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Abstract: The hypothalamic-pituitary-adrenal (HPA) axis activation and glucocorticoid 
responses are critical for survival from a number of bacterial, viral and toxic insults, 
demonstrated by the fact that removal of the HPA axis or GR blockade enhances mortality 
rates. Replacement with synthetic glucocorticoids reverses these effects by providing 
protection against lethal effects. Glucocorticoid resistance/insensitivity is a common 
problem in the treatment of many diseases. Much research has focused on the molecular 
mechanism behind this resistance, but an area that has been neglected is the role of 
infectious agents and toxins. We have recently shown that the anthrax lethal toxin is able to 
repress glucocorticoid receptor function. Data suggesting that the glucocorticoid receptor 
may be a target for a variety of toxins is reviewed here. These studies have important 
implications for glucocorticoid therapy. 
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1. Introduction  

Bacterial and viral infections result in a cascade of events called the acute phase response resulting 
in inflammation, and activation of the hypothalamic-pituitary-adrenal (HPA) axis with eventual 
restoration of host homeostasis. The acute phase response is a general response that occurs following 
exposure to infection, trauma or other noxious insults including toxins and includes induction of liver 
proteins, activation of hormonal responses, and local inflammation. Bacterial toxins and venoms are 
known to induce local inflammation and the acute phase response [1–4]. For an in depth review on the 
acute phase response induced by lipopolysaccharide (LPS) see Berczi (1998) [5]. 

2. The Hypothalamic-Pituitary-Adrenal (HPA) Axis and Glucocorticoid Responses 

The brain and immune systems communicate via a bi-directional system through cytokines from the 
immune system to the brain [6] and through hormonal pathways from the brain to immune cells [7,8]. 
These hormonal pathways include the HPA axis with a resultant release of glucocorticoids [8] and the 
sympathetic, parasympathetic, and peripheral nervous systems. This review will focus on the HPA axis 
and glucocorticoids, but for a review on the autonomic and sympathetic nervous systems see the recent 
reviews by Bellinger and Rosas-Ballina [9,10]. Following inflammatory, physical, or psychosocial 
stimulation, corticotrophin releasing hormone (CRH) is released from the cells of the paraventricular 
nucleus of the hypothalamus into the hypophyseal blood supply. In turn, this stimulates the release of 
adrenocorticotropin hormone (ACTH) from the anterior pituitary gland into the blood stream. At the 
adrenals, the synthesis and release of glucocorticoids is stimulated by ACTH. Glucocorticoids 
negatively regulate the HPA axis by feedback mechanisms at the level of the hypothalamus and 
pituitary (Figure 1). Glucocorticoids (cortisol in humans and corticosterone in rodents) are the body’s 
natural anti-inflammatory agents. However, immune regulation is not the only function of 
glucocorticoids, they are also essential for the regulation of several homeostatic mechanisms in the 
body, including the central nervous system, cardiovascular system and metabolism. The precise 
mechanism of how glucocorticoids regulate the immune system will not be discussed here in detail, as 
this has been the subject of another review [8]. 

2.1. Disruption of the HPA Axis/Glucocorticoid Responses Increases Mortality 

Animal models have demonstrated the critical need for an intact HPA axis and glucocorticoid 
response for survival from a number of insults including bacterial and viral infections and toxins. 
Removal of endogenous glucocorticoids by adrenalectomy, the glucocorticoid receptor (GR) 
antagonist RU486, or interruption of the HPA axis by hypophysectomy, significantly enhances 
mortality from endotoxin or LPS, Shiga toxin, and normally non-lethal doses of the bacterial 
superantigen Staphylococcus aureus enterotoxin B (SEB) [11–19]. Removal of endogenous 
glucocorticoid responses by RU486 or adrenalectomy also resulted in enhanced Clostridium difficile 
toxin A-induced fluid secretion and inflammation [20,21]. These effects of loss of HPA axis or GR 
function could be reversed by exogenous replacement of glucocorticoids. A physiological dose of 
corticosterone resulted in an inflammatory response following Clostridium difficile toxin A that was 
equivalent to sham-operated animals, whilst replacement with a high pharmacological corticosterone 
dose resulted in a reduction of the inflammatory response [20]. Survival rates of BALB/c mice from 



Toxins 2010, 2  
 

 

1359 

Shiga toxin 2 were enhanced by 18 hour pre-treatment of either LPS or dexamethasone whereas only 
one hour of LPS pre-treatment decreased survival rates. This enhanced mortality with one hour  
pre-treatment of LPS correlated with increased pro-inflammatory mediators, such as TNFα. In fact, 
pre-treatment with TNFα also decreased survival to Shiga toxin 2. The protection afforded by the 18 
hour LPS pre-treatment condition was shown to be due to the increased endogenous corticosterone 
production secondary to LPS-induced IL-1β activation of the HPA axis [22]. Furthermore, 
dexamethasone treatment reversed the increased Shiga toxin-induced mortality in adrenalectomized 
animals [17]. Likewise, administration of exogenous dexamethasone protected adrenalectomized 
BALB/c mice from bacterial superantigen SEB lethality [18]. Administration of dexamethasone to 
F344/N rats treated with RU486 similarly prevented mortality from streptococcal bacterial cell walls 
[19]. Dexamethasone, but not the natural glucocorticoids, corticosterone and deoxycorticosterone, 
reversed LPS-induced mortality in adrenalectomized animals, suggesting that synthetic glucocorticoids 
are more effective than endogenous glucocorticoids in protecting against endotoxin/LPS lethality 
[13,16]. Increased cytokine production, particularly TNFα is the most likely cause of enhanced 
LPS/endotoxin-induced mortality following removal of endogenous glucocorticoids or HPA axis 
blockade [13,23]. Increases in cytokine levels (TNFα and IL-6) following LPS/endotoxin 
administration are enhanced further by HPA axis blockade (adrenalectomy or RU486) and can be 
reversed by glucocorticoid treatment [12,24]. Finally, the requirement for an intact glucocorticoid 
response for survival from endotoxin is further demonstrated by the fact that GR over-expression in 
mice renders them resistant to LPS-induced endotoxic shock [25]. 

Figure 1. The hypothalamic-pituitary-adrenal (HPA) axis. Solid arrows depict positive 
interactions. Broken arrows indicate an inhibitory interaction. Reproduced with permission 
from Annual Reviews [8]. 
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In agreement with the above studies which support the role for an intact HPA axis and 
glucocorticoid response in survival from a toxic insult, we have shown that adrenalectomy increases 
lethality to anthrax lethal toxin (LeTx) in BALB/cJ, C57BL/6J and the normally LeTx resistant 
DBA/2J mice [26]. Likewise, RU486 exacerbated lethality in Balb/cJ mice. However, this could not be 
reversed by dexamethasone or aldosterone administration [26] suggesting that a careful balance of the 
HPA axis and glucocorticoid response is required for survival from LeTx. 

2.2. Glucocorticoid Receptor (GR) 

Glucocorticoids exert their many effects through a cytosolic receptor, GR, a member of the nuclear 
hormone receptor superfamily, which also includes the thyroid hormone, mineralocorticoid (MR), 
estrogen (ER) and progesterone receptor (PR) [27]. In the absence of ligand, GR is located in the 
cytoplasm in a protein complex that includes Hsp90 and Hsp70. Upon ligand activation, GR is released 
from the protein complex, dimerizes, and translocates to the nucleus where it binds to specific DNA 
sequences called glucocorticoid response elements (GRE) (Figure 2). Thus, GR functions as a  
ligand-dependent transcription factor [28]. GR is able to upregulate gene expression through direct 
DNA binding, for example the gluconeogenic enzyme tyrosine aminotransferase (TAT) whose 
promoter contains a consensus GRE sequence [29]. GR can also bind to negative GREs (nGRE) to 
repress gene activation, such as for the proopiomelanocortin (POMC) gene [30]. However, GR 
primarily represses gene transcription by interfering with the action of other signaling pathways, such 
as nuclear factor kappa B (NFκB) and activator protein 1 (AP-1) (Figure 2), and it is through this 
mechanism that glucocorticoids exert many of their anti-inflammatory actions [31,32]. GR is essential 
for life. Mice lacking GR die shortly after birth due to a defect in lung maturation [33]. However, it 
appears that the anti-inflammatory actions of GR associated with its ability to interfere with other 
signaling mechanisms may be the most critical for survival. Dimerization knockout mice (GRdim/dim) 
are viable [34]. In these mice GRE-mediated gene activation, which is entirely dependent on GR 
dimerization, is removed but GR interactions with NFκB and AP-1, which are independent of 
dimerization, are still possible. 

