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Abstract: Ricin exhibits well characterized ribotoxic actions that lead to the inhibition of 

protein synthesis and the phosphorylation of stress activated protein kinases (SAPKs). 

Proinflammatory effects of ricin are thought to be caused by upregulation of genes 

encoding proinflammatory transcripts as a result of the activation of c-Jun N-terminal 

kinase (JNK) and p38 MAPK. We reported previously that macrophages and interleukin-1 

(IL-1 signaling are required for murine host immune responses to ricin delivered to the 

lungs. Here we report that ricin-mediated IL-1release from bone-marrow derived 

macrophages is dependent on the NALP3 inflammasome, a scaffolding complex that 

mediates pro-IL-1 cleavage to active IL-1 by caspase-1. Release of IL-1 from 

macrophages was suppressed by the reactive oxygen species (ROS) scavenger N-acetyl 

cysteine (NAC) and high extracellular K
+
, which are two agents known to inhibit 

NALP3/cryopyrin/CIAS1 inflammasome formation. By employing inhibitors of p38 

MAPK and JNK, we demonstrated that ricin-mediated release of IL-1 was enhanced, 

rather than suppressed, by inhibition of SAPK phosphorylation. In contrast, proteasomal 

inhibitors bortezomib and MG-132 completely suppressed ricin-induced IL-1 release 

from macrophages. These data suggest that ricin-mediated translational inhibition itself, by 

fostering the disappearance of labile protein(s) that normally suppress inflammasome 

formation, may constitute the mechanism underlying IL-1-dependent inflammatory 

signaling by ricin. 
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1. Introduction  

Ricin is a potent inhibitor of protein synthesis that triggers a robust proinflammatory response when 

administered to mice and non-human primates [1]. Mounting evidence points to the macrophage as the 

specific cell type responsible for ricin’s lethal effects in vivo [2–4]. In primary bone-marrow  

derived- (BMDM) and alveolar macrophages, exposure to ricin causes the phosphorylation of stress 

activated protein kinases (SAPKs) p38 MAPK and JNK, and triggers the transcriptional upregulation 

of genes encoding proinflammatory cytokines and chemokines [3,5]. In vivo, depletion of macrophages 

prior to delivery of ricin to the pulmonary system of mice results in diminished inflammatory signs, 

including reduced neutrophilia and pulmonary edema [6].  

IL-1β signaling is an essential component of ricin-mediated inflammation. Mice deficient in  

IL-1α/β or IL-1R display enhanced survival as well as decreased neutrophilia and pulmonary edema 

compared to wild-type mice after exposure to ricin [6]. Ricin’s ability to induce neutrophilia can be 

restored in IL-1α/β-deficient animals by the co-administration of exogenous IL-1β with ricin. 

Furthermore, the IL-1 receptor antagonist anakinra (Kineret®) provides protection against ricin-

mediated inflammatory effects in wild-type mice, confirming a central role of IL-1 in ricin toxicity. 

IL-1β secretion by macrophages is a tightly regulated process involving at least two distinct signals 

[7,8]. Macrophages first require priming by Toll-like receptor (TLR) ligands (such as LPS) or by 

cytokines (such as TNFα or IL-1β itself) in order to induce the expression of pro-IL-1β. The  

pro-form of IL-1β is inactive and requires cleavage by the cysteine protease caspase-1 for maturation 

and secretion [9]. Molecular platforms called inflammasomes stimulate caspase-1 activity and are 

necessary for IL-1β processing [10,11]. One of the best-characterized inflammasome complexes is the 

NALP3 (or NLRP3/cyropyrin) inflammasome. This multiprotein complex includes the NOD-like 

receptor (NLR) family member NALP3, the cysteine protease caspase-1, and the adaptor protein 

apoptosis-associated specklike protein (ASC), which facilitates interaction of caspase-1 with  

NALP3 [12,13]. 

NLRs such as NALP3 are intracellular sensors of pathogen-associated molecular patterns (PAMPs) 

and danger-associated molecular patterns (DAMPs) [14]. Unlike AIM2, an NLR family member that 

senses dsRNA through direct ligand binding, NALP3 is thought to be a more general sensor of cellular 

stress through a mechanism that is not fully understood [15]. NALP3 inflammasomes are activated by 

a diverse array of agents including exogenous danger signals such as bacterial RNA, Candida 

albicans, and influenza [16–18], environmental stressors such as silica and asbestos [19–21], and 

endogenous danger signals such as ATP, uric acid and amyloid β [22–24].  

