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Abstract: Phospholipases A2 (PLA2s) are a large family of snake toxins manifesting diverse biological
effects, which are not always related to phospholipolytic activity. Snake venom PLA2s (svPLA2s) are
extracellular proteins with a molecular mass of 13–14 kDa. They are present in venoms in the form of
monomers, dimers, and larger oligomers. The cardiovascular system is one of the multiple svPLA2

targets in prey organisms. The results obtained previously on the cardiovascular effects of monomeric
svPLA2s were inconsistent, while the data on the dimeric svPLA2 crotoxin from the rattlesnake
Crotalus durissus terrificus showed that it significantly reduced the contractile force of guinea pig
hearts. Here, we studied the effects of the heterodimeric svPLA2 HDP-1 from the viper Vipera nikolskii
on papillary muscle (PM) contractility and the tension of the aortic rings (ARs). HDP-1 is structurally
different from crotoxin, and over a wide range of concentrations, it produced a long-term, stable,
positive inotropic effect in PMs, which did not turn into contractures at the concentrations studied.
This also distinguishes HDP-1 from the monomeric svPLA2s, which at high concentrations inhibited
cardiac function. HDP-1, when acting on ARs preconstricted with 10 µM phenylephrine, induced a
vasorelaxant effect, similar to some other svPLA2s. These are the first indications of the cardiac and
vascular effects of true vipers’ heterodimeric svPLA2s.

Keywords: aorta; contraction; heart; heterodimeric phospholipase A2; Nikolsky’s viper; papillary
muscle; venom

Key Contribution: This study of the effects of the neurotoxic heterodimeric phospholipase A2 HDP-1
from the venom of the viper Vipera nikolskii on papillary muscle contractility showed that in contrast
to the monomeric svPLA2s, it produced a long-term, stable, positive inotropic effect over a wide range
of concentrations, which did not turn into contractures. When acting on aortic rings preconstricted
with 10 µM phenylephrine, it induced a vasorelaxant effect, similar to some other svPLA2s.

1. Introduction

Snake venoms are cocktails of proteins, peptides, low-molecular-weight organics, and
salts [1]. To be effective, they target the most vitally important systems of prey organisms,
with the cardiovascular system being one of them [2,3].

Among snake venoms, the most famous for their cardiotoxicity are cobra venoms,
which contain cardiotoxins that produce concentration-dependent effects resulting in papil-
lary muscle (PM) contractures and aortic ring (AR) contractions [4]. Although the venoms
of snakes from other genera contain no cardiotoxins [5–7], they disturb the function of the
heart and blood vessels. Thus, the venom of the coral snake Micrurus lemniscatus lemniscatus
caused the relaxation of endothelium-intact aortic strips preconstricted with phenylephrine
and a transient increase in the contractile force of the atria without affecting the frequency of
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their contractions [8]. The relaxation of preconstricted aortas was observed after the appli-
cation of the venoms from Montivipera bornmuelleri [9] and Lachesis acrochorda [10], with the
effect being concentration-dependent. In isolated rat right atrium preparations, the venom
of L. acrochorda concentration-dependently (1–1000 µg/mL) increased the spontaneous
contraction frequency [10]. The venom of Bothrops jararacussu produced concentration-
dependent contracture in isolated rat right atria that was not reversed by washing. The
treatment of the venom with the phospholipase A2 (PLA2) inhibitor p-bromophenacyl
bromide abolished the venom-induced contracture. These results indicate that PLA2 is
involved in the adverse effects of the venom on rat atria [11]. In isolated rat hearts, the
venom of the nose-horned viper, Vipera ammodytes ammodytes, produced a concentration-
dependent decrease in contractility and coronary flow. The transient increase in heart
rate was followed by a significant decrease, and at a venom concentration of 150 µg/mL,
irreversible asystolic cardiac arrest was observed [12]. In isolated rat hearts, a significant
disturbance of myocardial functions was found after envenomation by an intramuscular
injection of V. aspis venom [13]. The venom of Nikolsky’s viper, V. nikolskii, studied in the
present work also affects the cardiovascular system. For example, signs of heart failure were
observed in mice after the subcutaneous injection of V. nikolskii venom [14], and a non-lethal
bite of a human by V. nikolskii resulted in peripheral vasospastic disorder [15]. Interestingly,
the venoms of the three vipers mentioned above contain so-called heterodimeric PLA2s,
which are discussed below.

Thus, snake venoms produce cardiovascular effects [8–10], and PLA2s are among the
toxins responsible for this activity. In the venoms of snakes, PLA2s are some of the main
components and manifest various pharmacological effects [16], including, but not limited
to, neurotoxic, myotoxic, hemolytic, anticoagulant, and cytotoxic activities. Cardiac and
vascular effects have been described for some PLA2s, but the data are not as extensive
for other activities [17–20]. PLA2s from snake venoms belong to the so-called secreted
PLA2s, and typically, these PLA2s are small proteins with a molecular weight in the range
of 13–14 kDa [16,21]. Secreted PLA2s are classified into 10 groups and 18 subgroups [22].
Snake venom PLA2s are included in groups I and II [21].