GR mutations exist and play a role in glucocorticoid resistance [35]. However, there are multiple 
steps in the GR signaling pathway that if defective could also cause glucocorticoid 
resistance/insensitivity. Included in these possible mechanisms are the disruption of GR signaling, 
reduced GR numbers [36], abnormal expression of Hsp90 [37–40], enhanced expression of the 
dominant negative splice variant of GR, GRβ [41–45], dysregulation of 11β-hydroxysteroid 
dehydrogenase (11β-HSD) [46], defective GR nuclear translocation [47–49], cofactor defects [50,51], 
increased multidrug resistance (MDR) protein expression [52–58], reduced histone deacetylase 
(HDAC) activity [59,60], and p38 phosphorylation of GR [47]. However the role of viral and bacterial 
infections and toxins in glucocorticoid resistance has been largely neglected. We have recently shown 
that the anthrax LeTx represses GR function. In addition, it has long been known that bacterial 
endotoxin or LPS also affects GR function.  
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Figure 2. Schematic diagram illustrating the mechanism of action of the glucocorticoid 
receptor. Solid arrows depict positive interactions. Broken arrows indicate inhibitory 
interactions. Reproduced with permission from Annual Reviews [8]. 

 

3. Effect of Bacterial Toxins on GR 

Bacterial toxins are defined as a toxic substance made by bacteria. Bacterial toxins can be divided 
into exotoxins, that are generated by the bacteria and are secreted, and endotoxins, that are a part of the 
bacteria itself. Examples of exotoxins from Gram positive bacterium are clostridia toxins, bacterial 
superantigens, and the anthrax toxins. Shiga toxin is an exotoxin from a Gram negative bacterium. LPS 
is an example of an endotoxin. The effect of bacterial toxins on GR function are reviewed below and 
summarized in Table 1. 

Table 1. Effect of bacterial toxins on the glucocorticoid receptor. 

Toxin Effect on GR Reference 
Aflatoxin B1 Decreases glucocorticoid induction of liver ribonucleic acid 

synthesis 
[61] 

 Decreases nuclear GR ligand binding [62,63] 
 Decreases glucocorticoid induction of liver enzymes [64,65] 
Anthrax lethal toxin Represses GR-mediated gene activation [66,67] 
Clostridial toxins Represses GR-induced gene activation [68] 
 Prevents glucocorticoid repression of cytokine production [68] 
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Table 1. Cont. 

Endotoxin/LPS Impairs glucocorticoid regulation of liver enzymes [69–72] 
 Decreases GR ligand binding [11,70–75] 
 Decreases GR numbers and affinity in lungs [76] 
 Increases GR numbers but decreases affinity in bronchial 

epithelial cell line 
[77] 

 Reduces glucocorticoid induction of GR responsive promoter 
in cell culture 

[78–80] 

 Increases GR numbers in murine macrophages [81] 
 No effect on hepatic GR numbers or affinity [82] 
Shiga toxin Increases GR numbers in neutrophils [17] 
Superantigen Induces glucocorticoid resistance [83–85] 
 Impairs GR nuclear translocation [84] 
 Induces GRβ [83,86,87] 

3.1. Anthrax Lethal Toxin 

Bacillus anthracis produces three proteins – protective antigen (PA), lethal factor (LF) and edema 
factor (EF), which constitute two toxins. LF and PA combined constitute LeTx and EF and PA the 
edema toxin. We have shown that LeTx is able to repress the GR and other nuclear hormone receptors. 
LeTx represses glucocorticoid induction of a GR-responsive promoter in Cos7 cells and glucocorticoid 
induction of the GR-regulated liver enzyme, TAT in a hepatoma cell line and in an animal model 
[26,66,67] but does not affect GR-mediated gene repression [67]. LeTx also represses ERα, PR, MR 
and androgen receptor (AR) in a promoter-specific context [66,67]. LeTx is a metalloprotease that is 
known to cleave and inactivate mitogen-activated protein kinases (MAPKs) [88–92]. A protease 
deficient mutant of LeTx did not repress GR-mediated gene activation suggesting that the protease 
activity was required for the repressive effects on GR [66]. However, LeTx did not alter GR protein 
levels suggesting that GR itself is not a direct target for LeTx-mediated proteolysis [67]. LeTx acts as a 
non-competitive inhibitor of GR and has no affect on GR-ligand binding [66]. It does not affect 
nuclear translocation but does prevent GR-DNA binding [67]. Recently we have shown that LeTx also 
represses induction of the GR-responsive MMTV promoter by other transcription factors including 
HNF3, Oct1 and AP-1. This repression was not observed with the protease deficient LeTx mutant and 
could be prevented by inhibitors of LeTx protease activity. Unlike the effects on GR, LeTx induced 
proteolysis of these transcription factors but at a much later stage than the well-documented  
LeTx-mediated proteolysis of MAPKs [93]. These data suggest that LeTx represses multiple 
transcription factors including GR through different mechanisms. 

3.2. Endotoxin/LPS 

LPS or endotoxin is the principal component of the outer membrane of Gram-negative bacteria. 
LPS signals through the Toll-like receptor 4 (TLR4) to activate the MAPK pathways and the NFκB 
pathway leading to induction of many inflammatory genes [94]. An excessive inflammatory response 
to LPS can lead to sepsis, septic shock or systemic inflammatory response syndrome. 
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It has long been known that endotoxin or LPS alters GR-regulated liver enzymes. Since the early 
1980s there have been reports of decreased glucocorticoid induction of liver enzymes, including, 
glucose-6-phosphatase, fructose-1,6-diphosphatase, phosphenolpyruvate carboxykinase (PEPCK), 
tryptophan oxygenase (TO) and TAT, by endotoxin [69–72]. Several studies have shown that 
endotoxin decreases steroid binding sites in liver cytosol [11,70,72,73]. These effects were not only 
observed in liver but also in other tissues including murine macrophages [74], kidney, skeletal muscle, 
spleen, lung, heart tissue [70], canine leukocytes [75] and sheep lungs [76]. Despite the number of 
studies that found an effect of LPS/endotoxin on GR ligand binding, other studies could find no effect 
of endotoxin on number or affinity of hepatic GR suggesting that down-regulation of receptors is not 
involved in endotoxin inhibition of glucocorticoid-induced hepatic genes but acts at a stage 
downstream of ligand binding [82]. In addition, GR numbers were shown to increase after LPS 
treatment in murine Raw 264.7 and peritoneal macrophages [81] and in a bronchial epithelial cell line 
[77]. In cell culture, LPS also inhibited glucocorticoid induction of the mouse mammary tumor virus 
(MMTV) promoter in the fibroblast LMCAT cell line [78–80]. Although there are some discrepancies, 
the majority of the data support the hypothesis that endotoxin/LPS represses GR function. Whether this 
is at the level of ligand binding or further downstream is debated. 

It is not entirely clear if the effects of LPS on GR are mediated directly by LPS or through an 
intermediate factor. Early studies showed that endotoxin-induced downregulation of hepatic GR was 
mediated by plasma factors [73]. Berry and colleagues described a glucocorticoid-antagonizing factor 
(GAF) which was released by macrophages following endotoxin challenge [95]. GAF was shown to 
reduce liver glycogen levels [96] and inhibit PEPCK activity [95,97]. It was described as a 90 kDa 
glycoprotein [98] but its exact components have never been fully identified and there has been no 
mention of it in the literature since 1990. However, it should be noted that the glucocorticoid inhibitory 
properties of GAF are remarkably similar to cytokines such as TNFα and IL-1 and to macrophage 
migration inhibitory factor (MIF) that are also released from macrophages following endotoxin 
challenge [99–101]. 

Pro-inflammatory cytokines have also been shown to modulate GR function. IL-1 decreases steroid 
binding in liver cytosol [102] and in hepatoma cells and also inhibits glucocorticoid induction of 
PEPCK [103]. A combination of IL-2 and IL-4, or IL-1β and IL-13 reduces GR affinity [77,104,105]. 
IL-1α, IL-1β, IL-6, IFNγ and TNFα increased GR numbers [77,106–108]. IL-1α inhibited 
dexamethasone induced GR nuclear translocation and GR–mediated gene transcription [106]. IL-13 
prevented glucocorticoid suppression of LPS-induced IL-6 [105]. In addition, the effects of LPS on 
GR could be mediated through induction of other signaling pathways such as NFκB, AP-1 and MAPK, 
all of which are known to crosstalk with GR. A mutual antagonism exists between the GR signaling 
pathway and the AP-1 pathway [109–111], as well as the NFκB [112] and MAPK pathways.  
LPS-induced inhibition of corticosterone induction of CAT activity in LMCAT cells could be reversed 
by p38 MAPK inhibitors [79] suggesting that the LPS effect was mediated though p38 MAPK. Thus, 
the effects of endotoxin/LPS may not be mediated directly by LPS, but may be a result of the cytokine 
production following LPS challenge or induction of other signaling pathways. 
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3.3. Shiga Toxin 

Shiga toxins are a family of related toxins with two major groups – Stx1 and Stx2. There are few 
studies investigating the effect of this toxin on GR. One study did note that Stx2 caused an increase in 
GR numbers in circulating neutrophils [17]. The reason for, and the consequence of, this increase  
is unclear. 

3.4. Bacterial Superantigens 

Bacterial superantigens are a class of antigens which cause non-specific T-cell activation. The 
bacterial superantigens, SEB, toxic shock syndrome toxin 1 (TSST-1) and Staphylococcus aureaus 
enterotoxin E (SEE) induced glucocorticoid resistance (as determined by the anti-proliferative effects 
of glucocorticoids) in PBMCs [83–85]. SEB impairs GR nuclear translocation in PBMCs [84] and also 
induces expression of GRβ [83,86,87]. In another study TSST-1 was shown to reduce glucocorticoid 
induction of FKBP51 mRNA, a known GR regulated gene, through a mechanism involving Jun  
N-terminal kinase (JNK) [85]. These data suggest that bacterial superantigens interfere with  
GR signaling. 

3.5. Clostridia Toxins 

The lethal toxin from Clostridium sordellii (TcsL) and toxin A (TcdA) and toxin B (TcdB) from 
Clostridium difficile repress GR-mediated gene activation. TcsL also prevents dexamethasone 
inhibition of LPS-induced TNFα production in splenocytes. This effect is suggested to occur through 
inhibition of p38 MAPK as these toxins all prevent phosphorylation of p38 MAPK [68]. 

4. Effect of Mycotoxins and Plant Toxins on GR 

Mycotoxins are toxic metabolites produced by fungi. In the early 1970s, the mycotoxin aflatoxin B1 
produced by many species of the fungus Aspergillus was shown to inhibit cortisol-stimulated liver 
ribonucleic acid synthesis [61]. It was suggested that aflatoxin exerted its effects directly on RNA 
polymerase [113] by decreasing the interactions with chromatin within the same region that is 
stimulated by glucocorticoids [61]. Others have shown that aflatoxin reduces nuclear GR binding sites 
[62,63] and inhibits glucocorticoid induction of the liver enzymes, TAT, tryptophan pyrrolase and 
tyrosine transaminase [64,65]. Interestingly there has been no research performed on the effect of 
aflatoxin on GR since 1988. In addition, the mycotoxin phomopsin produced by Phomopsis 
leptostromiformis and the sesquiterpene lactone ivalin from the “vomiting bush” Geigeria have no 
effect on GR ligand binding capacity in human breast cancer or in rat liver [114,115] but decrease GR 
binding capacity in MCF7 cells [114]. These data suggest that some mycotoxins and plant toxins may 
also alter GR function although the mechanism is unknown. 

5. Effect of Environmental and Chemical Toxins on GR 

The effect of environmental toxins on GR is not well appreciated. There is considerable data 
suggesting an effect of heavy metals on GR (Table 2). In addition, smoking has recently been 
described to affect GR function (Table 3). 
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Table 2. Effect of heavy metals on the glucocorticoid receptor. 

Toxin Effect on GR Reference 
Arsenic Low dose represses GR-mediated gene activation [116–120] 
 Inhibits GR ligand binding [121–125] 
 Extreme low dose enhances GR-mediated gene activation [117–119] 
 Reduces CARM1 binding to GR-regulated promoter [116] 
Beryllium Inhibits glucocorticoid induction of liver enzymes [126,127] 
Cadmium Low dose reduces GR-mediated gene activation [121,128] 
 High dose enhances GR-mediated activation [121] 
 Inhibits GR ligand binding in liver [121,124] 
 Inhibits GR DNA binding in liver [121] 
Chromium Extreme low dose enhances GC-induced liver enzymes [119,129] 
 Decreases glucocorticoid-induced liver genes [119,129] 
Lead Inhibits glucocorticoid induction of liver genes [130] 
Mercury Reduces glucocorticoid induction of liver genes [131] 
 Decreases GR ligand binding [132] 
 Enhances interaction between GR and Hsp proteins [133] 
 Enhances GR-responsive MMTV promoter [134] 
Selenite Inhibits GR ligand binding [123,135] 
 Decreases glucocorticoid induction of GR-regulated genes [85] 
Zinc Reduces GR ligand binding in liver [136] 
 Enhances GR-responsive MMTV promoter [134] 