While a singular mechanism cannot yet explain the activation of the NALP3 inflammasome by its 

wide array of activators, two events that may be common to all known activators are the generation of 

reactive oxygen species (ROS) and the efflux of potassium [20,21,25,26]. ROS generation by NALP3 

agonists is believed to indirectly cause activation of the inflammasome via the ROS-sensitive TXNIP 

protein [27]. Studies show that inhibitors of ROS can reduce the amount of mature IL-1β released by 
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cells after stimulation with ATP, asbestos, and silica [21,28]. However, work on human monocytes 

lacking functional NADPH oxidase did not show a connection between ROS and NALP3 

inflammasome activation [29], suggesting that ROS generation may not always be required. In regards 

to the role of potassium, it is thought that the intracellular assembly of NALP3 inflammasomes 

requires a low potassium environment [30]. Activation of caspase-1 is suppressed by normal levels of 

intracellular potassium [31], and two laboratories have shown that the efflux of K
+
 can directly 

promote the oligomerization of ASC and its association with caspase-1 [26,32].  

Here we report that ricin toxin is an activator of the NALP3 inflammasome. We found that  

ricin-mediated IL-1β release from primary bone marrow-derived macrophages not only required the 

expression of NALP3, ASC and caspase-1, but also was inhibited by co-treatment of cells with the 

ROS scavenger N-acetyl-cysteine (NAC) or high extracellular potassium. In addition, we found that 

the activation of JNK and p38 MAPK by ricin was not inhibited by either NAC or elevated 

extracellular potassium, suggesting that ricin mediates IL-1 release from cells in a manner that is 

independent of its ability to activate kinases.   

Proinflammatory consequences of ricin are thought to be initiated by phosphorylation of ZAK, a 

MAP3K that transduces the signal through downstream kinases p38 MAPK and JNK and leads to 

proinflammatory gene expression [33]. We found that treatment of cells with inhibitors reported to 

bind to ZAK [34,35] (Nilotinib and Sorafenib) led to inhibition of p38 and JNK activity but failed to 

block ricin-mediated release of IL-1β from macrophages. We hypothesized that inhibition of protein 

synthesis might be the event that triggers activation of the NALP3 inflammasome by contributing to 

the disappearance of important repressor proteins from the cell. By employing proteasome inhibitors to 

suppress proteasomal degradation of cellular proteins, we found that ricin-induced IL-1 release from 

macrophages required active proteasomes. Together these data describe a novel mechanism governing 

ricin-mediated inflammatory signaling. 

2. Materials and Methods  

2.1. Reagents and Antibodies 

Ricin was purchased from Vector Laboratories (Burlingame, CA). LPS (L-2630), N-acetyl cysteine 

(NAC), and bovine-pancreas insulin (I6634) were purchased from Sigma-Aldrich (St. Louis, MO). 

Trichloroacetic acid (TCA) was purchased from Fisher Scientific (Pittsburgh, PA). Nilotinib, 

Sorafenib and Bortezomib were obtained from LC Laboratories (Woburn, MA). MG-132, the  

p38-specific inhibitor SB203580, and the JNK inhibitor SP600125 were purchased from EMD 

Biosciences (Gibbstown, NJ). The mouse IL-1 enzyme-linked immunosorbent assay (ELISA)  

Ready-Set-Go was purchased from eBioscience (San Diego, CA). Anti-IL-1 was purchased from 

Abcam (Cambridge, MA), anti-ASC was purchased from Enzo Life Sciences (Lausen, Switzerland), 

and anti-p38, anti-cryopyrin (H-66)/NALP3, and anti-caspase-1 (M-20) were purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA). Anti-phospho-SAPK/JNK (9251S), anti-phospho-p38 MAPK 

(9211S), anti-phospho-MAPKAP-2 (3041S) were purchased from Cell Signaling Technologies 

(Danvers, MA).   
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2.2. Animals and Animal Procedures 

All animal procedures were performed according to protocols approved by the Institutional Animal 

Care and Use Committee at Oregon Health and Science University, Portland, Oregon. C57BL/6J and 

Caspase-1 deficient mice were purchased from The Jackson Laboratory (Bar Harbor, ME).  

