Next Article in Journal / Special Issue
The Zinc-Dependent Protease Activity of the Botulinum Neurotoxins
Previous Article in Journal
The Role of Lymphostatin/EHEC Factor for Adherence-1 in the Pathogenesis of Gram Negative Infection
Previous Article in Special Issue
Proteases as Insecticidal Agents
Toxins 2010, 2(5), 963-977; doi:10.3390/toxins2050963
Review

Autoproteolytic Activation of Bacterial Toxins

Department of Pathology, Stanford School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
Received: 31 March 2010 / Revised: 28 April 2010 / Accepted: 5 May 2010 / Published: 6 May 2010
(This article belongs to the Special Issue Protein Toxins as Proteases)
View Full-Text   |   Download PDF [342 KB, uploaded 6 May 2010]   |  

Abstract

Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD) in Multifunctional Autoprocessing RTX-like (MARTX) and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6), which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.
Keywords: cysteine protease domain (CPD); MARTX toxin; glucosylating toxin (GT); inositol hexakisphosphate (InsP6); glucosyltransferase (Glc); structure activity relationship (SAR) cysteine protease domain (CPD); MARTX toxin; glucosylating toxin (GT); inositol hexakisphosphate (InsP6); glucosyltransferase (Glc); structure activity relationship (SAR)
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).
SciFeed

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
RIS
MDPI and ACS Style

Shen, A. Autoproteolytic Activation of Bacterial Toxins. Toxins 2010, 2, 963-977.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert