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Abstract: We have studied the role of the antibody (Ab) Fc region in mediating protection 

from ricin toxicity. We compared the in vitro and in vivo effects of intact Ig and of Fab 

fragments derived from two different neutralizing Ab preparations, one monoclonal, the other 

polyclonal. Consistent results were obtained from each, showing little difference between Ig 

and Fab in terms of antigen binding and in vitro neutralization, but with relatively large 

differences in protection of animals. We also studied whether importing Ab into the cell by Fc 

receptors enhanced the intracellular neutralization of ricin toxin. We found that the imported 

Ab was found in the ER and Golgi, a compartment traversed by ricin, as it traffics through the 

cell, but intracellular Ab did not contribute to the neutralization of ricin. These results indicate 

that the Fc region of antibody is important for in vivo protection, although the mechanism of 

enhanced protection by intact Ig does not appear to operate at the single cell level. When using 
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xenogeneic antibodies, the diminished immunogenicity of Fab/F(ab’)2 preparations should be 

balanced against possible loss of protective efficacy. 

Keywords: ricin; monoclonal antibody; polyclonal antiserum; Fc region; Fc receptor; Fab; 

neutralization; in vivo protection 

 

1. Introduction 

It is clear that neutralization of toxins by Ab plays a major role in protective immunity. Critical 

vaccines (e.g., DPT) and passive Ab therapies are based upon this fact, which represents one of the few 

generally-agreed upon “truths” in the field of human vaccinology. Yet how exactly Abs protect us 

from toxins is not fully understood. We generally teach our students that Ab functions by preventing 

attachment and internalization of the toxin to target cells [1,2], suggesting that anti-B chain immunity 

would be paramount. But so many exceptions to this generalization have been described, including 

ricin [3,4], that toxin neutralization likely involves multiple mechanisms, some unique to the 

individual toxin and its mode of pathogenicity [5]. For example, we have shown that the most 

protective Abs target ricin-A chain, and that neutralization occurs inside the cell [4], as others have 

demonstrated for shiga toxin, ricin’s cousin [6]. 

The role of the Fc region of Ab in protective efficacy is also not fully defined. As a generalization, 

toxin neutralization has primarily been considered due to Ab binding the toxin and blocking its 

activity, a V-region function [1,2]. Consequently xenogeneic Abs used in passive immunotherapy are 

frequently prepared in the form of Fab/F(ab’)2 fragments, with the intent to limit immunogenicity and 

risk of “serum sickness” in such preparations [5,7,8]. However, recent work, using Fc-receptor (FcR) 

knockout mice, suggests that FcR function is a “requirement” for protection against anthrax toxin [9,10]. In 

this manuscript, we further examine this apparent paradox, employing ricin-neutralizing Abs to study the 

role of Fc-mediated protection. Both monoclonal (mAbs) and polyclonal (pAbs) were used to evaluate 

protection of individual cells and in mice. Further, we asked what effect would the transport of protective 

Abs into the cells by FcRγ have upon intracellular neutralization of ricin toxicity [4]. 

2. Results and Discussion 

2.1. Comparison of Intact IgG and Fab/F(ab’)2 for Binding, Neutralization, and in vivo Protection 

To study the role of Fc-mediated effects on ricin neutralization, we compared the function of intact 

IgG and Fab/F(ab’)2 fragments using two very different Ab preparations. The first, RAC18, is a mAb 

that neutralizes equivalently in murine or chimeric (murine-V, human-gamma-1/kappa) versions. This 

Ab binds at the A-chain enzyme active site, blocking its N-glycosidase function, effectively blocks 

ricin cytotoxicity in tissue culture, and is highly protective in vivo. Both Fab and F(ab’)2 fragments 

were made from RAC18, a murine IgG2a/κ, although F(ab’)2 fragments were only used in ELISA 

(Figure 1) The other preparation we studied was a polyclonal horse Ab that binds to both ricin A and B 

chains. Very large quantities of this pAb have been produced. A “despeciated” preparation of this Ab 

consists of a mixture of Fab/F(ab’)2 fragments, primarily the latter [5]. We then compared intact IgG 
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and fragments from the two sets of Abs for binding to ricin by ELISA, neutralization of ricin 

cytotoxicity in vitro, and protective efficacy in vivo. 

Figure 1. Comparative binding of intact Ig and Fab fragments to ricin toxin. Two different 

anti-ricin Abs were titrated by ELISA for binding to ricin. Results are the mean and SEM 

of triplicate samples. (A) Murine mAb RAC18 (solid line) and the corresponding Fab 

(dashed line) and F(ab’)2 (dotted line) fragments; (B) Polyclonal horse-anti-ricin igG (solid 

line) and corresponding Fab/F(ab’)2 fragments (dashed line).  