ASC-deficient and NALP3-deficient mice were kindly provided by V. Dixit (Genentech, San 

Francisco, CA). Male mice, 8–10 weeks of age, were used throughout the experiments. Before 

experimental procedures, mice were anesthetized intraperitoneally with 80 mg/kg of ketamine and  

10 mg/kg of xylazine.  

2.3. Isolation and Treatment of Bone Marrow-Derived Macrophages 

Bone marrow-derived macrophages were prepared from C57BL/6J, ASC
−/−

, Caspase-1
−/−

, and 

NALP3
−/−

 mice. Marrow was flushed from femurs and tibias with PBS and cultured in -Minimum 

Essential Medium (α-MEM, Cellgro, Herndon, VA), supplied with 10% Fetal Bovine Serum (FBS, 

Cellgro, Herndon, VA), 50 μg/mL gentamicin, and 100 ng/mL recombinant mouse Colony Stimulating 

Factor 1 (CSF-1, R&D Systems, Minneapolis, MN) for 72 h on non-tissue culture treated 10-cm petri 

dishes. Cells were passaged and cultured for an additional 72h. Cells from one confluent 10-cm dish 

were plated into one 6-well tissue culture plate (Sarstedt, Newton, NC) for an additional 24 h before 

experiments. Cells were serum-deprived in -MEM for 30 min followed by treatment with 50 ng/mL 

LPS for 4 h. Cells were rinsed with fresh media and exposed to 0.01 µg/mL ricin in serum-free media 

for an additional 4 h prior to harvesting. In experiments involving co-treatments with ricin plus  

N-acetyl-cysteine (30 mM), high potassium (130 mM), Nilotinib (1 µM), Sorafenib (1 µM), SB203580 

(10 µM), SP600125 (20 µM), bortezomib (0.5 M) or MG-132 (10 M), cells were exposed to 

indicated concentrations of inhibitors. In experiments involving high potassium, potassium was 

substituted for sodium in the medium in order to maintain equivalent ion concentrations.  

2.4. Immunoblotting and IL-1 ELISA 

BMDM cells were lysed in 2X ESB lysis buffer in preparation for immunoblotting. Equal volumes 

of the cell lysates were separated on a 10% denaturing polyacrylamide gel in the presence of sodium 

dodecyl sulfate and were transferred onto polyvinylidene difluoride membranes according to standard 

laboratory procedures. Proteins from BMDM media supernatants were precipitated using TCA and run 

on 13% gels. Briefly, samples were incubated at 4 °C overnight with 200 µg insulin carrier and 400 µL 

ice-cold 100% TCA prior to centrifugation at 12,000 rpm for 5 min. Pellets were air dried and 

resuspended in 2X ESB lysis buffer followed by separation on a 13% denaturing polyacrylamide gel. 

Membranes were incubated with the indicated antibodies and the corresponding horseradish 

peroxidase-conjugated secondary antibodies; signals were detected using enhanced 

chemiluminescence. Media supernatants were analyzed in triplicate using IL-1 ELISA (eBioscience) 

according to the manufacturer’s protocol. 

2.5. Statistical Analysis 

Individual groups were compared using unpaired t test analysis and were interpreted in a  

two-tailed manner. 
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3. Results 

3.1. Ricin Stimulates IL-1 Release from Wild-Type Bone Marrow Derived Macrophages 

Studies in vivo and in vitro have demonstrated that macrophages constitute primary targets of ricin 

[3,5,6]. Wild-type (WT) alveolar and bone-marrow derived macrophages respond similarly to ricin in 

that they both display phosphorylation of p38 MAPK and JNK in dose-dependent manner inversely 

proportional to the ricin-mediated decrease in levels of protein translation [3]. In order to determine if 

macrophages release IL-1 in response to these same doses, wild-type BMDM were first primed for  

4 h with LPS (50 ng/mL) to induce pro-IL-1 expression, after which cells were rinsed and exposed to 

varying concentrations of ricin for 4 h (Figure 1). Whole cell lysates (WCL) and media supernatants 

were subjected to immunoblotting and ELISA for detection of IL-1. Ricin alone did not induce 

expression of pro-IL-1. Priming with LPS led to an increase in levels of 37 kDa pro-IL-1 in cell 

lysates, and subsequent exposure to ricin led to the appearance of processed 17 kDa IL-1in the 

media. Processed IL-1 was detected in media supernatants for all doses tested. We chose to use the 

lowest dose, 0.01 µg/mL, for all subsequent experiments. The B subunit of ricin is responsible for 

binding to cell surfaces, but lacks the N-glycosidase activity of the A subunit that is responsible for 

depurination of 28S rRNA. Exposure of LPS-primed macrophages to purified ricin B subunit failed to 

elicit appearance of p17 IL-1 in the culture medium (data not shown), suggesting that interactions 

between ricin holotoxin and surface molecules do not elicit signals that elicit processing of pro-IL-1. 

