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Abstract: Immunoglobulin free light chains (FLCs) form part of the middle molecule 

group of uremic toxins. Accumulation of FLCs has been observed in patients with chronic 

kidney disease (CKD). The aim of the present study was to measure FLC levels in patients 

at different CKD stages and to assess putative associations between FLC levels on one 

hand and biochemical/clinical parameters and mortality on the other. One hundred and 

forty patients at CKD stages 2-5D were included in the present study. Routine clinical 

biochemistry assays and assays for FLC kappa (κ) and lambda (λ) and other uremic toxins 

were performed. Vascular calcification was evaluated using radiological techniques. The 

enrolled patients were prospectively monitored for mortality. Free light chain κ and λ 
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levels were found to be elevated in CKD patients (especially in those on hemodialysis). 

Furthermore, FLC κ and λ levels were positively correlated with inflammation, aortic 

calcification and the levels of various uremic toxins levels. A multivariate linear regression 

analysis indicated that FLC κ and λ levels were independently associated with CKD stages 

and β2 microglobulin levels. Elevated FLC κ and λ levels appeared to be associated with 

mortality. However, this association disappeared after adjustment for a propensity score 

including age, CKD stage and aortic calcification. In conclusion, our results indicate that 

FLC κ and λ levels are elevated in CKD patients and are associated with inflammation, 

vascular calcification and levels of other uremic toxins. The observed link between 

elevated FLC levels and mortality appears to depend on other well-known factors. 

Keywords: uremic toxins; free light chain; chronic kidney disease 

 

1. Introduction 

Uremic toxins are retention solutes that accumulate in the blood of patients with kidney failure. 

These molecules contribute to a variety of metabolic and functional disorders (e.g., impaired immune 

responses). Immunoglobulin light chains have a mean molecular weight of 25,000 Daltons for 

monomers and approximately 50,000 Daltons for dimers and are considered to be members of the 

middle molecule family of uremic toxins [1]. 

Light chains are synthesized by plasma cells; two light chains pair with two heavy chains to form 

the various classes of immunoglobulins [2]. The concentration of free light chains (FLCs) can be used 

to monitor the activity of the adaptive immune system [3]. Plasma cells normally produce slightly 

more light chains than heavy chains, and the excess light chains are then either excreted or catabolized 

by the kidney [4]. It is thought that light chains (and particularly FLCs) have a role in kidney disease. 

In chronic kidney disease (CKD), light chains are filtered by the glomeruli and then reabsorbed by the 

proximal tubuli [5]. Indeed, it is known that the renal disease associated with monoclonal gammopathy 

involves the deposition of monoclonal immunoglobulin deposits in the kidney’s extracellular  

matrix [6]. Moreover, direct injury of the renal tubular epithelium by the monoclonal protein is mostly 

seen in multiple myeloma patients who develop myeloma cast nephropathy (also known as Bence 

Jones cast nephropathy), with the formation of giant cells around casts present in distal tubules [7]. 

In CKD patients, low renal clearance of polyclonal FLC induces an elevation of FLC kappa (κ) and 

lambda (λ) levels. Indeed, two previous studies have shown that elevated serum concentrations  

of FLCs are correlated with parameters of kidney function like creatinine and cystatin C [5,8].  

Hutchison et al. showed that FLC κ and λ concentrations rise as kidney function declines and are 

highest in patients on hemodialysis. In the latter population, the urine FLC concentrations varied 

according to the type of renal disease, the CKD stage and the albuminuria value [5]. 

However, data related to the potential toxicity (in terms of cardiovascular disease and mortality) of 

FLC accumulation in CKD patients are scarce. In one study, Haynes et al. failed to observe a significant 

association between a monoclonal excess of FLCs and risk of mortality and end-stage renal disease 

(ESRD) after adjustment for baseline estimated glomerular filtration rate (eGFR) in 364 CKD patients [8].  
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Therefore, the objectives of the present study were to (i) evaluate FLC κ and λ levels in patients at 

different CKD stages and (ii) assess the link between FLC κ and λ levels and biochemical and clinical 

parameters (including vascular calcification) and (iii) probe the putative association between FLC κ 

and λ levels and mortality. 

2. Results 

The distribution of FLC κ and λ levels by CKD stage is shown in Figure 1A–C. Mean FLC κ and λ 

levels were significantly higher in the total study population (74.4 ± 59.4 mg/L and 48.3 ± 20.3 mg/L 

for FLC κ and λ levels, respectively) than in healthy volunteers (11.3 ± 4.7 mg/L and 12.6 ± 3 mg/L, 

respectively) (p < 0.001). Furthermore, FLC κ and λ levels rose progressively with the CKD stage. The 

initiation of hemodialysis does not affect FLC κ and λ levels. When the analysis was restricted to the 

96 predialysis patients enrolled in the study, significant inverse exponential relationships between  

FLC κ and λ levels (r2 = 0.474 and r2 = 0.433, respectively) and eGFR were found. 

Figure 1. Levels of free light chain κ (A), λ (B) and κ/λ (C) as a function of the chronic 

kidney disease (CKD) stage. * p < 0.05 vs. healthy volunteers (HVs); $ p < 0.05 vs. CKD 

stage 2; £ < 0.05 vs. CKD stage 3; § p < 0.05 vs. CKD stage 4; ¤ p < 0.05 vs. CKD stage 5. 

CKD: chronic kidney disease. The dotted lines indicate the reference value derived from 

HVs (11.3 mg/L for FLC κ and 12.6 mg/L for FLC λ). 

(A) 
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Figure 1. Cont. 

(B) 

 
(C) 

 

Tables 1 and 2 summarize the study population’s main demographic, clinical and biochemical 

characteristics as a function of the median FLC κ and λ levels. 

Patients with a FLC κ level greater than or equal to the median value (55.2 mg/L) presented a 

higher aortic calcification score (the X-ray-derived score for FLC κ and λ and the CT-derived score for 

FLC κ) and higher phosphate, triglyceride, iPTH, urea and IL-6 levels than patients below the median 

value did. When the population was divided according to the median λ FLC level (86.1 mg/L), 

bivariate comparisons yielded essentially the same results as described above for FLC κ. 

Moreover, patients with higher FLC κ and λ levels also had higher levels of protein-bound uremic 

toxins (free IS and PCS) and β2M (representative of “middle molecules”). 
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Table 1. Clinical and demographic characteristics of the study population. 

 Total (n = 133)
FLC κ < 55.2 mg/L 

(n = 67) 
FLC κ ≥ 55.2 mg/L 

(n = 66) 
p 

FLC λ < 86.1 mg/L 
(n = 67) 

FLC λ ≥ 86.1 mg/L 
(n = 66) 

p 

Age, years 67 ± 12 67 ± 12 68 ± 13 0.687 68 ± 12 67 ± 13 0.619 

Male gender, n (%) 82 (61.7) 42 (62.7) 40 (60.6) 0.859 43 (64.2) 39 (59.1) 0.595 

Body mass index, kg/m2 28.3 ± 6.2 28.9 ± 6.8 27.2 ± 5.3 0.102 28.7 ± 6.5 27.5 ± 5.7 0.284 

History of CVD, n (%) 43 (32.3) 20 (29.9) 23 (34.8) 0.581 21 (31.3) 22 (33.3) 0.854 

Systolic blood pressure, mmHg 154 ± 27 149 ± 23 158 ± 30 0.057 152 ± 26 155 ± 28 0.580 

Diastolic blood pressure, mmHg 81 ± 12 82 ± 11 80 ± 14 0.374 82 ± 12 80 ± 12 0.246 

Pulse wave velocity, m/s 14.6 ± 3.85 14.2 ± 3.6 15.2 ± 4.1 0.152 14.6 ± 3.7 14.8 ± 4.1 0.779 

CKD stage, n (%)    <0.001   <0.001 

2 12 (9) 12 (17.9) 0 (0)  10 (14.9) 1 (1.5)  
3 35 (26.3) 31 (46.3) 4 (6.1)  32 (47.8) 4 (6.1)  
4 33 (24.8) 17 (25.4) 16 (24.2)  19 (28.4) 14 (21.2)  

5ND 9 (6.8) 0 (0) 9 (13.6)  2 (3) 7 (10.8)  
5D 44 (33.1) 7 (10.4) 37 (56.1)  4 (6) 40 (60.6)  

CT aortic calcification score, % 3.02 ± 3.02 2.31 ± 2.59 3.74 ± 3.27 0.008 2.52 ± 2.72 3.55 ± 3.35 0.065 

Coronary calcification score, AUs 604.2 ± 1230.4 400.4 ± 553.2 838.3 ± 1762.2 0.143 451.2 ± 710.3 737.8 ± 1650.5 0.283 

X-ray aortic calcification score 6.25 ± 6.55 4.43 ± 5.6 8.16 ± 7.01 0.002 4.33 ± 4.66 8.45 ± 7.58 <0.001 

Abbreviations: FLC, free light chain; CVD, cardiovascular disease; CT, computed tomography; ND, not on dialysis; D, on dialysis; AU, Agatston units; HUs, Hounsfield units. 
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Table 2. Biochemical characteristics of the study population. 

 Total (n = 133)
FLC κ < 55.2 mg/L 

(n = 67) 
FLC κ ≥ 55.2 mg/L 

(n = 66) 
p 

FLC λ < 86.1 mg/L 
(n = 67) 

FLC λ ≥ 86.1 mg/L 
(n = 66) 

p 

Total calcium, mmol/L 2.29 ± 0.19 2.32 ± 0.15 2.26 ± 0.21 0.065 2.32 ± 0.14 2.27 ± 0.22 0.079 

Phosphate, mmol/L 1.29 ± 0.45 1.13 ± 0.37 1.42 ± 0.48 <0.001 1.12 ± 0.27 1.42 ± 0.53 <0.001 

Triglycerides, mmol/L 2.08 ± 1.38 1.83 ± 1.01 2.33 ± 1.57 0.035 1.71 ± 0.85 2.34 ± 1.63 0.060 

Cholesterol, mmol/L 4.89 ± 1.18 4.9 ± 1.11 4.81 ± 1.23 0.595 4.97 ± 0.99 4.77 ± 1.34 0.322 

HDLc, mmol/L 1.34 ± 0.48 1.39 ± 0.47 1.2 ± 0.5 0.232 1.41 ± 0.45 1.28 ± 0.98 0.131 

LDLc, mmol/L 2.63 ± 0.9 2.7 ± 0.91 2.54 ± 0.92 0.311 2.77 ± 0.77 2.45 ± 0.98 0.044 

iPTH, pg/mL 136.8 ± 137.2 90.4 ± 79.8 185.7 ± 168.7 <0.001 86.6 ± 70.7 187.8 ± 169.9 <0.001 

Urea, mmol/L 20.43 ± 10.56 15.58 ± 8.31 24.82 ± 10.63 <0.001 15.98 ± 8.51 24.75 ± 10.76 <0.001 

25 (OH) vitamin D, ng/mL 20.4 ±13.6 20.3 ± 12.1 20.9 ± 15.2 0.785 20.9 ±12.4 20.5 ± 14.9 0.862 

1,25 (OH)2 vitamin D, pg/mL 11.4 ± 10.7 13.6 ± 11 9.3 ± 10.3 0.054 14.5 ± 11.9 7.3 ± 6.8 <0.001 

eGFR, mL/min, 1.73 m2 35.1 ± 18.9 43.1 ± 18.3 20.3 ± 8.5 <0.001 41.3 ± 18.3 21.2 ± 11.7 <0.001 

IL6, pg/mL 5.26 ± 7.89 3.57 ± 4.9 6.9 ± 9.97 0.025 3.19 ± 3.55 7.42 ± 10.4 0.004 

CRP, mg/L 11.2 ± 23.89 8.34 ± 23.39 14.1 ± 25.32 0.175 6.7 ± 10.5 15.7 ± 32.3 0.034 

β2 microglobulin, mg/L 13.54 ± 12.51 6.3 ± 7.5 21.3 ± 12.7 <0.001 6.08 ± 6.78 21.1 ± 12.81 <0.001 

Free indoxyl sulfate, mg/100 mL 0.08 ± 0.098 0.05 ± 0.06 0.12 ± 0.12 <0.001 0.04 ± 0.06 0.13 ± 0.12 <0.001 

Free p-cresyl sulfate, mg/100 mL 0.26 ± 0.51 0.008 ± 0.15 0.45 ± 0.64 <0.001 0.066 ± 0.143 0.482 ± 0.669 <0.001 

FLC κ, mg/L 74.36 ± 59.54 31.51 ± 12.79 117.86 ± 56.74 - - - - 

FLC λ, mg/L 131.94 ± 117.09 - - - 48.34 ± 20.35 216.81 ± 113.6 - 

Abbreviations: FLC, free light chain; HDLc, high density lipoprotein cholesterol; LDLc, low density lipoprotein cholesterol; iPTH, intact parathyroid hormone; CRP,  

C-reactive protein. 
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Univariate correlations with FLC κ and λ levels are presented in Table 3. The FLC κ and λ levels 

were positively correlated with phosphate, IL6, CRP, triglyceride, PTH, urea, β2M, IS and PCS levels 

and the X-ray and CT aortic calcification scores. A negative correlation was found for high density 

lipoprotein (HDL) cholesterol, calcium and 1.25 (OH)2 vitamin D levels and eGFR. 

Table 3. Correlation between free light chain kappa and lambda levels and selected clinical 

and biochemical characteristics (n = 133). 

 FLC κ FLC λ 

 r p r p 
Age 0.022 0.804 −0.030 0.734 

Gender 0.082 0.347 0.016 0.859 
BMI −0.041 0.640 −0.068 0.438 

History of CVD 0.076 0.385 0.068 0.438 
Systolic blood pressure 0.125 0.152 0.056 0.526 
Diastolic blood pressure −0.097 0.269 -0.148 0.090 

Pulse wave velocity 0.093 0.286 0.035 0.687 
Calcium −0.183 0.035 −0.197 0.023 

Phosphate 0.376 <0.001 0.356 <0.001 
Triglycerides 0.246 0.005 0.215 0.014 
Cholesterol −0.075 0.400 −0.143 0.107 

HDLc −0.186 0.036 −0.241 0.006 
LDLc −0.080 0.369 −0.158 0.075 
PTH 0.365 <0.001 0.370 <0.001 
Urea 0.546 <0.001 0.508 <0.001 
IL6 0.353 <0.001 0.414 <0.001 
CRP 0.219 0.011 0.236 0.006 

25 (OH) vitamin D −0.017 0.849 −0.031 0.723 
1,25 (OH)2 vitamin D −0.292 0.004 −0.304 0.003 

eGFR * −0.795 <0.001 −0.764 <0.001 
Free indoxyl sulfate 0.649 <0.001 0.653 <0.001 
Free p-cresyl sulfate 0.573 <0.001 0.606 <0.001 
β2 microglobulin 0.838 <0.001 0.823 <0.001 

CT scan aortic calcification score 0.278 0.002 0.205 0.023 
Coronary calcification score 0.152 0.159 0.117 0.282 

X-ray aortic calcification score 0.319 0.001 0.282 0.002 

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; HDLc, high density lipoprotein 

cholesterol; LDLc, low density lipoprotein cholesterol; iPTH, intact parathyroid hormone; CRP, C-reactive 

protein. * eGFR measured for patients at CKD stages 2–5; patients on dialysis were excluded. 
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It is noteworthy that FLC κ and λ levels were positively correlated with aortic calcification but not 

coronary calcification. In order to identify clinical biochemical parameters that might be independently 

associated with elevated FLC κ and λ levels in our CKD population, we performed several multivariate 

analyses (Table 4) and found that FLC κ and λ levels were indeed independently associated with CKD 

stages and β2M. 

Table 4. Multivariate linear regression: variables independently associated with free light 

chain kappa and lambda (log-normalized) (n = 133). 

 FLC κ 

 β (95% CI) p 

Model 1 (R2 = 0.297)   

Age 0.058 (−0.007–0.016) 0.467 
Male gender 0.017 (0.260–0.324) 0.828 
CKD stage 0.535 (0.237–0.464) <0.001 

Ln IL6 0.013 (0.141–0.163) 0.884 
Model 2 (R2 = 0.311)   

Age 0.083 (−0.005–0.17) 0.289 
Male gender 0.022 (−0.243–0.325) 0774 
CKD stage 0.129 (−0.138–0.307) 0.452 

Ln IL6 −0.055 (−0.202–0.106) 0.439 
Ln β2 microglobulin 0.486 (0.134–0.846) 0.007 

 FLC λ 

Model 3 (R2 = 0.356)   

Age 0.037 (−0.009–0.014) 0.622 
Male gender −0.034 (−0.360–0.227) 0.653 
CKD stage 0.578 (0.294–0.520) <0.001 

Ln IL6 0.092 (−0.063–0.238) 0.254 

Model 4 (R2 = 0.388)   

Age 0.056 (−0.007–0.015) 0.454 
Male gender −0.030 (−0.344–0.288) 0.688 
CKD stage 0.217 (−0.067–0.373) 0.171 

Ln IL6 0.018 (−0.139–0.173) 0.834 
Ln β2 microglobulin 0.439 (0.119–0.825) <0.001 

Abbreviations: CKD, chronic kidney disease; IL6, interleukin 6; FLC, free light chain. 