Table 3. Effect of cigarette smoke on the glucocorticoid receptor. 

Effect on GR Reference 
Reduces GR ligand binding affinity in bronchial epithelial cells [137] 
No difference in GR mRNA levels in bronchial epithelial cells [138] 
Reduces GRα protein levels in mouse lungs exposed to cigarette smoke [139] 
No difference in GRα/β mRNA levels in bronchial epithelial cells [138] 
Reduces GR α/β protein levels in PBMCs [140] 
Reduces CYP3A5 expression in alveolar macrophages [141] 
Inhibits glucocorticoid-induction of ENaC mRNA [142] 
Inhibits glucocorticoid repression of cytokine production in BAL macrophages [143] 
Inhibits HDAC2 expression and activity [143] 

5.1. Heavy Metals 

Since the early 1990s, heavy metals such as arsenic, cadmium, zinc, mercury, chromium, selenium, 
lead and beryllium have been reported to affect GR function. These are reviewed below. 

Arsenic. Arsenic is a well known poisonous metalloid, which together with its compounds arsenide 
and arsenate are commonly found in pesticides, herbicides and alloys. Arsenic can be found in 
groundwater and has been associated with increased cancer rates in those areas [144]. Arsenic has a 
biphasic effect on GR function. Extremely low doses enhance glucocorticoid induction of the 
endogenous GR regulated genes TAT and PEPCK [117–119]. Whereas low doses decrease  
GR-mediated gene activation of a transiently transfected promoter and of endogenous TAT and 
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PEPCK [116–120]. Arsenic does not affect GR-mediated gene repression [118]. This inhibitory effect 
on GR-induced transcription does not alter GR nuclear translocation [120], total GR protein levels 
[117], and does not require dimerization [117]. It does require the GR DNA binding domain and can 
be abolished by mutations in that region [118]. Arsenic reduces the “open” structure of the 
nucleosomes on the MMTV promoter in response to dexamethasone and causes changes in post 
translational modifications of histones [116]. Reduced binding of coactivator-associated arginine 
methyltransferase (CARM1), but not GRIP1, was seen in cells treated with arsenic and  
over-expression of CARM1 reversed the arsenic repression of GR-induced genes [116]. These data 
suggest that arsenic represses GR receptor function by interfering with CARM1, a coregulator 
involved in GR-mediated gene activation. In addition, arsenite, an arsenic oxoanion, inhibits GR ligand 
binding by interacting with the vincinal thiols in the ligand binding region of GR and thereby 
preventing ligand binding [124,125]. 

Cadmium. Cadmium is a highly toxic metal which until recently was routinely used either as a 
pigment or in the steel industry. Due to the associated health and environmental concerns its use is 
declining. Like arsenic, cadmium exhibits a biphasic effect on GR function. Low doses reduce GR 
ligand binding capacity and inhibit GR-induction of the GR responsive MMTV promoter and the 
endogenous GR regulated gene TAT in rat liver [121,128]. However, higher doses enhance 
glucocorticoid activation of TAT [121]. Cadmium (administered in vivo) reduces GR ligand and DNA 
binding in rat liver [121]. Interestingly, the same investigators also reported that cadmium reduced GR 
ligand binding in liver cytosol only in vitro and not in vivo and that the lack of an effect of the in vivo 
experiments was due to over-expression of Hsp90 [122]. The reason for this discrepancy is unknown. 
Other investigators have also shown that Cadmium (II) can inhibit steroid binding to GR [123,124]. 
The effects of this cadmium ion on GR appear to act through the redox state of the receptor as they can 
be reversed by the reducing agent dithiothreitol (DTT) [124,128]. Cadmium, like arsenite, binds to the 
vicinal dithiols in the ligand binding region of GR, thereby preventing ligand binding [124]. These data 
suggest that cadmium affects GR function through interference of GR ligand and DNA binding, 
possibly due to changes in the redox state of the receptor. 