 

2.1.1. Fab Fragments Bind Ricin Less Avidly than Intact Ab or F(ab’)2 

ELISA was performed to measure binding to ricin by two anti-ricin Abs, RAC18 and  

horse-anti-ricin, and their corresponding Fab/F(ab’)2 fragments. Binding of murine anti-ricin was 

detected with specific anti-kappa chain Ab, which binds intact Ig or fragment equivalently. Detection 

of the horse pAb was with an anti-H+L chain secondary, which could have biased the results against 

fragments. Results (Figure 1) show that intact IgG binds most avidly for both RAC18 and horse-anti-ricin. 

For RAC18, binding of intact IgG and F(ab’)2 is equivalent, whereas the binding of the Fab fragment is 

markedly lower. These results suggest that valency is important for ELISA binding. For RAC18, both 

bivalent preparations clearly outperformed the monovalent Fab. The horse pAb fragments are a 

mixture, but mostly bivalent fragments, and binding was only minimally decreased, although we 

cannot rule out that had we tested higher concentrations of Ab and Fab, greater differences may have 

been observed.  

2.1.2. Fab Fragments and Intact IgG Neutralize Ricin Cytotoxicity Equally 

The ability of Ab or fragment to neutralize ricin cytotoxicity was measured with an MTS  

dye-reduction assay, which assays oxidative metabolism as an indicator of cell viability (Figure 2). 

Two observations arise from the data. First, horse pAb was 10×–30× more effective at neutralizing 

ricin than murine mAb. This may reflect either higher avidity binding or an additive effect resulting 

from binding to multiple epitopes. The second observation is that there was no difference in the ability 

of intact IgG or Fab to neutralize ricin. In light of the marked difference in binding of RAC18 IgG and 

Fab to ricin, as measured by ELISA, the observation that both neutralized equally was unexpected. 
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Figure 2. Neutralization of ricin toxicity by intact Ab or Fab fragments. Comparative 

molar concentrations of ntact IgG (1 µg/mL) or fragment (0.66 µg/mL) were mixed with 

the indicated concentration of ricin. H9 cells (2.5 × 104 per well) were added. Two days 

later, cell viability was measured by MTS dye reduction. Data are mean and SEM of 

triplicate determinations. 

 

2.1.3. Antibody Fc is Important for in vivo Protection 

We have utilized a well-characterized murine model to study the ability of Ab to protect against 

parenteral injection of ricin toxin [3,11]. To increase the stringency of the challenge, Ab was 

administered 4 h after ricin. This mimics part of the delay that would occur in a human exposure. If we 

delay any longer, the animals would not be salvageable by any antibody, and we could not compare 

our preparations. In the first experiment, mice were challenged with ricin and then given high or low 

dosages of either intact IgG or Fab fragments (Figure 3).  

Figure 3. Protective efficacy of intact IgG vs. Fab/F(ab)’2 fragments. Mice received intact 

Ab (high dose: 3 mg/kg, low dose: 1 mg/kg) or Fab (mouse), or Fab/F(ab)’2 (horse) (high 

dose: 2 mg/kg, low: 0.66 mg/kg) four hours after a ricin challenge (20 µg/kg). Survival 

post-challenge is shown. Intact antibody is shown with a colored solid line, Fab a dotted 

line. Control animals are shown in black. Significance by Mantel-Cox log rank test  

(p < 0.05) is indicated with an asterisk. 
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The intact IgG provided significant protection in all cases, except low dose horse pAb. Fab 

fragments provided less protection than intact IgG, and in only one example (low dose RAC18) was 

this significantly better than no Ab. In the experiment testing the murine mAbs and Fab fragments, 

survival of the untreated control animals was less than that observed in the experiment comparing the 

polyclonal Abs. Thus the requirements for protection by the murine mAbs may have been more stringent. 

A second in vivo experiment demonstrated that murine RAC18 protected better than a chimeric 

mouse/human RAC18, showing that mouse Fc regions perform better in mice than human Fc’s (Figure 4). 

These results indicate that whereas Fc region does not appear to play a role in Ab binding or in vitro 

neutralization, the Fc does play a role in protecting an intact animal, the only parameter of any 

practical importance. The results also show that the superiority of the horse pAb over RAC18 for in vitro 

neutralization was not maintained in vivo. 

Figure 4. In vivo protection from ricin toxicity by murine or chimeric RAC18. Mice 

received 1 mg/kg murine or chimeric mAb 4 h after ricin challenge. Survival post-challenge 

is shown. Statistical significance is displayed: * p = 0.05; ** p = 0.01. 