During the follow-up period (mean ± SD duration: 969 ± 374 days; median: 1058; range: 10–1396), 

there were 42 deaths (including 22 due to cardiovascular events) and seven patients initiated 

hemodialysis. Elevated FLC κ and λ levels were significantly correlated with overall mortality when 

treated either as a continuous variable (p < 0.001 and p = 0.002 respectively, as presented in Table 5 

for an unadjusted model) or stratified according to the median level (p < 0.001 and p = 0.003 

respectively; Figure 2). Table 5 details the results of the Cox regression analyses for overall mortality: 

FLC κ and λ levels were positively associated with overall mortality in unadjusted models but not after 

adjustment for the CKD stages and a propensity score. When the analysis was restricted to predialysis 

patients (Table 6), levels of FLC κ (but not FLC λ) were positively associated with overall mortality in 

an unadjusted modem and in adjusted model including age but not after adjustment for eGFR. 
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Table 5. Multivariate Cox regression analysis of risk factors at baseline for all-cause 

mortality—Free light chain κ and λ levels entered as the median. 

 FLC κ  FLC λ 

Events: n = 42 RR (95% CI) p Events: n = 42 RR (95% CI) p 
Model 1   Model 1   

Age 1.045 (1.016–1.075) 0.002 Age 1.049 (1.019–1.079) 0.001
FLC kappa 3.836 (1.876–7.845) <0.001 FLC lambda 2.853 (1.480–5.500) 0.002

Model 2   Model 2   

Age 1.051 (1.020–1.082) 0.001 Age 1.051 (1.022–1.082) 0.001
FLC kappa 1.816 (0.769–4.287) 0.174 FLC lambda 1.349 (0.580–3.141) 0.487
CKD stage 1.561 (1.139–2.318) 0.006 CKD stage 1.530 (1.116–2.096) 0.008

Model 3   Model 3   

Propensity score 138.9 (3.53–5473.62) 0.008 Propensity score 28.3 (5.309–150.8) <0.001
FLC kappa 1.704 (0.542–5.359) 0.362 FLC lambda 1.437 (0.648–3.186) 0.272

Abbreviations: RR, relative risk; CI, confidence interval; CKD, chronic kidney disease; FLC, free light chain. 

Propensity score: age, CKD Stage, CT aortic calcification entered as the median. 

Figure 2. Kaplan–Meyer estimates of overall mortality for patients as a function of the 

median free light chain κ (A) and λ (B) levels. 

 

 

(A) 

(B) 
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Table 6. Multivariate Cox regression analysis of risk factors at baseline for all-cause 

mortality in predialysis patients—Free light chain κ and λ entered as the median. 

 FLC κ  FLC λ 

Events: n = 18 RR (95% CI) p Events: n = 18 RR (95% CI) p 
Model 1   Model 1   

FLC kappa 3.052 (1.202–7.751) <0.019 FLC lambda 1.354 (0.540–3.397) 0.519 

Model 2   Model 2   

Age 1.044 (1.001–1.089) 0.047 Age 1.052 (1.007–1.098) 0.022 
FLC kappa 2.707 (1.049–6.990) 0.040 FLC lambda 1.327 (0.527–3.337) 0.548 

Model 3   Model 3   

Age 1.040 (0.997–1.085) 0.066 Age 1.045 (1.003–1.088) 0.036 
FLC kappa 1.218 (0.376–3.946) 0.743 FLC lambda 0.654 (0.223–1.922) 0.440 

eGFR 0.959 (0.917–1.002) 0.063 eGFR 0.961 (0.926–0.998) 0.039 

Abbreviations: RR, relative risk; CI, confidence interval; FLC, free light chain. 

3. Discussion 

Our present results showed that FLC κ and λ levels were significantly higher in patients at various 

CKD stages than in healthy controls. The levels increase progressively with CKD stage and are highest 

in hemodialysis patients. Moreover, FLC κ and λ levels were correlated with other uremic toxins 

evaluated in this population; there was a strong, independent, positive association with levels of 

another middle molecule uremic toxin (β2M). Furthermore, FLC levels were positively correlated with 

aortic but not coronary calcification. In contrast, higher FLC κ and λ levels were significantly 

associated with mortality in a univariate analysis, but this association was lost after adjustment for 

renal function and a propensity score including age, CKD stage and the CT calcification score. 