Figure 1. Ricin stimulates IL-1 release from WT BMDM. Secreted IL-1 was measured 

by ELISA analysis of media supernatants collected from LPS-primed WT BMDM after 4 h 

ricin exposure. Bars represent the mean ± s.d. of triplicate wells. Results are representative 

of three individual experiments. Media supernatants were also precipitated and subjected to 

immunoblot analysis for detection of IL-1 p17. WCLs were subjected to immunoblot 

analysis for detection of pro-IL-1 and p38 MAPK as a loading control. 
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3.2. Ricin-Mediated Release of IL-1 Requires NALP3, ASC and Caspase-1 

Secretion of processed IL-1 from cells requires discrete events, including the accumulation of  

pro-IL-1 through a priming step and the assembly of the inflammasome, a multiprotein scaffolding 

complex that both activates caspase-1 and brings caspase-1 into close proximity with pro-IL-1  

[7,10]). The best-studied inflammasome complex is the NALP3 inflammasome, in which NALP3 

associates with caspase-1 through the adaptor protein ASC [12,13]. The NALP3 inflammasome has 

been shown to mediate cellular responses to several danger-associated molecular patterns: exogenous 

danger signals such as silica and asbestos [19,21], and endogenous danger signals such as ATP and 

uric acid [22,23,36]. To determine if macrophages sense and respond to ricin through the NALP3 

inflammasome, we compared the ricin-mediated responses of WT cells to responses of cells deficient 

in NALP3, ASC, or caspase-1 (Figure 2). BMDM from each mouse strain were primed with LPS for  

4 h prior to ricin treatment. After 4 h exposure to ricin, cells were harvested and processed for 

immunoblotting (Figure 2A) to examine expression levels of inflammasome components and  

pro-IL-1. Media supernatants were subjected to detection of IL-1 by immunoblotting and ELISA  

(Figure 2B). Although pro-IL-1 was similarly induced in the LPS-primed cells of each strain, the 

processing of pro-IL-1 to active IL-1 was significantly decreased in cells deficient in either NALP3, 

ASC or caspase-1. These results suggest that the NALP3 inflammasome is required for ricin-mediated 

IL-1 processing and release from BMDM. 

Figure 2. Ricin-mediated release of IL-1 requires NALP3, ASC, and caspase-1. Primed 

and unprimed WT, NALP3
−/−

, casp-1
−/−

, and ASC
−/−

 BMDM were treated with  

± 0.01 µg/mL ricin or vehicle alone (co) for 4 h. WCLs were subjected to immunoblotting 

for NALP3 inflammasome components, pro-IL-1 and p38 MAPK. Media supernatants 

were either precipitated for immunoblot analysis (A) or subjected to ELISA for 

measurement of secreted IL-1 (B). Bars represent the mean ± s.d. of triplicate wells.  
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3.3. Elevated Extracellular K
+
 and N-Acetyl-Cysteine Prevent Ricin-Mediated Secretion of IL-1 

If NALP3 mediates the release of IL-1 from macrophages exposed to ricin, then agents shown to 

inhibit the activity of the NALP3 inflammasome should block the appearance of IL-1 in the medium 

after exposure to ricin. To address this question we employed two inhibitors of the NALP3 

inflammasome: increased extracellular potassium (K
+
) and the ROS scavenger, N-acetyl-cysteine. 