 

2.2. Fc Receptors Do Not Affect Ab-Mediated Protection from Ricin Cytoxicity 

In Section 2.1, we showed a discrepancy regarding the role of the Fc region on Ab-mediated 

protection from toxin. Fc seems irrelevant for cytoprotection (Figure 2), but rather important for  

in vivo protection (Figures 3 and 4). One potential explanation for this difference is the potential role 

of FcRγs on Ab function in an intact animal. While there are a variety of Fc functions mediated by 

other factors (e.g., complement), FcRγs I–III mediate important effector functions, and immune 

regulation. Moreover, others have defined a requirement for FcR function in protection from the 

effects of anthrax toxin [10]. To examine the role of IgG-binding FcRs in an experimentally simple 

system, we made use of chimeric RAC18 and a set of cell lines that either didn’t express FcR, or were 

transfected to express human FcRγs I, IIa, IIb, or IIIa[12]. We have previously shown that RAC18 

predominantly neutralizes ricin inside the cell [4], suggesting that transport of IgG into the cell by Fc 

receptors might enhance neutralization. Here we show that RAC18 binds to FcRs and can be 

transported into the cell. We then address the following questions: where does Ab preloaded into the 

cell via FcR-mediated internalization localize, does ricin cross paths with Ab as it is internalized, and 

does internal Ab neutralize ricin? To perform such studies, it is necessary for the Ab to have achieved 

a steady state concentration within the cell, before it is then washed away and ricin added.  

The internalized mAb localizes in compartments to which ricin traffics only at later time points, and 
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offers no evidence of enhanced protection. Any protective advantage may be offset by increased 

internalization of ricin when RAC18, FcRγ, and ricin are all present concurrently. 

2.2.1. Chimeric RAC18 is Bound by FcRI and FcRIIb Expressed on the Cell Surface 

As a first step, we determined whether chRAC18 bound to FcRγs on the surface of transfected 

HeLa cells. Unfixed cells were incubated with Alexa-488 conjugated chRAC18. No ricin was present. 

Cells were washed and studied by flow cytometry (Figure 5). The results showed strong binding by 

cells expressing FcRγI, with less binding to FcRγIII, and no binding to the other FcRγs (Figure 5A). 

We then confirmed that the cells purported to express FcRγI, did indeed express this receptor, as 

demonstrated by the binding of anti-CD64 mAb, but not anti-CD16 or anti-CD32. We showed that the 

chRAC18 was bound via FcRγI by blocking the binding with anti-CD64 mAb, but not anti-CD32. 

Figure 5. Chimeric RAC18 is bound by human FcRI. (A) FcRγ expressing cells were 

incubated with Alexa-488 conjugated chRAC18 (5 µg/mL) for 1 h in PBS/BSA/Azide, 

washed, and then analyzed by flow cytometry; (B) FcRγI cells express CD64 but not CD16 

or CD32. Cells were stained with primary Ab at 0.25–0.5 µg/mL and then FITC anti-mouse 

IgG secondary Ab; (C) Binding of chimeric RAC18 to FcRγI cells is only inhibited by  

anti-CD64, not anti-CD32. Cells were first incubated with anti-CD32 or CD64  

(0.25–0.5 µg/mL) and then with Alexa-RAC18 (1 µg/mL). 

 

2.2.2. Localization of RAC18 Internalized by FcRγI  

To determine the intracellular localization of Ab after it has been internalized by FCRγI, cells 

adherent to optical petri dishes were incubated with the Alexa-conjugated chRAC18 for 18 h under 

tissue culture conditions. The cells were washed, organelle specific dyes added, cells incubated for  

30–60 min, and visualized by confocal microscopy (Figure 6). FcR− cells do not take up any 

chRAC18 (red), whereas the FcRγI+ cells do. The mAb does not colocalize with Hoechst dye or 

Lysotracker blue, indicating the mAb is extranuclear, and not in lysosomes. chRAC18 was found 

throughout the endoplasmic reticulum and Golgi, since almost all Bodipy-BFA colocalizes with mAb. 

However, mAb also accumulated in other compartments, not marked by bodipy-BFA. 
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Figure 6. Localization of chRAC18 internalized by FcRγI. Cells were incubated with  

10 µg/mL of Alexa-labeled chRAC18 (red) for 18 h. For the final 30–60 min, cells were 

incubated with Bodipy-BFA (250 ng/mL), Hoechst dye (2 µg/mL), or Lysotracker Blue 

(LTB, 125 nM), all shown in blue. Colocalization of dye and Ab is shown in white. 

