane ionic channels of excitable cells. The results of recent works lead to the 

conclusion that in scorpions there is a close relationship between venomous function and 

innate immune function both remarkably efficient. 
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1. Scorpions: Biology and Physiology 

Scorpions belong to the phylum Arthropods, subphylum Chelicerata. Appearing at the Silurian  

(450 millions years), these arthropods are considered as the most ancient terrestrial animals [1].  

They represent an order comprising only nearly 2000 species (compared to 44,000 spider species or 

about 1,000,000 insects). All the species of this small and tiny order are venomous. Moreover they 

possess some unique characteristics regarding their physiology as well as pertaining to the composition 

and the effects of their venoms. These characteristics principally concern the family Buthidæ,  
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the medically most important and remarkable. The non-Buthids (previously ―Chactoids‖) are medically 

less important and, hence, studied to a lesser extent. All scorpions have a circulating hemocyanin, a 

respiratory cuproprotein, which is able to reversibly bind with oxygen. The scorpion hemocyanins 

possess a triple enzymatic function, pseudo-catalasic, peroxydasic and superoxide-dismutasic [2–4].  

The scorpion hemocyanins are also likely to have an antimicrobial activity due to these multiple 

oxidative enzymatic functions [5].  

The family Buthidæ presents some surprising capacities of resistance to environmental stressors [6]: 

resistance to dehydration, to microbial infections, and to ionizing radiations (gamma rays).  

Its resistance to dehydration is important as an important increase in blood osmolarity of at least  

600 mosmoles and more, can take place, which is twice or more the usual osmolarity. The good resistance 

to bacterial infections is probably due to the constitutive presence of defensins in the blood [7].  

The resistance to ionizing radiations is not yet explained [8].  

Scorpions are usually gendered, i.e., males or females. Mating usually occurs in the spring season, 

when temperatures rise and days get longer, in the Northern hemisphere in the month of April. Most 

often the gestation lasts three or four months depending on the temperature and on the food resources.  

For African species of the genus Androctonus, females must undergo a thermal peak of 34 °C before 

parturition. Some species are parthenogenetic: males can be found but they are very rare (species of the 

genera Buthacus and Tityus for example). Pullus that hatch have some morphological differences to the 

adults. Just after birth, they climb up the back of their mother and molt simultaneously after a few 

days. They get rid of some sort of common envelope. After this they have the morphology of miniature 

adults differing only by the absence of sexual maturity. After a series of molts, usually seven,  

they reach adulthood and are then able to reproduce. Some rare post-imaginal molts are observed.  

Some scorpion species can easily adapt to anthropic environments provided they can find food, 

generally other small arthropods (insects, millipedes, and woodlice). If the scorpion species is 

harmless, annoyance is modest, but if it is dangerous, medical risk is present, especially for children. In 

North Africa, scorpions often live in gardens and can enter homes: the gardens offer shelter in the form 

of, for example, certain plants, such as prickly pears or climber plants. Additionally, these houses are 

sometimes not well maintained, with crevices in their walls in which scorpions can hide. Sometimes, 

urban hygiene is neglected, which can indirectly provide protection and food for scorpions, which can 

lead to ―domestic stings‖ as a consequence. However, it is possible that an urban environment favors 

the development of new scorpion populations. In France, the construction of the Midi Channel in the 

18th century between the Mediterranean Sea and the Atlantic Ocean, along the river Garonne, favored 

the migration of the harmless species Euscorpius flavicaudis from the Mediterranean coast to the 

Atlantic coast, and allowed it to spread in the cities along the river Garonne, from Sete to Bordeaux, 

due to the barges which involuntarily transported scorpions. Bordeaux is now colonized with this little 

black scorpion sometimes found in wine cellars. In Argentina and in Brazil, the situation is quite 

different. Large cities (Buenos Aires, Argentina, Brasilia or Sao Paulo, Brazil) are inhabited by 

parthenogenetic species of the dangerous genus Tityus sp., T. trivittatus in Argentina, and T. serrulatus 

in Brazil. These species are consumers of cockroaches settled in buildings, and so food is abundant. 