High extracellular K
+
 blocks IL-1 release caused by a variety of danger signals that activate NALP3 

including asbestos, silica, and ATP [37]. In vitro studies of inflammasome activation suggest that 

NALP3 inflammasome assembly requires a low K
+
 intracellular environment [26]. In addition, 

activation of NALP3 is reportedly blocked by ROS inhibitors like NAC through a mechanism that is 

not well understood [25]. Wild-type BMDM were primed with LPS for 4 h, after which cells were  

co-treated with increased extracellular potassium or NAC and ricin. Four hours later, cells and media 

supernatants were harvested and processed for immunoblot analysis and ELISA. Media collected from 

cells co-treated with ricin and either NAC or elevated extracellular K
+
 contained 50% and 75% less  

IL-1 respectively, than cells treated with ricin alone. Untreated cells and cell exposed to NAC or 

elevated K
+
 expressed equivalent amounts of pro-IL-1β (Figure 3). Interestingly, exposure of cells to 

NAC or elevated K
+ 

did not diminish ricin-mediated phosphorylation of p38 MAPK or the p38 MAPK 

target, MAPKAP2. Furthermore, NAC by itself led to phosphorylation of p38 MAPK and MAPKAP2 

while diminishing the release of IL-1 from ricin-treated cells, suggesting that ricin-mediated 

inflammasome activation and SAPK phosphorylation are not necessarily linked.  

Figure 3. Elevated extracellular K
+
 and NAC prevent ricin-mediated secretion of IL-1  

from WT BMDM. Primed WT cells were treated ± 0.01 µg/mL ricin in combination with 

either NAC or K
+
 for 4 h. A) WCLs were subjected to immunoblotting for phospho-p38 

MAPK, phospho-MAPKAP2, pro-IL-1 and p38 MAPK as a loading control. Media 

supernatants were either precipitated for immunoblotting (A) or subjected to ELISA for 

determination of secreted IL-1 (B). Bars represent the mean ± s.d. of triplicate wells  

(**: p < 0.01).  
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3.4. Ricin-Mediated Phosphorylation of p38 MAPK and JNK Is Not Required for Ricin-Mediated  

IL-1 Secretion 

If ricin-mediated phosphorylation of SAPKs is an upstream event leading to NALP3 activation, 

then blocking the phosphorylation of these kinases should prevent the appearance of IL-1 in the 

media of ricin-treated cells. To address this question we employed SB203580, an inhibitor of p38 

MAPK, and SP600125, an inhibitor of JNK. We also employed two inhibitors (Nilotinib and 

Sorafenib) that have been reported to have very high affinity for the ATP-binding site of ZAK [34,35], 

the upstream MAP3K that is phosphorylated by ricin and other ribotoxic stressors [33]. LPS-primed 

cells were treated with SB203580 (SB), SP600125 (SP), Sorafenib, Nilotinib or ricin, alone and in 

combination for 4 h, at which time cell lysates and media supernatants were collected (Figure 4). 

Phosphorylated SAPKs and pro-IL-1 levels were examined in cell lysates by immunoblotting. 

Processed IL-1 from media supernatants was detected using both immunoblotting and ELISA. 

Inhibitors exhibited varying degrees of effectiveness in suppressing SAPKs. JNK activation was 

decreased marginally by SP and significantly by Sorafenib; p38 MAPK activation was diminished 

significantly by Nilotinib and Sorafenib; and the activation of MAPKAP2, a target of p38 MAPK, was 

significantly decreased by SB, Nilotinib, and Sorafenib. Surprisingly, SB stimulated IL-1 release 

from macrophages on its own, and cells co-treated with kinase inhibitors and ricin secreted similar or 

greater amounts of IL-1 as cells treated only with ricin, despite diminished levels of phosphorylated 

p38 MAPK and JNK in these cells. These data suggest that SAPK activation by ricin is not a 

requirement for the release of IL-1 from ricin-treated cells and that suppression of ricin-mediated 

ZAK activation did not reduce ricin-induced activation of the NALP3 inflammasome. 