 

2.2.3. Colocalization of Ab Internalized by FcRγI with Ricin 

In trafficking to its site of action, RAC traverses the endoplasmic reticulum and Golgi [4,13–15], 

where mAb internalized by FcRI localize. To study if Ab and ricin meet in the cell, we examined the 

colocalization of internalized mAb with ricin as it enters and traffics through the cell (Figure 7).  

Figure 7. Colocalization of internalized chRAC18 with entering ricin in FcRγI cells. Cells 

were incubated with 10 µg/mL of Alexa-labeled chRAC18 (red) for 18 h, washed, placed 

on a heated stage and Alexa-labeled ricin (3 µg/mL, green) added. Different cells were 

visualized at 2–3 min intervals. Representative time points are shown. Colocalization of 

ricin and mAb appears orange/yellow.  

 

FcRγI cells were incubated with Alexa-conjugated chRAC18 (red) for 18 h. The cells were washed 

and visualized at times following the addition of labeled ricin (green). Colocalization is shown in 

orange. Ricin accumulated at the cell surface within min, and had begun to enter the cell by 30 min, 

although ricin did not colocalize with Ab until 41 min. Colocalization increased with time. But even at 

later time points, unbound ricin was present within the cell. We tested the ability of this internalized 

Ab to protect cells from ricin, by using an 18 h pre-incubation period with chRAC18, washing out 

extracellular mAb, adding varying concentrations of ricin, and measuring cell survival. There was no 

difference in survival between FcR− and FcRγI+ cells, nor between cells with and without intracellular 

RAC18 (data not shown). 
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2.2.4. Effect of FcR on Internalization of Ricin and Neutralization by RAC18 

Passive internalization of opsonized antigen has been proposed as a mechanism of disease, for 

example the enhanced disease and hemorrhagic fever associated with a second dengue virus infection 

of a different serotype [16]. We asked whether this phenomenon may also occur with ricin toxin, i.e., if 

more toxin enters FcRγ+ cells in the presence of Ab, than in its absence. We measured internalized 

ricin using quantitative confocal microscopy techniques that have been detailed and validated 

elsewhere [4]. Live cells were first exposed to chRAC18 and immediately afterwards Alexa-ricin was 

added without washing the cells, so that mAb and ricin were both present. Different cells were imaged 

every 2–3 min for 90 min. The percent ricin internalized was plotted against time (Figure 8A).  

The data were fitted with a nonlinear regression using the formula: y = Mx/(T1/2 + x), where M is the 

maximal value and T1/2 is the time to reach the half maximal value. The results show that in cells 

lacking FcR, internalization of ricin is slowed by mAb. The difference is small, but statistically 

significant. The increased size of ricin-anti-ricin immune complexes seems a likely explanation. 

However, in cells bearing FcRγI, to which chRAC18 binds strongly, internalization of ricin is 

markedly increased in the presence of mAb, presumably via enhanced internalization of immune 

complexes by FcRγI. In cells with the weaker binding FcRIII, the two effects appear to counterbalance.  

Figure 8. Effects of FcR on internalization of ricin and protection from ricin-mediated 

cytotoxicity. (A) Measurement of ricin internalization was performed by confocal 

microscopy over a 90 min period on a heated stage in the presence or absence of 30 µg/mL 

of chRAC18. The amount of internalized ricin was measured by manual partitioning and 

calculated from pixilated values obtained from the partitioning. Measurements performed 

in the presence of chRAC18 are shown in red, in the absence of mAb in black. The results 

are combined data from three independent experiments. Individual data points and the best 

fit curves are shown. Statistical significance was determined by the F test: * p < 0.05;  

*** p < 0.0001; (B) Neutralization by RAC18 was not affected by FcR expression on cells. 

MTS assay was performed in the presence (red) or absence (black) of chimeric RAC18  

(20 µg/mL) at the indicated concentrations of ricin.  
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In Figure 8B, we examined whether the presence or absence of FcR affects the ability of chRAC18 

to protect cells from ricin-mediated cytoxicity. MAb was added to the cells first, then ricin. Viability 

was assessed at 48 h. There was no difference in the ability of chRAC18 to protect any of the cells, 

regardless of the expression of FcR. 

2.2.5. Proteasome Inhibitor MG132 Affects neither Ricin Cytotoxicity nor Ab Protection 

Inhibition of proteasome function has multiple consequences in cells, including inhibition of 

TRIM21, an internal Ig receptor that has been demonstrated to have an effect on Ab-mediated 

protection from intracellular microbes [17–19]. TRIM21 function is dependent upon proteasomal 

degradation [17]. Although it had been reported that inhibition of proteasomal degradation sensitized 

cells to ricin toxicity, a recent study showed that the duration of exposure of cells influenced effects of 

proteasomal inhibition, with short-term exposure (1–2 h) resulting in cytoprotection, and longer 

exposure (>6 h) having no effect on ricin toxicity [20]. A unique mechanism of action was 

demonstrated, emphasizing the pleotropic cellular effects of proteasome inhibition. We studied the 

effect of the proteasome inhibitor MG132 on ricin cytotoxicity and on Ab-mediated protection from 

ricin (Figure 9). MG132 was used at the maximum tolerable concentration and was present for the 

duration of the cytotoxicity assay. No effect was observed on either toxicity or neutralization, 

suggesting that prolonged proteasome inhibition has no effect on these processes. This confirms the 

data of Pietroni et al. [20] regarding ricin toxicity and extends them to include Ab-mediated 

neutralization of toxin. 

Figure 9. Inhibition of proteasome degradation does not affect ricin toxicity nor Ab 

neutralization. The drug MG132 inhibits proteasome degradation, a hallmark of  

TRIM21-mediated effects. An MTS assay was performed on H9 cells in the presence of 

123 nM MG132 (370 nM MG132 completely suppresses MTS dye reduction) or in the 

absence of the drug. MG132 had no effect on toxicity or neutralization.  

 

3. Experimental Section 

3.1. Antibodies, Cells and Reagents 

Of a panel of 40 murine mAbs to ricin A or B chain, RAC18 bound ricin with highest avidity and 

was the most protective mAb, both in vitro and in vivo [3]. Hybridoma RAC18 was grown in tissue 

culture and purified on protein G agarose. A mouse-V, human-C chimeric RAC18 was produced in 
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tissue culture expressed from recombinant plasmids [4]. Fab fragments of muRAC18 were prepared by 

digestion with immobilized papain and removal of Fc by protein G chromatography, as described [21]. 

RAC18 F(ab’)2 were prepared by pepsin digestion. Horse anti-ricin pAb was raised by 

hyperimmunization using a nontoxic ricin A and B chain construct, with the native linker between the 

A and B chains replaced by one that is not protease cleavable [5]. Fab/F(ab’)2 fragments were purified 

biochemically. IgG was purified by protein G chromatography. The concentration of anti-ricin 

antibody in these polyclonal preparations was determined by Biacore as shown in supplemental  

Figure S1 [22]. The concentration shown in the figures is the concentration of ricin-specific Ab. 

H9 is a CD4+ human T-cell lymphoma tissue culture cell line [23], and was the gift of Marvin 

Reitz, then at NCI. TZM-bl are derived from HeLa transfected to express CD4, CCR5, and Tat-driven 

reporter genes, and were obtained from the NIH AIDS Reagent Program, Rockville MD [24,25]. We 

acknowledge the family of Henrietta Lacks for the donation of the original HeLa cells. TZM-bl cells 

transfected and stably expressing FcRγI, FcRγIIa, FcRγIIB, and FcRγIIIa were also obtained from the 

AIDS Reagent Program [12]. Cells were maintained in a humidified 5% CO2 atmosphere at 37° in 

RPMI 1640 medium with 10% fetal calf serum. 

Goat anti-human, anti-horse, or anti-mouse IgG (heavy + light chains) or kappa chain was 

conjugated to either alkaline phosphatase (AP), horse radish peroxidase, or fluorescein isothiocyanate 

(FITC, Life Technologies, Inc, Grand Island, NY, USA). MAbs to human CD16, CD32, and CD64 

were obtained from eBioscience. Ricin and RAC18 were conjugated to Alexa 488, 546, and/or 594 

(Life Technologies) as described [4]. Brefeldin A BODIPY 558/568 (BFA-Bodipy), Lysotracker Blue  

DND-22 (LTB), and Hoechst 33258 were also purchased from Life Sciences. Ricin was obtained from 

Vector Labs (Burlingame, CA, USA). The proteasome inhibitor MG132 was obtained from Sigma Aldrich. 

3.2. Enzyme Linked ImmunoSorbent Assay (ELISA) 

ELISA plates were coated with ricin, 0.5 µg/mL, and blocked with blotto (10% non-fat dry milk/0.01% 

Tween 20/PBS) as described elsewhere [3]. Abs and fragments were diluted in blotto and incubated 

overnight in the coated wells at 4°. Wells were washed 6× PBS containing 0.01% Tween 20. Binding 

was detected with enzyme-conjugated anti-mouse kappa chain or anti-horse IgG (H + L). Plates 

underwent incubation for 4 h at room temperature before a washing step and addition of substrate. 

Absorbance was read on a microplate reader (BioTek 320, Winooski, VT, USA).  