Scorpions were probably involuntarily transported by various vehicles (cars, trucks). And now, as all 

the Tityus species are considered dangerous, Brasilia as well as Buenos Aires are faced with a real 

problem of public health.  
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Scorpions have small ventral appendages, combs, near the genital orifice, which is the remarkable 

characteristic of the order. For some authors the presence of combs is a sufficient character to consider 

this order to be monophyletic. The combs, articulated and mobile, are provided with tactil receptors and 

chemoreceptors [9]. However, they do not seem to have receptors sensitive to humidity as presumed 

sometimes. Track combs and pulmonary stomata are visible for all the Carboniferous species, which 

are therefore considered to have pulmonary breathing. In the Silurian, neither pulmonary stomata nor 

the tracks of combs are visible. Perhaps these ancient scorpions were once marine organisms. Hence, there 

has often been a confusion of Gigantostracea and scorpions because of their external morphological 

similarity. The Gigantostracea were large marine animals (1.50 m and more). However, the absence of 

visible combs on fossils currently available does not allow them to be considered as scorpions.  

All the scorpions fluoresce under UV light. The whole body is fluorescent, not just certain parts of 

the body (joints) as is the case for, e.g., ―camel spiders‖ (Solifugæ). The nature of the fluorescent pigments 

is known: two pigments have been identified, a derivative of carboline and a derivative of coumarine [10]. 

Exuviæ are fluorescent as well, and pullus do not produce fluorescence prior to their common molt. 

This feature allows easy the collection of scorpions, as they are nocturnal animals. The UV lamp is 

also a measure of security in areas harbouring dangerous species. The physiological role of this 

fluorescence is still discussed.  

Internal insemination is performed after a delay, which is sometimes short (about 15–20 min) or 

often long (more than 24 h), a time during which the male, taking the female by the claws with its 

claws, drives the female into a sort of dance. The male puts down a spermatophore containing a small 

pocket with the sperm on a plane surface, then it puts the female onto the spermatophore which 

penetrates the genital tract of the female. When breeding, a female who has been mated is no longer 

attractive to males (Androctonus sp.). In nature, it is not clear whether this phenomenon exists, given 

the density of scorpions observed in some territories, which implies the existence of several litters for a 

female species during its lifetime. So, it is known that female scorpions can keep some living sperm 

reserves in their genital tract. The number of pullus of a litter varies from one species to another, from 

sometimes about twenty (Euscorpius sp., Euscorpiidæ), to sometimes slightly more (Pandinus sp., 

Scorpionidæ) to up to more than one hundred pullus (Androctonus sp., Buthidæ). All the pullus appear in 

the same night (Androctonus sp.), sometimes during several successive nights (Pandinus sp.). Adult sizes 

vary according to the species. Some species are small, about 1 cm (Microbuthus, Orthochirus, Buthidæ), 

other can reach 10 cm or more (Androctonus). The giant of the scorpions, Pandinus imperator, is also 

the giant of terrestrial arthropods with a maximal length of 25 cm. The lifetime of scorpions is often 

inversely proportional to their size. The duration of intervals between moltings is also variable, according 

to temperature and nutrition. Species of the smaller genera, such as Euscorpius sp., have a life span of one 

or two years, on the other hand, Androctonus sp., which have a relatively large size, live for about 8 years, 

and Pandinus imperator are likely to live for more than 10 years.  

The determination of scorpions is not easy. Morphological characters can indeed give rise to small 

but continuous changes, especially when the distribution of the species is large, which is not frequent 

because the rate of endemicity of scorpion species is high. The case of the European and North-African 

species Buthus occitanus is a good illustration. In the countries of North Africa, some morphological 

differences between the western forms (Morocco) and the eastern forms (Tunisia) suggest that they 

might be different species. However when collecting specimens in neighboring stations, a continuous 
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gradient of variations is observed and the definition of species or subspecies is very difficult or even 

impossible. This is why it is important that the systematics of scorpions relies on molecular data that 

have contributed to the identification of many new families. Thus, according to the authors, the 

previous number of six or seven families should be increased to fifteen or more [9,11,12]. However, 

the authors’ opinion is that the Buthidæ family remains the most important both in number of species 

and best known species from a medical point of view [13]. Because of the large number of species, 

some attempts for dividing this large family into subfamilies have been proposed. The first attempt as a 

description of subfamilies based on biogeographical criteria, this, however, was not further persued.  