Hence, in a cohort of patients at different CKD stages, we confirmed the progressive elevation of 

FLC κ and λ levels as with increasingly advanced CKD stage. Two previous studies of CKD 

populations have reported a similar elevation of FLC levels with CKD stage and a strong correlation 

with markers of renal function [2,9]. Furthermore, Cohen et al. demonstrated that currently available 

haemodialysis or hemodiafiltration treatments are unable to normalize the elevated levels of FLC in 

ESRD patients [10]. 

Previous studies of CKD patients did not evaluate the link between FLC and other uremic toxins. In 

the present study, we evaluated the relationship between FLC κ and λ concentrations and biochemical 

and clinical parameters and found that FLC κ and λ levels are strongly and positively correlated with 

levels of other uremic toxins levels, including small molecules (such as phosphate, PTH and urea), 

middle molecules (such as β2M and IL6) and protein-bound uremic toxins (such as IS and PCS). The 

strongest correlation was with β2M. 

Free light chains have been classified as uremic toxins because there is evidence of direct effects on 

physiological function in experimental models. Indeed, FLCs are able to modulate the functions of 

polymorphonuclear leukocytes by inhibiting spontaneous apoptosis [11]. Furthermore, FLCs have 

been shown to decrease chemotaxis and glucose uptake by neutrophils [12]. Hence, FLCs may have an 

important role in the immune system in a uremic context. Indeed, our present results show that FLC κ 
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and λ levels are associated with levels of inflammatory markers (IL6 and CRP). Hence, FLCs may 

have a role in the genesis of the chronic inflammation encountered in CKD patients [13,14]. 

Lastly, we demonstrated that patients with high levels of FLC κ and λ had an increased risk of 

mortality. However, this correlation was lost after adjustment for renal function and a calculated propensity 

score that included age, CKD stage and the CT aortic calcification score. Similarly, Haynes et al. did 

not observe a significant association between excess FLCs and mortality in 364 predialysis  

patients [8]. Hence, the association between high FLC κ and λ levels and mortality may depend on 

several other parameters, such as the levels of other uremic toxins (β2M, for example). Indeed, B2M is 

one of the most extensively studied middle molecule uremic toxins in CKD patients (and especially in 

dialysis patients, where B2M is the major protein component in dialysis-related amyloidosis). Elevated 

β2M levels are associated with mortality in hemodialysis [15,16], CKD [17] and kidney transplant 

patients [18]. Furthermore, a prospective cohort study of 6445 adults aged 20 or more from the Third 

National Health and Nutrition Examination Survey recently confirmed that B2M levels were better 

predictors of the mortality risk prediction than conventional measures of kidney function [19]. 

4. Materials and Methods 

4.1. Ethics Statement 

The study was performed in accordance with the principles of the Declaration of Helsinki and  

in compliance with the International Conference on Harmonization’s guidelines on Good Clinical 

Practice. The study protocol was approved by the local independent ethics committee (Comité de 

Protection des Personnes Nord-Ouest II) prior to the initiation of any study-specific procedures. The 

study was registered with the French health authorities (reference number: 06H3). All patients were 

provided with full information on the study’s objectives and procedures and gave their written, 

informed consent to participation. 

4.2. Patient Selection 

Over an 18-month period (from January 2006 to June 2007), a total of 140 Caucasian, prevalent 

CKD patients were recruited from the Nephrology Department’s outpatient clinic at Amiens 

University Hospital. 

Included patients had to be over the age of 40, with available serum FLC κ and λ results and a 

confirmed diagnosis of CKD. The latter was defined as being on hemodialysis or having two previous 

estimated creatinine clearances (calculated according to the Cockcroft and Gault formula  

<90 mL/min/1.73 m2, with an interval of 3 to 6 months). Stage 5D CKD patients had been on chronic 

hemodialysis three times a week for at least three months. The exclusion criteria consisted of the 

presence of chronic inflammatory disease, atrial fibrillation, complete heart block, abdominal aorta 

aneurysm, aortic and/or femoral artery prosthesis, primary hyperparathyroidism, kidney transplantation 

and any acute cardiovascular event in the three months prior to screening for inclusion. The  