Zinc. GR is a zinc-finger protein which contains two zinc molecules. Zinc is an essential mineral 
and commonly found in many biological enzymes and transcription factors. However, excessive zinc 
can result in ataxia, lethargy and copper deficiency. Zinc administration reduces glucocorticoid ligand 
binding in liver cytosols. As with cadmium, this could be inhibited by the reducing agent DTT, 
suggesting the involvement of dithiols in the ligand binding region [136]. In 2305 cells, zinc increases 
dexamethasone induction of the GR-responsive MMTV promoter possibly through a 
metallothionein-mediated pathway [134]. Although not well described, zinc may have effects on  
GR function. 

Mercury. Administration of mercury reduces glucocorticoid induction of the endogenous GR 
regulated gene TAT in rat livers [131]. Mercury decreases GR ligand binding in liver and kidney 
which could be reversed by DTT, suggesting the involvement of thiol groups [132]. Mercury also 
increases the interaction between the GR apo-receptor and Hsp70 and Hsp90 [133]. As for Zinc, 
mercury increases dexamethasone induction of the GR-responsive MMTV promoter in 2305 cells [134]. 

Other metals. There are a few indications that other heavy metals may also affect GR function. 
Extremely low levels of chromium enhance dexamethasone induction whereas higher levels repress 
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dexamethasone induction of PEPCK [119,129]. Selenite, a selenium-containing ion, inhibits GR ligand 
binding and can be reversed by DTT [123,135]. Lead inhibits glucocorticoid induction of TAT in liver 
hepatoma cells [130] and low concentrations of beryllium inhibit glucocorticoid induction of TAT and 
ornithine decarboxylase [126,127]. 

These data suggest that heavy metals can affect GR function. In some cases (arsenite, cadmium (II), 
zinc, and selenite) the mechanism is through effects on the thiol groups in the ligand binding pocket of 
GR. The other effects, with the exception of arsenic, have not been well elucidated. 

5.2. Cigarette Smoke 

The effects of smoking on GR function have recently been described. Cigarette smoke contains 
components such as tar, ammonia, formaldehyde, cadmium, arsenic, and nicotine. As such it could be 
considered an environmental toxin and is worthy of review here. Differences in GR numbers/affinity 
and isoforms have been shown between smokers and non-smokers. Human bronchial epithelial cells 
(HBEC) from smokers contained GRs with a lower ligand binding affinity than non-smokers but with 
no changes in GR numbers [137]. In one study GR mRNA levels were decreased in COPD patients but 
there was no difference between smokers and non-smokers and no difference in the GRα/β mRNA 
ratio in bronchial epithelial cells [138]. However, another study showed that smoking reduced the 
GRα/β protein ratios in PBMCs both in normal healthy volunteers and in asthmatics [140]. In mice 
exposed to cigarette smoke a decrease in GRα protein was observed in the lungs [139]. Thus, there 
seems to be reduced GR protein levels in smokers and an increase in the presence of the dominant 
negative GRβ isoform. In addition, there are studies suggesting that GR-mediated gene regulation is 
altered with smoking. Smokers with respiratory disease had a lower amount of CYP3A5, a GR 
regulated gene, in their alveolar macrophages [141]. Cigarette smoke condensate also inhibits 
dexamethasone induction of ENaC mRNA in HAE cells [142] and cigarette smoke inhibits 
dexamethasone repression of IL-1β-induced TNFα and IL-8 in BAL macrophages [143]. This effect 
on GR suppression of cytokines has been suggested to involve histone deacetylase 2 (HDAC2). 
Cigarette smoke reduces expression of HDAC2 and HDAC activity, which correlates with the reduced 
suppression of IL-1β-induced cytokines [143]. This smoking-induced glucocorticoid insensitivity 
could be mimicked by HDAC inhibitors and hydrogen peroxide [143] and reversed by inhibition of 
PI3Kδ [139]. This suggests that smoking, through PI3Kδ, reduces the levels and activity of HDAC2, 
which, in turn inhibits GR-mediated gene repression.  