A clearer attempt based on both morphological and immunochemical criteria was unsuccessful, 

probably due to the too small sample size of scorpions [14]. 

It is rare to observe epizootic diseases in scorpion breedings as it can be seen, for example, in 

―breeding forages‖ of crickets. Scorpions of the Buthidæ family are remarkably resistant to bacterial 

infections. This resistance was discovered by Morel [15] and then confirmed by Cociancich et al. [7]. 

It was interpreted as a result of the constitutive presence of defensins in scorpion blood. However, with 

the resistance of scorpions being far higher than the resistance of insects, it is likely that other 

unknown antibacterial factors are involved. However, scorpions are sensitive to certain rickettsiæ, 

which are easily transmitted from an infected mother to her offspring. Breedings can also be invaded 

by small mites whose presence could be a sign of bad physiological state. 

2. Scorpions: The Venomous Function  

2.1. The Venom Gland 

The venom gland is derived from a differentiation of the last segment of the post-abdomen (telson), 

in a post-anal position. It does not develop from a pre-existing organ into a secondarily differentiated 

venom gland, as is the case in animals with an oral venomous apparatus (spiders, snakes) or with a 

glandular skin apparatus (fish, platypus). The telson is internally covered by a simple endoderm 

without specific differentiation and harbours two terminal nerve branches of the ventral nervous chain. 

Given these facts, it can be expected that the composition of the venom is simple in so ancient animals, 

with a similar stucture of the different toxins, which can also be found in the venom of other ancient 

venomous animals. Indeed, the structure and the effects of the toxins of Buthidæ scorpions are similar. 

2.2. The Structure of the Venom Toxins 

All scorpion toxins are composed of a short chain of aminoacid residues. There are short toxins  

(30–40 aminoacids) and long toxins (about 60 aminoacids). Short toxins possess a common stuctural 

motif termed ―CSab‖, ―Cystein Stabilized alpha-beta‖ motif, consisting of three disulfide bridges, two 

of which connect the alpha helix and the beta sheet, the third connecting the alpha helix and the  

C-terminus of the proteic chain. Long toxins contain a fourth disulfide bridge, which connects the two 

extremities of the proteic chain. Hence, the core of long toxins is identical to the short toxin as it also 

contains the CSab motif. To date, long toxins seem to have been found only in Buthidæ venoms. 

The pattern CSab is not only found in scorpion venom toxins but also in a particular type of 

antimicrobial peptide (AMP), the defensins, always present in the blood of scorpions, which is 
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considered to be ―constitutive‖. Generally, they are inducible in insects, but insect defensins and 

scorpion defensins belong to the same molecular group raising the question of a common ancestor in 

scorpions for the neurotoxins and the defensins [7]. 

The hemolymph of the North African dangerous scorpion Androctonus australis contains an AMP 

termed ―androctonin‖ with a peptidic chain of 25 aminoacids and two disulfide bridges. The structure 

of androctonin has a relationship with a curarizing cone venom toxin, the a-neurotoxin SII, which is a 

blocker of the nicotinic acetylcholinereceptor. It has been observed that the androctonin and the cone 

venom toxin SII both have a comparable affinity to the Torpedo nicotinic acetylcholine receptor [16]. 

It must be noted that the short neurotoxins with two disulfide bridges are common in many venoms: 

apamin and MCD peptide (bees), conotoxines (cones), and sarafotoxins (snakes genus Atractaspis). 

This observation gave rise to the following remark by Zhu et al.: ―Our finding might also be important 

in considering toxicity of antibacterial defensins as drugs‖ [17]. 

2.3. The Venom Effects 

The toxicity of the Buthid venoms is due to toxins acting essentially on ionic channels of the 

membrane cells of the excitable tissues, in particular on nerves for long toxins and on many tissues for 

short toxins.  