3.5. Proteasome Inhibitors Block Ricin-Mediated Release of IL-1 from WT BMDM 

Importantly, the dose of ricin used in this study (0.01 µg/mL) elicits a 50% inhibition of protein 

synthesis by 3 h in addition to its effects on SAPKs and the release of IL-1  [3]. We hypothesized that 

inhibition of protein synthesis per se could lead to activation of NALP3 by contributing to the 

disappearance of labile proteins which may regulate the availability of NALP3 to participate in 

formation of the inflammasome. In such case, proteasomal activity may be required for ricin-induced 

activation of NALP3 and release of IL-1 from macrophages. To test this hypothesis, we employed the 

specific and potent proteasome inhibitors bortezomib and MG-132. Although cells exposed to 

bortezomib or MG-132 expressed similar levels of pro-IL-1 to cells exposed only to LPS or ricin, 

cells exposed to bortezomib or MG-132 exhibited complete suppression of ricin-mediated secretion of 

IL-1(Figure 5). These data are consistent with the notion that translational inhibition itself may be a 

mechanism by which ricin triggers IL-1 dependent inflammatory signaling. 
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Figure 4. Ricin-mediated phosphorylation of p38 MAPK and JNK is not required for  

ricin-mediated IL-1 secretion. Primed WT cells were treated ± 0.01 µg/mL ricin in 

combination with either SB203580, SP600125, SB + SP, Nilotinib or Sorafenib for 4 h.  

(A) WCLs were subjected to immunoblotting for phospho-JNK, phospho-p38 MAPK, 

phospho-MAPKAP2, pro-IL-1 and p38 MAPK as a loading control. Media supernatants 

were either precipitated and subjected to immunoblotting (A) or analyzed for IL-1 by 

ELISA; (B) Bars represent the mean ± s.d. of triplicate wells. 
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Figure 5. Proteasome inhibitors block ricin-mediated release of IL-1 from WT BMDM. 

Primed cells were treated ±0.01 µg/mL ricin and either bortezomib, MG-132, or vehicle 

alone (co) for 4 h. Secreted IL-1 was measured by ELISA from media supernatants. Bars 

represent the mean ± s.d. of triplicate wells (**: p < 0.01). WCLs were subjected to 

immunoblotting for detection of pro-IL-1and p38 MAPK as a loading control. 

 

4. Discussion 

Previously we demonstrated that, in addition to inhibiting protein synthesis, ricin triggers the 

phosphorylation of JNK and p38 MAPK. Activation of these kinases is required for ricin-mediated 

expression of mRNAs encoding inflammatory cytokines and chemokines [38,39]. Furthermore, we 

showed that ricin administration to the lungs results in a neutrophilic inflammation in vivo that is 

dependent on IL-1 and on the presence of macrophages [6]. Experiments in BMDM and alveolar 

macrophages demonstrated that macrophages constitute primary targets for ricin, and are a likely 

source of ricin-induced production of IL-1 [3,5,6]. However, the mechanism of ricin-mediated 

processing and release of IL-1 was unclear.  

Here we report that ricin triggers IL-1 release from macrophages in a NALP3-, ASC- and  

caspase-1-dependent manner, and that ricin-mediated IL-1 release, but not ricin-mediated SAPK 

phosphorylation, may be blocked by treatment of cells with high extracellular potassium or the ROS 

scavenger, NAC. In addition, we found that IL-1 release is not dependent upon p38 or JNK 

activation, since inhibitors that target the p38 MAPK and JNK pathways failed to block IL-1 release 

and indeed, even enhanced IL-1 secretion from primed cells. Furthermore, treatment of macrophages 

with proteasome inhibitors in combination with ricin demonstrated that ricin-mediated IL-1 release 

was dependent upon the proteasomal degradation of cellular proteins. Taken together, these data 

suggest a novel mechanism for ricin-mediated inflammatory signaling, and helps to explain why 

inhibitors of IL-1 signaling are capable of diminishing ricin’s inflammatory effects. 

The major finding of this study is that macrophages require components of the NALP3 

inflammasome (NALP3, ASC, and caspase-1) in order to process and release active IL-1 after ricin 
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exposure (Figure 2). NALP3 is a Nod-like receptor protein containing a pyrin-domain (PYD) through 

which it interacts with the PYD-containing adaptor protein, ASC, upon oligomerization [40]. ASC 

binds caspase-1 through its caspase-1 recruitment domain (CARD) and stimulates its activity, so that 

the IL-1 precursor may be cleaved into its active form, p17 IL-1, and secreted by the cell in 

response to danger signals. Although primed WT BMDM expressed similar levels of pro-IL-1 as the 

NALP3-, ASC-, and caspase-1-deficient BMDM (Figure 2a), the mutant BMDM all failed to release 

IL-1 into the medium after ricin treatment. These results suggest that the NALP3 inflammasome is 

required for ricin-mediated processing of IL-1.  