In addition to this classification, based mainly on the differences in amino acid se-
quences, PLA2s may possess different quaternary structures. Thus, most of these enzymes
are single-chain toxins with six or seven disulfide bridges. The PLA2s manifesting car-
diovascular effects [17–20] belong to this class. Another class includes PLA2s that consist
of two homologous noncovalently bound subunits, at least one of which possesses phos-
pholipolytic activity. For example, these are crotoxin and related toxins from pit vipers of
the genus Crotalus, which are heterodimers of a basic enzymatically active subunit and an
inactive acidic subunit [23]. Similar heterodimers are also present in the venoms of several
species of snakes from the genus Vipera. Examples include vipoxin from Vipera ammodytes
ammodytes [24] and HDP-1 from V. nikolskii [25].

In the venom of Nikolsky’s viper (V. nikolskii) studied in the present work, PLA2s domi-
nate, comprising about 65% of the venom [26]. PLA2s are represented by two heterodimeric
toxins, HDP-1 and HDP-2 [25], which consist of two homologous subunits bound noncova-
lently. One subunit is an enzymatically active basic protein with a molecular mass of about
13.8 kDa, and the other one is an inactive acidic protein with a molecular mass of about
13.6 kDa. In the acidic subunit, the histidine residue at position 48 (amino acid numbering
according to Renetseder et al. [27]) in the active center is replaced by glutamine. HDP-1
and HDP-2 manifest anticoagulant and anti-platelet activity. At the frog neuromuscular
junction, they act presynaptically, affecting neuromuscular transmission [25]. The amino
acid sequences of HDP-1 and HDP-2 are homologous to those of the heterodimeric PLA2s
vaspin from V. aspis and vipoxin from V. ammodytes. Thus, HDP-1 and HDP-2 belong to
the PLA2 class, which includes enzymes consisting of two homologous subunits linked
noncovalently, with at least one of the subunits possessing phospholipolytic activity. Their
subunits are of group IIA, containing seven disulfide bridges and C-terminal extensions of
seven amino acid residues [22].
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The structural diversity of snake venom PLA2s (svPLA2s) suggests a vast variety of
physiological effects; however, among the heteromeric PLA2s, only controversial data on the
cardiovascular effects of crotoxin are available. Thus, in isolated guinea pig hearts perfused
using the Langendorff method, crotoxin caused a marked decrease in contractile force
without significantly reducing the heart rate [28]. High concentrations of crotoxin (more
than 5 µM) completely blocked the cardiac action potential as well as the beating of neonatal
rat cardiomyocytes [29]. Surprisingly, lower concentrations (2–4 µM) of crotoxin led to the
strong potentiation of L-type Ca2+ currents [29], but the reasons for this discrepancy still
need to be studied. On the other hand, in a more recent study, no effects were observed
12 h after treating rat hearts with crotoxin [30]. The data on crotoxin’s vascular effects are
also inconsistent; while in one work, it was shown that crotoxin induced contractions in
Sprague Dawley rat ARs both with and without an endothelium [31], no effect of this toxin
in AR assays was observed in another study [32]. To clarify this issue, we decided to study
the effects of the heterodimeric PLA2 HDP-1, which is homologous to crotoxin.

The aim of this work was to determine what effects the heterodimeric neurotoxic PLA2
from the venom of V. nikolskii can have on the contractility of rat PMs and thoracic aortas.
Both heterodimeric PLA2s present in V. nikolskii venom exhibited very similar enzymatic,
coagulant, and neurotoxic properties, and their amino acid sequences differed by only
two positions [25]. The glutamine residue at position 110 and lysine at position 118 in
the basic subunit of HDP-1 were replaced by lysine and arginine, respectively, in HDP-2,
while there was no difference in the acidic subunit. We chose HDP-1 for our research
as it showed slightly higher biological activities [25]. We decided to study its effect on
PM contractility because this allows for the assessment of many aspects of myocardial
tissue physiology [33]. The PMs are an experimental model with completely preserved
intercellular and intracellular structures, making them particularly useful for testing the
functional effects of various bioactive compounds. Thoracic ARs were chosen as the object
of study for the selected toxin’s vascular effects, as they are one of the generally accepted
models for assessing both vasoconstrictive and vasorelaxant effects [34]. It was found
that in the PMs, HDP-1 produced a long-term, stable, positive inotropic effect over a wide
range of concentrations, which did not turn into contractures. This distinguishes it from
the monomeric svPLA2s, which at high concentrations inhibited cardiac function. In ARs
preconstricted with 10 µM phenylephrine, HDP-1 induced a vasorelaxant effect, similar to
other venom PLA2s.