3.3. Neutralization of Ricin Cytotoxicity 

Cell viability was measured by MTS dye reduction assay at 48 h. Ab-mediated neutralization of 

ricin was performed as detailed elsewhere [3]. Ricin and Ab were mixed in triplicate in 96-well, flat 

bottom tissue culture plates. Cells were added to a final volume of 200 µL. Cells were incubated at 37° 

in a humidified 5% CO2 atmosphere. Two days later, 30 µL of MTS/PMS dye (Promega, Madison, 

WI, USA) was added to each well. A490 was read hourly on a microplate reader. Percent viability was 

calculated as: [(Atest − Ano cells)/(ANo ricin − Ano cells)] × 100.  
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3.4. In Vivo Protection from Ricin Toxicity 

Outbred NIH Swiss/Webster female mice 4–6 weeks of age were obtained from Charles River 

Laboratories (Wilmington, MA, USA). All experiments were done in compliance with federal laws 

and regulations and have been approved by the IACUC at The Research Institute for Children (OLAW 

assurance A-4336-01), following protocols described elsewhere [3,11]. Ricin (20 ug/kg) was 

administered via intraperitoneal injection. Antibody was administered by the same route four hrs later. 

Mice were examined and weighed twice daily. Blood sugar was measured 18 and 24 h post ricin. Mice 

were euthanized by an animal handler blinded to the experimental groups, according to pre-established 

criteria that defined the onset of pain, suffering, or clinical syndrome. All mice were sacrificed 7 days 

after ricin injection. Comparison of survival curves was by Mantel-Cox log rank test, computed using 

GraphPad Prism Software (version 5). 

3.5. Flow Cytometry 

Binding of Abs to cells was measured by flow cytometry, using both direct and indirect 

immunofluorescence. Cells were incubated sequentially with primary and secondary Abs in PBS/1% 

bovine serum albumin/0.01% sodium azide (PBA). After each incubation, cells were washed 3× with 

PBA. Ten thousand cells underwent analysis using an LSR II flow cytometer (BD Biosciences,  

San Jose, CA, USA) and analyzed with FlowJo software (Treestar, Ashland, OR, USA). Histograms 

displayed are based on cells gated first for SSC and FSC. 

3.6. Live Cell Microscopy 

Qualitative and quantitative confocal microscopy was performed on live cells using an inverted 

Zeiss LSM 510 microscope, with a heated stage and 63× 1.4 NA oil-immersion heated objective. Zeiss 

LSM and Axiovision software were used to obtain and analyze images. Full details of the experimental 

protocols, mathematical analyses, as well as appropriate controls, are provided elsewhere [4]. One day prior 

to imaging, 104 cells were seeded into 35 mm culture dishes with a glass bottom of 0.17 mm thickness 

(MatTek, Ashland, MA, USA). Cells were cultured in 5% CO2 at 37° in RPMI 1640 containing no phenol 

red and 10% FCS. The following day, cells were placed into RPMI 1640, 1% bovine serum albumin 

(BSA), and 10 mM Hepes, and then transferred to the microscope stage for imaging. Experimental 

details for each study are provided in the figure captions. The brightness and contrast of confocal 

images shown in this manuscript have been adjusted to enhance visualization. Quantitative analyses 

were performed on the raw data. 

4. Conclusions 

In this report, we study the role of the Fc region of neutralizing Abs in protection from the toxic 

effects of ricin administration. We used both mAbs and Fabs, which differed in several ways.  

The mAbs were A chain specific, whereas the pAbs reacted with both A and B chains. The pAbs 

neutralized toxin in vitro at 10-fold lower concentrations than did the mAbs, but similar in vivo 

protection from ricin challenge was observed for both mAb and pAb. In comparing the function of 

intact Ig vs. Fab preparations of these two different sets of anti-ricin Abs, we found similar, and thus 
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generalizable, results. In vitro functions (binding, neutralization) were unaffected by cleavage into 

fragments, although Fabs had lower avidity than F(ab’)2, likely due to decreased valence. However,  

in vivo there was a marked difference in protection, with intact Ig outperforming Fab and F(ab’)2. 

Moreover when tested in mice, murine mAb RAC18 outperformed its chimeric counterpart carrying 

human C regions, highlighting the importance of a homologous Fc. 