(i) The long toxins act on sodium channels and are principally responsible for the envenoming 

symptomatology. There are two types of long toxins, alpha and beta, according to their mechanism of 

action. The alpha-type toxins are found almost exclusively in the venom of Paleotropical scorpion 

species. They inhibit the phase of inactivation of the action potential and bind to Site 3 of the Na
+
 

channel. The beta-type toxins are exclusively found in the venoms of Neotropical species. They reduce 

the excitability threshold of membrane excitable cells and bind to a different site, Site 4 (Table 1). In 

the Buthidæ venoms, only one type of long toxins is generally found, either alpha or beta. Therefore 

the scorpion venoms allow the identification of two different (of the seven now recognized) sites on 

the channel sodium. Mollusc and amphibian venoms can identify other specific sites (Table 1). 

Generally, insect-toxins are paralyzing. The ―flaccid‖ ones are similar to the alpha-type toxins and 

provoke a flaccid paralysis, the ―spastic‖ toxins act like mammalian beta-toxins and provoke a  

spastic paralysis.  

(ii) The short toxins are principally active on membrane cell potassium channels or chloride 

channels and are present in small quantities in the venoms (about 0.2% of the dry venom for the short 

toxins blocking potassium channels). They are found in all scorpion venoms studied, including both 

the Buthidæ family and the non-Buthidæ families, and have been extensively studied, as potassium 

channels are ubiquitously distributed throughout the simplest to the most advanced living beings. Short 

toxins acting on potassium channels are numerous: a total of over 200 KTx oligonucleotides or peptide 

sequences isolated from scorpion venoms are referenced in the data bank UniProtKB [18]. They 

constitute a superfamily of toxins divided into two main families based on their primary structure and 

their specificity: the voltage-dependant toxins and the ligand-dependant toxins [19]. Several 

subfamilies are currently distinguished: the a-KT toxins include short and ultra-short toxins  

(26–40 aminoacids), the b-KTx include long chains (50 aminoacids or more). There are also the 

particular k-toxins (hefantoxins) from the venom of the Indian Scorpionidæ Heterometrus fulvipes [20]. 
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All the toxins blocking potassium channels are cross-linked by three disulfide bridges (rarely four) 

with the motif CSab, which is also found in defensins. These toxins are devoid of toxicity in mammals 

unless they are injected by intracerebral route, in which case they provoke convulsions. Many of them 

can be synthetized chemically or by genetic engineering. The structural flexibility of the toxin blockers 

of potassium channels and the K
+
 channel are important factors in the specificity of the intractions of 

the toxin with the channel [21]. In fact, for some authors, it is always a lysine side chain which blocks 

the K
+
 channels, irrespective of its position in the toxin sequence [22]. 

Table 1. Sites of ligand binding and effect on sodium channels of some toxins and venom 

toxins according to Legros [13]. 

Site Toxins Effects 

1 Tetrodotoxin Saxitoxin μ-Conotoxin GIIIa Blocking ionic conductance 

2 Batrachotoxin Veratridin Aconitin Permanent activation 

3 Scorpion toxins-type Inhibition of inactivation 

4 Scorpion toxins-type Decrease of activation threshold 

5 Brevetoxins Ciguatoxins Facilitation of activation and Inhibition of inactivation 

6 d-Conotoxins Slowing of inactivation 

7 Pyrethroids Decrease of activation threshold Slowing of inactivation 

Among the short toxins, chlorotoxin is very interesting because of its possible medical applications. 

It was initially discovered by DeBin & Strichartz [23,24] in the venom of the African and Oriental 

dangerous scorpion Leiurus quinquestriatus, but was also identified in the venom of other  

Buthidæ [25]. Rapidly, the therapeutic interest of the scorpion venom chlorotoxin was reported [26], 

and the chlorotoxin was synthetized under the name of TM-601 [27]. Glioma are dangerous cerebral 

tumors with a median survival time of around 15 months with usual recurrences after a surgical 

resection followed by a radiotherapy [28]. A patent requested in 1996 was accepted in 2013 [29], and 

Phase 1 clinical tries were undertaken several years ago [30]. The TM-601 also possesses an 

antiangiogenic effect, which is important as it also reduces the secretion of metalloproteases-2 [31].  