As a sensor of a myriad of microbial and non-microbial danger signals and the culprit of  

pyrin-associated autoinflammatory diseases caused by mutations in the nlrp3 gene [41,42], the NALP3 

inflammasome is well-studied but still poorly understood. Unlike TLRs, which bind directly to their 

ligands [43], studies suggest that NALP3 may instead sense an intermediate molecule produced by its 

activators. While the list of activators grows longer each year, the mechanism through which dissimilar 

signals trigger NALP3 activity remains unclear.  

Although insufficient to activate the NALP3 inflammasome on their own, potassium efflux and 

ROS production are common events that occur during NALP3 activation by all known activators [25]. 

Evidence suggests that ASC oligomerization and caspase-1 activation require a low potassium 

environment [26,32]. Indeed, high extracellular potassium applied to macrophages to prevent  

ricin-mediated potassium efflux resulted in significantly diminished IL-1 secretion in ricin-treated 

cells (Figure 3), despite expressing normal levels of pro-IL-1 after priming. Furthermore, the  

ROS-scavenger NAC was able to reduce IL-1 release by 50% in ricin-treated BMDM (Figure 3), 

consistent with the notion that intracellular ROS may be permissive for activation of the  

NALP3 inflammasome. 

In order to determine whether SAPK phosphorylation was required for ricin-mediated 

inflammasome activation, we employed inhibitors known to have high affinity for ZAK (Nilotinib and 

Sorafenib) as well as inhibitors specific to the p38 MAPK (SB203580) and JNK (SP600125). 

Surprisingly, we found that inhibiting ricin-mediated SAPK activation enhanced, rather than 

suppressed, IL-1 release from primed macrophages (Figure 4). These data suggest that SAPK 

phosphorylation by ricin may suppress the NALP3 inflammasome rather than contribute to its 

activation. The partial suppression of ZAK by kinase inhibitors failed to diminish NALP3 activation, 

suggesting that NALP3 activation by ricin occurs by a mechanism that does not involve ZAK. 

However, the possibility that ZAK contributes to ricin-mediated activation of the NALP3 

inflammasome cannot be excluded at this time. 

Another possibility is that ricin induces activity of the NALP3 inflammasome through the inhibition 

of cellular protein translation per se by depleting cells of proteins that suppress formation of 

inflammasome complexes under normal conditions. The existence of a family of small proteins that 

have emerged as important inflammasome
 
regulators lends merit to this idea. These proteins contain 

either pyrin-only domains (POPs) or CARD-only domains (COPs) and act as endogenous  

dominant-negative modulators of inflammasome activity [44]. One might imagine a scenario in which 

their disappearance from the cell could trigger activation of the inflammasome as a result of  

ricin-induced inhibition of protein synthesis combined with normal protein turnover.  
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To explore this possibility, we treated WT BMDM with two different proteasome inhibitors, 

bortezomib and MG-132, and examined ricin-mediated IL-1 release under conditions in which 

proteasomal degradation of cellular proteins was blocked. Our experiments demonstrated that both 

bortezomib and MG-132 signficantly reduced IL-1 secretion from WT cells exposed to ricin, 

supporting the hypothesis that ricin-mediated translational inhibition itself may lead to activation of 

the NALP3 inflammasome by fostering the disappearance of labile protein(s). It would be interesting 

to examine whether other inhibitors of protein translation similarly activate inflammatory signaling 

through NALP3.  

Since host immune responses triggered by toxins are nonproductive and often deleterious, 

investigation into mechanisms underlying inflammatory signaling by toxins is warranted so that we 

might better understand and manage toxin-induced pathologies. 

5. Conclusions 

When added to LPS-primed murine bone marrow-derived macrophages, ricin induces the 

processing of pro-IL-1 to IL-1, which is secreted into the culture medium. The conversion of 

pro-IL-1 to IL-1 is prevented in macrophages deficient in NALP3, ASC, or caspase-1, suggesting 

that ricin induces the formation of the NALP3 inflammasome. The mechanism by which ricin mediates 

the secretion of IL-1 through formation of the NALP3 inflammasome does not involve the 

stimulation of JNK and p38 MAPK or activation of ZAK. Proteasome inhibitors suppress  

ricin-mediated inflammasome activation, suggesting that the turnover of labile suppressor protein(s) 

may be responsible for restraining the formation of the NALP3 inflammasome. 
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