140 patients who met all the inclusion criteria and none of the exclusion criteria were included in the 

present analysis. 
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4.3. Study Protocol 

All patients were hospitalized for the day in order to perform laboratory blood tests, blood pressure 

measurements, a pulse wave velocity (PWV) determination, a lateral lumbar X-ray and a multislice 

spiral computed tomography (MSCT) scan. For a given patient, all examinations were performed 

between 9 am and 2 pm on the same day. Hemodialysis patients were seen on a dialysis-free day or, if 

this was not possible, the morning before the dialysis session. A patient interview focused on 

comorbidities, the personal disease history and (in particular) any previous vascular events. The 

patients’ medical files were reviewed in order to identify and record any concomitant medications. For 

descriptive purposes, patients who reported current or past use of insulin and/or orally administered 

hypoglycemic drugs were considered to be diabetics. Previous cardiovascular disease was defined as a 

history of any of the following events: myocardial infarction, stroke, heart failure, angina pectoris, 

peripheral artery disease and any surgical procedure or percutaneous transluminal angioplasty because 

of vascular disease. 

4.4. Laboratory Tests 

Blood samples were collected in the morning, before the other investigations were undertaken. 

Selected assays were performed after the samples had been frozen and stored at −80 °C. Serum 

calcium, phosphate, albumin, cholesterol, hemoglobin, creatinine (Scr) and C-reactive protein (CRP) 

levels were assayed in an on-site biochemistry laboratory using standard auto-analyzer techniques  

(the Modular IIP® system, Roche Diagnostics, Basel, Switzerland). Serum intact parathyroid hormone 

(iPTH 1-84) was determined in a chemiluminometric immunoassay (Liaison N-tact PTH CLIA®, 

Diasorin, Stillwater, MN, USA). Serum Free FLC κ and λ levels were performed by laser nephelometry 

(BNProSpec®, Siemens Healthcare, Dade Behring, Marburg, Germany). 

To determine the concentration of free p-cresylsulphate (PCS), serum samples were deproteinized 

by heat denaturation and then analyzed by reverse-phase high-performance liquid chromatography 

(RP-HPLC). The serum concentrations were then determined by fluorescence spectrophotometry 

(excitation 265 nm; emission 290 nm). The reference value for free PCS in healthy subjects was  

0.008 ± 0.009 mg/dL. For the determination of serum indoxyl sulphate (IS) levels, samples were 

deproteinized by heat denaturation and analyzed with RP-HPLC [20]. The serum concentrations were 

then determined by fluorescence spectrophotometry (excitation 280 nm, emission 340 nm) using a 

reference value for IS in healthy controls of 0.113 ± 0.06 mg/100 mL. The plasma concentration of  

β2 microglobulin (B2M) was measured by immunonephelometry (BNProSpec, Siemens Healthcare 

Diagnostics GmbH, Eschborn, Germany).  

Serum cystatin C (CysC) levels were also determined by immunonephelometry (BNProSpec 

analyzer, N latex Cystatin C® assay, Siemens Healthcare Diagnostics GmbH, Eschborn, Germany). In 

order to assess the true GFR in non-dialyzed patients as accurately as possible, the eGFR combining 

Scr and CysC measurements was calculated according to the following, recently published “CKD-epi” 

equation [21]: 177.6 × Scr − 0.65 × CysC − 0.57 × age − 0.20 × (0.82 if female). For descriptive 

purposes, patients were then classified into CKD stages, according to the National Kidney 

Foundation’s Kidney Disease Outcomes Quality Initiative guidelines [22]. 
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4.5. Pulse Wave Velocity Evaluation 

The carotid-femoral PWV was determined automatically with a dedicated device fitted with two 

pressure probes (Complior Colson, Createch Industrie, Massy, France) and operated by a trained 

physician, as previously described [23]. Transcutaneously recorded pulse waveforms were obtained 

simultaneously for the common carotid artery and the femoral artery in the groin. The PWV was 

calculated as the distance between recording sites measured over the body’s surface (L), divided by the 

time interval (t) between the feet of the flow waves (PWV = L/t); this value was averaged over  

10 cardiac cycles [12]. This automated method has been validated previously and has an intra-observer 

repeatability coefficient of 0.93 and an interobserver reproducibility coefficient of 0.89 [23,24]. 