We next studied the role of FcRγ on protection of cells from ricin toxicity because: (1) our in vivo 

observations showed the importance of the Fc region; (2) a study which used FcRγ knockout mice to 

demonstrate the requirement for FcRs in protection toxin [10]; and (3) our previous demonstration of 

intracellular neutralization of ricin toxin [4] led us to ask whether greater protection may be obtained if 

Ab has been imported into the cell by FcR, and is present prior to the internalization of ricin toxin. A 

panel of HeLa-derived cells carrying no FcR, human FcRγI, FcRγIIa, FcRγIIb, or FcRγIIIa was used to 

perform these studies. ChRAC18 (human IgG1) bound well to FcRγI and moderately to FcRγIII. Ab 

imported into cells by FcR-mediated endocytosis colocalized with ricin late during internalization and 

trafficking, most likely in the ER and Golgi. However, imported mAb did not offer the cell any 

protective advantage. When cells were exposed to ricin and mAb simultaneously, those carrying FcRγI 

imported greater amounts of ricin into the cells when mAb was present than when there was no mAb, 

whereas mAb had no effect on ricin internalization in FcR− cells. The presence or absence of FcR had 

no influence on mAb-mediated protection. 

Overall, our findings indicate that neither the Fc region of the Ab nor the presence of FcR on the 

target cell has an influence on Ab-mediated protection of individual cells. However, in vivo, the 

presence of Fc enhances protective efficacy. We cannot say whether this effect as mediated by FcR, as 

suggested by others [10], by the prolonged plasma half-life of intact IgG vs. Fab, decreased avidity of 

Fab fragments, or by some other completely different Fc-mediated mechanism. When using 

xenogeneic antibodies for passive immune therapy, Fab/F(ab’)2 preparations may be less likely to 

provoke an immune response and induce serum sickness. However, this advantage should be weighed 

against the potential loss of in vivo protective activity, compared to intact Ig. 

Acknowledgments 

This work was supported by National Institutes of Health grant AI059376, by the Research Institute 

for Children (New Orleans, LA, USA), Louisiana Vaccine Center (New Orleans, LA, USA), and by 

the Cangene Corporation (Winnipeg, MB, Canada). 

Author Contributions 

Seth. H. Pincus designed and performed experiments, cowrote the manuscript, was responsible for 

the overall project. Anushka Das performed computational analyses, collated data, and cowrote the 

manuscript. Kejing Song and Grace A. Maresh performed experiments. Miriam Corti performed 

Biacore analyses. Jody Berry provided the polyclonal Ab preparations and provided input into the 

design of experiments. 
  



Toxins 2014, 6 1524 

 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Parham, P. The Immune System, 3rd ed.; Garland Publishing: New York, NY, USA, 2009. 

2. Janeway, C.A.; Travers, P.; Walport, M.; Shlomchik, M. Immunobiology. In The Immune System 

in Health and Disease, 7th ed.; Garland Publishing: New York, NY, USA, 2008. 

3. Maddaloni, M.; Cooke, C.; Wilkinson, R.; Stout, A.V.; Eng, L.; Pincus, S.H. Immunological 

characteristics associated with protective efficacy of antibodies to ricin. J. Immunol. 2004, 172, 

6221–6228. 

4. Song, K.; Mize, R.R.; Marrero, L.; Corti, M.; Kirk, J.M.; Pincus, S.H. Antibody to ricin a chain 

hinders intracellular routing of toxin and protects cells even after toxin has been internalized. 

PLoS ONE 2013, 8, e62417. 

5. Pincus, S.H.; Smallshaw, J.E.; Song, K.; Berry, J.; Vitetta, E.S. Passive and active vaccination 

strategies to prevent ricin poisoning. Toxins 2011, 3, 1163–1184. 

6. Krautz-Peterson, G.; Chapman-Bonofiglio, S.; Boisvert, K.; Feng, H.; Herman, I.M.; Tzipori, S.; 

Sheoran, A.S. Intracellular neutralization of shiga toxin 2 by an a subunit-specific human 

monoclonal antibody. Infect. Immun. 2008, 76, 1931–1939. 

7. Akiyoshi, D.E.; Sheoran, A.S.; Rich, C.M.; Richard, L.; Chapman-Bonofiglio, S.; Tzipori, S. 

Evaluation of fab and F(ab’)2 fragments and isotype variants of a recombinant human monoclonal 

antibody against shiga toxin 2. Infect. Immun. 2010, 78, 1376–1382. 

8. Pelat, T.; Hust, M.; Hale, M.; Lefranc, M.; Dubel, S.; Thullier, P. Isolation of a human-like 

antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol. 2009, 9, 60. 

9. Chow, S.-K.; Casadevall, A. Monoclonal antibodies and toxins—A perspective on function and 

isotype. Toxins 2012, 4, 430–454. 

10. Abboud, N.; Chow, S.-K.; Saylor, C.; Janda, A.; Ravetch, J.V.; Scharff, M.D.; Casadevall, A.  

A requirement for FcγR in antibody-mediated bacterial toxin neutralization. J. Exp. Med. 2010, 

207, 2395–2405. 