To summarize, as stated by Sunagar et al. [32], in contrast to snake venoms rich in enzymatic 

toxins, scorpion venoms are dominated by peptide toxins of long or shorter chains, all having the CSab 

motif compatible with a great number of effects: toxins active on sodium channels (two types,  

alpha and beta), potassium channels—a family with a great diversity—and also chloride channels. 

Most of the scorpion toxins have the common motif ―CSab‖, which raises the important question of 

a common ancestor for venom toxins and defensins, as defensins and toxins share a similar molecular 

weight and a consensus sequence [7].  

The Buthidæ venoms are poor in enzymes. Only a hyluronidase and recently a metalloprotease have 

been identified in their venoms. The venoms of non-Buthidæ contain many other enzymes, but 

generally their stings are not dangerous for humans, except for the sting of Hemiscorpius lepturus 

(Hemiscorpiidæ) from Iran. The experimental toxicity of Buthidæ venoms varies according to the 

species. There is a good correlation between experimental tests and epidemiological observations.  

The toxicity of the scorpion venoms (LD 50 to mice) varies from 0.25 to 0.70 mg/kg [33].  

Of course, the purified long toxins are more active: however, their toxicity is by far lower than the 

toxicity of bacterial toxins, in particular the clostridial toxins (Table 2).  
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Table 2. Compared toxicities of some toxins and toxic agents, according to Mebs [34]. 

Toxins LD50 (g/kg) Mr 

Botulinic toxin 0.00026 150,000 

Batrachotoxin (amphibians) 2 538 * 

Tetrodotoxin (fish) 9 319 * 

Scorpions (Buthidæ) 10 7,000 

Taipoxin (Elapid snake) 2 46,000 

Notexin (Elapid snake) 25 13,500 

α-neurotoxins (Elapid snake) 75 7,800 

d-tubocurarine (Plant) 200 696 * 

Numbers with asterisks are alkaloids. Other toxins are venomous proteins. 

The toxicity of the other toxins is more difficult to evaluate. The short toxins acting on potassium 

channels bind many cellular types, not only the excitable cells but also other cellular types such as 

leucocytes or hepatocytes. However, they do not seem toxic for mammals, except if injected by 

intrecerebral route. They are currently considered as potentiating agents of long toxins. Long toxins, 

which are responsible for the symptomatology of the scorpion envenomings, do not cross the blood brain 

barrier: the scorpion envenomings primarily affect peripheral nerve fibers and not nerve centers [35]. 

Short toxins do not seem to participate in the development of the symptoms of the envenomings, at 

least in mammals. However, sodium, potassium, and chloride channels are modified in their 

functioning or even blocked by their specific toxins. And as the potassium channels are largely 

distributed in the organism, the scorpion venom toxins blocking the potassium channels have been 

extensively studied. 

After snakes, the scorpions represent the most dangerous venomous animals for humans, especially 

for children and young adolescents. The serotherapy for the treatment of scorpion stings has been 

discussed [13]. Epidemiological surveys suggest that man is particularly sensitive to scorpion Buthidæ 

venoms if the annual number of stings and the lethality are taken in account [36]. The most toxic 

venoms are those of the Buthidæ Androctonus sp. and Leiurus quinquestriatus (paleotropical species), 

Tityus sp. and Centruroides sp. (Neotropical species). It may be recalled that the lethal doses of their 

venoms in mice are about 0.25–0.30 mg/kg [33]. Long toxins, which are more powerful and present in 

an amount of about 4% of the dry weight of the venom are among the most dangerous for mammals 

(Table 2). 

2.4. Discussion 

The following questions come to mind: do other venoms contain toxins with a similar structure and 

do they have the same effects? The answer is affirmative: toxins with similar structures and functions 

are also found in the Cnidæ venoms. They are also active on membrane ion channels, especially 

sodium channels. The motif CSab is also found in the venom toxins of Cnidæ. It should also be noted 

that even though scorpions are among the most ancient terrestrial arthropods, the phylum Cnidæ 

appeared a long time before that, in the Cambrian. Cnidæ are at the forefront of primitive species of 

the living world. This model of toxins is also found in spider venoms, but their toxins often possess a 

slightly different ICK motif (Inhibitor Cystein Knot) near the CSab motif. Some snake venoms 
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(Crotalus durissus terrificus, Crotalinæ) contain a myotoxin akin to the defensins, the crotamine  

(Crt) [37], which Fry believes belongs to the group of the most ancient snake venom proteins [38]. 