6. Effect of Toxins on Other Nuclear Hormone Receptors 

In addition, to their effect on GR, some toxins have been shown to affect other nuclear receptors 
and transcription factors. This will not be reviewed here, but the best studied is the effect of endocrine 
disruptors [145]. 

7. Clinical Relevance 

Some diseases for which glucocorticoids are used have been associated with the presence of toxins. 
In some of these the use of glucocorticoids are controversial, such as sepsis, and in some, such as 
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asthma, glucocorticoid resistance/insensitivity has been described. Bacterial superantigens have been 
implicated in Kawasaki disease [146]. This is an autoimmune disease seen largely in children under 
five. Glucocorticoids have been used in therapy but some studies have shown no benefit over standard 
immunoglobulin and aspirin therapy [147]. Bacterial superantigens have also been suggested to play a 
role in rheumatoid arthritis [148], asthma [149], atopic dermatitis [150] and rhinosinusitis [86,87], all 
of which have been associated with glucocorticoid resistance/insensitivity [87,151–154]. Clostridia 
toxins have been associated with septic shock following abortion using the GR antagonist  
RU486 [155–159]. 

Glucocorticoids are commonly used for respiratory diseases but their usefulness in COPD, for 
which smoking is a major risk factor, is limited [138,160,161]. In addition, smoking asthmatics also 
show glucocorticoid resistance [162–166]. Even in smokers without significant airway disease 
glucocorticoids had no benefit on airway inflammation [167]. 

The use of glucocorticoids in the treatment of septic shock has been a matter of controversy since 
the 1950s. In some instances they have been shown to enhance survival rates whereas in others they 
have been shown to enhance mortality. The pros and cons of glucocorticoid therapy have recently been 
reviewed in detail [168] and will not be reviewed here. However, it is generally now accepted that high 
doses of glucocorticoids are not effective in the treatment of septic shock while prolonged low doses 
may be beneficial [169] but the latter is still debated [168]. It has been reported that adrenal 
insufficiency is common particularly in septic shock patients with a low cortisol baseline [170,171]. It 
is also possible that there are differences in glucocorticoid sensitivity at the level of the receptor during 
septic shock [172]. In one study, enhanced sensitivity of peripheral leukocytes to glucocorticoids has 
been noted [173]. In another, a decreased affinity was noted [174]. Therefore the use of 
glucocorticoids in the treatment of septic shock may be dependent on the stage of the sepsis, the 
reactivity of the HPA axis, particularly the adrenals, and the sensitivity of GR to the ligand. Taken 
together these variables make the effects of the therapeutic use of glucocorticoids in septic shock 
difficult to predict. 

Finally, the effect of toxins on GR function in disease states where there is known exacerbation of 
the HPA axis or during stress have not been well studied. However, it should be noted that in many of 
these diseases changes in glucocorticoid sensitivity have been reported, including glucocorticoid 
resistance in asthma [151], prenatal stress effects on HPA axis [175], effects of social stress on asthma 
[176], which further complicate the system. 

8. Conclusions 

An intact HPA axis and resultant glucocorticoid release is necessary for host survival from exposure 
to an infectious or toxin insult. It has now been shown in the case of several toxins, that interruption of 
the HPA axis, either by hypophysectomy, adrenalectomy, inhibition of glucocorticoid synthesis, or by 
the use of the GR antagonist RU486, can enhance lethality, and replacement with glucocorticoids can 
prevent these effects. 

Glucocorticoid resistance/insensitivity occurs in many diseases for which glucocorticoids are used 
as treatment. Much research has focused on the molecular mechanism behind this 
resistance/insensitivity but one area that has been neglected is the role of infectious agents or toxins in 
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mediating glucocorticoid resistance. We have recently shown that a bacterial toxin, the anthrax lethal 
toxin, represses GR function. We review here the literature on other toxins and their interactions with 
GR. Interestingly other bacterial toxins such as endotoxin/LPS and aflatoxin have been shown to 
repress glucocorticoid induction of liver enzymes and GR ligand binding but the research has not 
progressed further. This may be due to the fact that this research was primarily done in the 1970s and 
early 1980s and the gene for GR was only cloned in 1985 [177]. We also review the known literature 
on environmental toxins including heavy metals and cigarette smoke. The effect of these toxins on GR 
could have clinical relevance for the usefulness of glucocorticoid therapy in many diseases including 
sepsis, asthma, and COPD. 
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