4.6. Abdominal Aorta Imaging with Plain Radiography 

A technique similar to that described by Kauppila et al. [25] was used to obtain images of the lower 

abdominal aorta and thus generate an aortic calcification score. All X-rays were reviewed by two 

independent investigators and a consensus on the interpretation was reached in all cases. To validate 

the reproducibility of our vascular calcification measurements, 73 randomly selected radiographies 

were scored on a blind basis by the two independent investigators. 

The very good degree of interobserver agreement on calcification scores was evidenced by a high 

Pearson correlation coefficient (r = 0.925, p = 0.01). 

4.7. Multislice Spiral Computed Tomography 

In order to quantify the presence and extent of aortic calcifications, each patient underwent an 

MSCT scan. All examinations were performed with a 64-detector scanner (Lightspeed VCT®, GE 

Healthcare, Milwaukee, WI, USA). 

The volume acquisition started at the aortic hiatus of the diaphragm and ended at the third lumbar 

vertebra. The scanning parameters were as follows: collimation: 64 × 0.625 mm; slice thickness:  

0.625 mm; pitch: 1; gantry rotation speed: 0.5 s/rotation; tube voltage: 120 kV; tube current: 300 mA. 

The volume acquisition was analyzed with commercially available software (Volume Viewer® 

software, GE Healthcare, Milwaukee, WI, USA). The abdominal aorta was segmented manually. In 

order to reduce errors due to noise, a threshold of 160 UH was applied. The total calcification volume 

was calculated as the sum of all voxels in the remaining volume. The abdominal aorta calcification 

score was calculated as follows: ((total calcification volume)/(aorta wall surface area) × 100). The 

Agatston score was used to quantify coronary calcification [26]. 

4.8. Survival 

Death records were established prospectively, by considering all patients included at least twenty 

months before the study end date (1 January 2010). Each medical chart was reviewed and the cause  

of death was assigned by a physician based on all the available clinical information. For  

out-of-hospital deaths, the patient’s general practitioner was interviewed to obtain pertinent 

information on the cause. Of the 96 predialysis patients, seven patients initiated hemodialysis during 

the study follow-up period. 
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4.9. Statistical Analyses  

Data are expressed as either the mean ± SD, median and range, or frequency, as appropriate. The 

study patients were stratified according to the median FLC κ concentration (55.2 mg/L) or the median 

FLC λ concentration (86.1 mg/L). Intergroup comparisons were made using a χ2 test for categorical 

variables and Student’s t test or the Kruskal-Wallis test for continuous variables. Spearman 

correlations were used to identify parameters correlated with FLC levels. Univariate linear regression 

was performed to evaluate the association between FLC levels and selected demographic, biochemical 

and clinical variables. Thereafter, a multiple linear regression analysis of the factors selected in the 

univariate analysis was used to identify those which were independently associated with FLC κ and λ 

levels. When two variables were strongly correlated, only one variable was retained and separate 

models were built (Table 4). Similarly, multivariate logistic regressions were performed to identify 

variables that were independently associated with FLC levels (as categorized by the median). The 

Kaplan-Meier actuarial curve was used to estimate overall survival relative above and below the 

median FLC κ and λ level. The log rank test was used to compare survival curves. Univariate analysis 

and multivariate analyses of mortality were performed by using a Cox proportional hazard model of 

death as a function of the FLC level. In view of the small size of the present cohort, supplementary 

Cox regression analyses were performed and included a propensity score adjustment, which considers 

each individual’s probability of exposure to measure. The propensity score was built on a logistic 

model that included variables associated with FLC levels (age, CKD stages and CT scan aortic 

calcification entered as median) as detailed elsewhere [27]. A p value ≤ 0.05 was considered to be 

statistically significant. All statistical analyses were performed using SPSS software (SPSS Inc., 

Chicago, IL, USA), version 13.0 for Windows (Microsoft Corp., Redmond, WA, USA). 

5. Conclusions 

In conclusion, the present study of patients at various CKD stages confirmed that FLC κ and λ 

levels are positively correlated with declining kidney function. This is also the first study to show a 

strong correlation between levels of FLC κ and λ and those of other uremic toxins. In our CKD 

patients, the observed link between FLC κ and λ levels and mortality appeared to depend on other 

factors. The use of FLC assays for risk stratification does not appear to be relevant in CKD and so 

various middle molecule uremic toxins (such as B2M) are indicated. 
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