And, like the defensins, Crt shares the CSab motif and interacts with membrane lipids: the structure 

and the properties of Crt and vertebrate defensins hBD-2 type are homologous [39]. Venomous snakes 

are now considered to be primitive snakes: more generally, the venomous function in snakes is 

regressive. Besides, the family of CRISPs peptides (Cystein Rich Secreted Proteins) has diversified into 

many venom toxins. According to Fry (2005): ―the toxin types where the ancestral protein was extensively 

cystein cross-linked were the ones that flourished into functionally diverse, novel toxin multigene 

families‖ [38]. As Crt belongs to the CRISPs, the structural relationship between venom toxins and 

defensins also concerns venomous snakes [39]. 

A next question is then raised: are there any other venoms, the toxins of which are structurally 

related to defensins? The answer is again affirmative: the venom of platypus. Only the platypus males 

are venomous and only produce venom during the mating phase. The majority of toxins in this venom 

has a similar structure to that of defensins [40], more precisely the structure of vertebrate defensins. 

Therefore, the structural relationship between venom toxins and defensins does not only concern 

scorpions, but also venomous vertebrates, snakes, and platypus. 

These results support the hypothesis of Dufton [41] who believes that primitive mammals were 

originally venomous which gave them a small initial selective advantage. Indeed, the current living 

venomous mammals (monotremes, insectivores) are considered primitive forms of mammals. Given all 

these results, it is conceivable that the venomous function and the innate immunity are closely related, 

and, therefore, the scorpion venom toxins and the defensins would have a common ancestor. This is 

precisely the result of the paper of Cao et al. [42] who write: ―Remarkably, our results not only point 

to the monophyly of the neurotoxin and defensin genes in Mesobuthus martensii, but it is most likely 

that Na
+
-Toxins diverged first from the common ancestor of K

+
-Toxins, Cl-Toxins and defensin genes 

that subsequently diversified and formed separate families‖. Considering this paper, Andreotti and 

Sabatier [43] have noted that the results of Cao et al. [42] explain the fact that scorpions are not 

sensitive to their own venom as demonstrated by Legros et al. [44]. 

This generalization is plausible even if some molecular data are still lacking for many toxins:  

Zhu et al. (2014) have recently obtained the experimental conversion of a defensin in a neurotoxin [45]. 

In fact the existence of an antibacterial scorpion peptide with a similar structure to a curarizing cone 

toxin that presents the same curarizing activity already was known [16]. Conceptually, in the 

hypothesis of a venomous function ensuring animal protection, a differentiation of the basic protective 

self-function into a venomous function raises no intellectual objection. The hypothesis of the 

involvement of the venomous function in nutrition, especially in carnivorous predator species, would 

become an additional differentiation, as venoms could be important in the survivability of primitive 

venomous mammal species, as suggested by Dufton [41]. 

Scorpions, which are panchronic animals, have a venom with a very simple composition, at least in the 

Buthidæ family, considering the structure and the effects of the different toxins (short peptides with the 

same structural motif CSab, all acting on ionic channels). The scorpion venoms could be considered as an 

archetype of primitive venoms, as the toxins are similar to defensins or sometimes to antimicrobial 

peptides, their genes constituting a monophyletic group in the scorpion Mesobuthus martensii (Buthidæ) 

according to Cao et al. [42]. But the importance of the venom toxins for developing new drugs must 
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not be underestimated, due to their pharmacological advantages including their high activity, high 

specificity, lack of accumulation in organisms, low immunogenicity, and limited targets. Claude 

Bernard (1813–1878), a glorious visionary, already wrote: ―The real scientific basis of the therapeutics 

must be given by the knowledge of the physiological action of drugs or poisons which is exactly the 

same thing‖ [46]. 
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