11. Pincus, S.H.; Eng, L.; Cooke, C.L.; Maddaloni, M. Identification of hypoglycemia in mice as a 

surrogate marker of ricin toxicosis. Comp. Med. 2002, 52, 530–533. 

12. Perez, L.G.; Costa, M.R.; Todd, C.A.; Haynes, B.F.; Montefiori, D.C. Utilization of IGG Fc 

receptors by human immunodeficiency virus type 1: A specific role for antibodies against the 

membrane proximal external region of gp41. J. Virol. 2009, 83, 7397–7410. 

13. Sandvig, K.; van Deurs, B. Endocytosis, intracellular transport, and cytotoxic action of shiga toxin 

and ricin. Physiol. Rev. 1996, 76, 949–966. 

14. Van Deurs, B.; Sandvig, K.; Petersen, O.W.; Olsnes, S.; Simons, K.; Griffiths, G. Estimation of the 

amount of internalized ricin that reaches the trans-Golgi network. J. Cell Biol 1988, 106, 253–267. 

15. Sandvig, K.; Torgersen, M.L.; Engedal, N.; Skotland, T.; Iversen, T.-G. Protein toxins from plants and 

bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett. 2010, 584, 2626–2634. 



Toxins 2014, 6 1525 

 

 

16. Schmidt, A.C. Response to dengue fever—The good, the bad, and the ugly? N. Engl. J. Med. 

2010, 363, 484–487. 

17. Mallery, D.L.; McEwan, W.A.; Bidgood, S.R.; Towers, G.J.; Johnson, C.M.; James, L.C. 

Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21).  

Proc. Natl. Acad. Sci. USA 2010, 107, 19985–19990. 

18. Vaysburd, M.; Watkinson, R.E.; Cooper, H.; Reed, M.; O’Connell, K.; Smith, J.; Cruickshanks, J.; 

James, L.C. Intracellular antibody receptor TRIM21 prevents fatal viral infection. Proc. Natl. 

Acad. Sci. USA 2013, 110, 12397–12401. 

19. McEwan, W.A.; Tam, J.C.H.; Watkinson, R.E.; Bidgood, S.R.; Mallery, D.L.; James, L.C. 

Intracellular antibody-bound pathogens stimulate immune signaling via the fc receptor TRIM21. 

Nat. Immunol. 2013, 14, 327–336. 

20. Pietroni, P.; Vasisht, N.; Cook, J.P.; Roberts, D.M.; Lord, J.M.; Hartmann Petersen, R.; Roberts, L.M.; 

Spooner, R.A. The proteasome cap RPT5/Rpt5p subunit prevents aggregation of unfolded ricin a 

chain. Biochem. J. 2013, 453, 435–445. 

21. Zhao, Z.; Worthylake, D.; LeCour, L.; Maresh, G.A.; Pincus, S.H. Crystal structure and 

computational modeling of the fab fragment from a protective anti-ricin monoclonal antibody. 

PLoS One 2012, 7, e52613. 

22. Richalet-Sécordel, P.M.; Rauffer-Bruyère, N.; Christensen, L.L.; Ofenloch-Haehnle, B.; Seidel, C.; 

van Regenmortel, M.H. Concentration measurement of unpurified proteins using biosensor 

technology under conditions of partial mass transport limitation. Anal. Biochem. 1997, 249, 165–173. 

23. Folks, T.; Benn, S.; Rabson, A.; Theodore, T.; Hoggan, M.D.; Martin, M.; Lightfoote, M.; Sell, K. 

Characterization of a continuous t-cell line susceptible to the cytopathic effects of the acquired 

immunodeficiency syndrome (aids)-associated retrovirus. Proc. Natl. Acad. Sci. USA 1985, 82, 

4539–4543. 

24. Derdeyn, C.A.; Decker, J.M.; Sfakianos, J.N.; Wu, X.; O’Brien, W.A.; Ratner, L.; Kappes, J.C.; 

Shaw, G.M.; Hunter, E. Sensitivity of human immunodeficiency virus type 1 to the fusion 

inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J. Virol. 

2000, 74, 8358–8367. 

25. Wei, X.; Decker, J.M.; Liu, H.; Zhang, Z.; Arani, R.B.; Kilby, J.M.; Saag, M.S.; Wu, X.; Shaw, G.M.; 

Kappes, J.C. Emergence of resistant human immunodeficiency virus type 1 in patients receiving 

fusion inhibitor (T-20) monotherapy. Antimicrob. Agents Chemother. 2002, 46, 1896–1905. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


