Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Toxins, Volume 4, Issue 1 (January 2012), Pages 1-41

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Investigations into the Toxicology of Spirolides, a Group of Marine Phycotoxins
Toxins 2012, 4(1), 1-14; doi:10.3390/toxins4010001
Received: 9 November 2011 / Revised: 13 December 2011 / Accepted: 23 December 2011 / Published: 30 December 2011
Cited by 27 | PDF Full-text (380 KB) | HTML Full-text | XML Full-text
Abstract
Spirolides are marine phycotoxins produced by the dinoflagellates Alexandrium ostenfeldii and A. peruvianum. Here we report that 13-desmethyl spirolide C shows little cytotoxicity when incubated with various cultured mammalian cell lines. When administered to mice by intraperitoneal (ip) injection, however, this substance [...] Read more.
Spirolides are marine phycotoxins produced by the dinoflagellates Alexandrium ostenfeldii and A. peruvianum. Here we report that 13-desmethyl spirolide C shows little cytotoxicity when incubated with various cultured mammalian cell lines. When administered to mice by intraperitoneal (ip) injection, however, this substance was highly toxic, with an LD50 value of 6.9 µg/kg body weight (BW), showing that such in vitro cytotoxicity tests are not appropriate for predicting the in vivo toxicity of this toxin. Four other spirolides, A, B, C, and 20-methyl spirolide G, were also toxic to mice by ip injection, with LD50 values of 37, 99, 8.0 and 8.0 µg/kg BW respectively. However, the acute toxicities of these compounds were lower by at least an order of magnitude when administration by gavage and their toxic effects were further diminished when administered with food. These results have implications for future studies of the toxicology of these marine toxins and the risk assessment of human exposure. Full article
Figures

Open AccessArticle Development of an in Vitro Potency Assay for Anti-anthrax Lethal Toxin Neutralizing Antibodies
Toxins 2012, 4(1), 28-41; doi:10.3390/toxins4010028
Received: 9 December 2011 / Revised: 23 December 2011 / Accepted: 17 January 2012 / Published: 19 January 2012
Cited by 1 | PDF Full-text (359 KB) | HTML Full-text | XML Full-text
Abstract
Lethal toxin (LT) of Bacillus anthracis reduces the production of a number of inflammatory mediators, including transcription factors, chemokines and cytokines in various human cell lines, leading to down-regulation of the host inflammatory response. Previously we showed that the reduction of interleukin-8 [...] Read more.
Lethal toxin (LT) of Bacillus anthracis reduces the production of a number of inflammatory mediators, including transcription factors, chemokines and cytokines in various human cell lines, leading to down-regulation of the host inflammatory response. Previously we showed that the reduction of interleukin-8 (IL-8) is a sensitive marker of LT-mediated intoxication in human neutrophil-like NB-4 cells and that IL-8 levels are restored to normality when therapeutic monoclonal antibodies (mAb) with toxin-neutralising (TN) activity are added. We used this information to develop cell-based assays that examine the effects of TN therapeutic mAbs designed to treat LT intoxication and here we extend these findings. We present an in vitro assay based on human endothelial cell line HUVEC jr2, which measures the TN activity of therapeutic anti-LT mAbs using IL-8 as a marker for intoxication. HUVEC jr2 cells have the advantage over NB-4 cells that they are adherent, do not require a differentiation step and can be used in a microtitre plate format and therefore can facilitate high throughput analysis. This human cell-based assay provides a valid alternative to the mouse macrophage assay as it is a more biologically relevant model of the effects of toxin-neutralising antibodies in human infection. Full article
(This article belongs to the Special Issue Anthrax Toxin)

Review

Jump to: Research

Open AccessReview Inhibitors of the Cellular Trafficking of Ricin
Toxins 2012, 4(1), 15-27; doi:10.3390/toxins4010015
Received: 23 November 2011 / Revised: 22 December 2011 / Accepted: 23 December 2011 / Published: 6 January 2012
Cited by 13 | PDF Full-text (656 KB) | HTML Full-text | XML Full-text
Abstract
Throughout the last decade, efforts to identify and develop effective inhibitors of the ricin toxin have focused on targeting its N-glycosidase activity. Alternatively, molecules disrupting intracellular trafficking have been shown to block ricin toxicity. Several research teams have recently developed high-throughput [...] Read more.
Throughout the last decade, efforts to identify and develop effective inhibitors of the ricin toxin have focused on targeting its N-glycosidase activity. Alternatively, molecules disrupting intracellular trafficking have been shown to block ricin toxicity. Several research teams have recently developed high-throughput phenotypic screens for small molecules acting on the intracellular targets required for entry of ricin into cells. These screens have identified inhibitory compounds that can protect cells, and sometimes even animals against ricin. We review these newly discovered cellular inhibitors of ricin intoxication, discuss the advantages and drawbacks of chemical-genetics approaches, and address the issues to be resolved so that the therapeutic development of these small-molecule compounds can progress. Full article
(This article belongs to the Special Issue Ricin Toxin)

Journal Contact

MDPI AG
Toxins Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
toxins@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Toxins
Back to Top