2. Results
2.1. Effects of HDP-1 on Rat PM Contractility

HDP-1 was prepared exactly as described [25] (Figure S1). The structure of the isolated
protein was confirmed with high-resolution mass spectrometry (Figure S2). To study the
effect of HDP-1 on the heart, rat PMs were used. The forces of the stimulated muscle
contractions were recorded at different concentrations of HDP-1 added to the organ bath
solution. It was found that HDP-1 at a concentration of 10 nM induced a slight increase
in contractile force by 7 ± 2% (Figure 1b,f). As the concentration of HDP-1 increased, the
force of the contractions grew. An HDP-1 concentration of 100 nM led to a considerable
increase in contractile force by 16 ± 3% (Figure 1c,f), and at 500 nM and 1 µM, the increase
was equal to 28 ± 6% (Figure 1d,f) and 42 ± 14 (Figure 1e,f), respectively. No contracture
was observed in any of the experiments. It should also be noted that none of the studied
concentrations had an effect on the time parameters of the contractions, such as the time to
peak tension (Table S1, Figure S3) and the time to 50 and 95% relaxation (Table S1).
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Figure 1. Effect of different concentrations of HDP-1 on the contraction force of the papillary muscles 
(PMs). Representative traces show the control ((a) n = 5; here and in the next figures, this is the 
number of PMs) and the effects of HDP-1 at concentrations of 10 nM ((b) n = 5), 100 nM ((c) n = 5), 
500 nM ((d) n = 6), and 1 µM ((e) n = 6). The arrow indicates the time point at which HDP-1 was 
added. (f) Quantitative data, where the ordinate shows the force of contraction at 0.3 Hz normalized 
to that obtained before the addition of HDP-1. Similar to the experimental groups, the contraction 
force in a separate control group (n = 5) was recorded 30 min after the start of the measurement. 
Data are presented as the mean ± SEM. * p < 0.05. 

2.2. Frequency Dependence of HDP-1′s Effect on Force of PM Contraction 
Because the pacing frequency itself is a modulator of cardiac contraction force [35], 

and given the fact that some PLA2 effects may be frequency-dependent [17], we carried 
out the study using a wide frequency range (from 0.003 to 3 Hz). For this experiment, an 
HDP-1 concentration of 500 nM was chosen since, at this concentration, an increase in the 
force of contractions is clearly visible, and the amount of protein required to perform the 
experiment is relatively small. From the data presented in Figure 2, it can be seen that in 
the frequency range from 0.003 to 0.1 Hz, the PLA2 effect is practically absent. At 0.2–0.3 
Hz, a positive inotropic effect of 24 ± 15% is observed (Figure 2); then, with increasing 
stimulation frequency, the effect weakens and becomes negative after 1 Hz, decreasing by 
29 ± 11% (Figure 2) at a stimulation frequency of 2 Hz. 

Figure 1. Effect of different concentrations of HDP-1 on the contraction force of the papillary muscles
(PMs). Representative traces show the control ((a) n = 5; here and in the next figures, this is the
number of PMs) and the effects of HDP-1 at concentrations of 10 nM ((b) n = 5), 100 nM ((c) n = 5),
500 nM ((d) n = 6), and 1 µM ((e) n = 6). The arrow indicates the time point at which HDP-1 was
added. (f) Quantitative data, where the ordinate shows the force of contraction at 0.3 Hz normalized
to that obtained before the addition of HDP-1. Similar to the experimental groups, the contraction
force in a separate control group (n = 5) was recorded 30 min after the start of the measurement. Data
are presented as the mean ± SEM. * p < 0.05.

2.2. Frequency Dependence of HDP-1′s Effect on Force of PM Contraction

Because the pacing frequency itself is a modulator of cardiac contraction force [35],
and given the fact that some PLA2 effects may be frequency-dependent [17], we carried
out the study using a wide frequency range (from 0.003 to 3 Hz). For this experiment, an
HDP-1 concentration of 500 nM was chosen since, at this concentration, an increase in
the force of contractions is clearly visible, and the amount of protein required to perform
the experiment is relatively small. From the data presented in Figure 2, it can be seen
that in the frequency range from 0.003 to 0.1 Hz, the PLA2 effect is practically absent.
At 0.2–0.3 Hz, a positive inotropic effect of 24 ± 15% is observed (Figure 2); then, with
increasing stimulation frequency, the effect weakens and becomes negative after 1 Hz,
decreasing by 29 ± 11% (Figure 2) at a stimulation frequency of 2 Hz.
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data, where the ordinate shows the force of contraction normalized to the force of contraction 
obtained at 0.1 Hz in the control. Data are presented as the mean ± SEM. n = 6. * p < 0.05. 
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ordinate shows the force of contraction normalized to the force of contraction obtained at 0.1 Hz in 
the control. Data are presented as the mean ± SEM, n = 5. * p < 0.05. 

2.4. Vasorelaxant Effects of HDP-1 on Rat ARs 
To study the possible vasorelaxant effects of HDP-1, experiments on rat ARs 

preconstricted with 10 µM phenylephrine (PE) were carried out. ARs with an intact 
endothelium were used. A schematic illustration explaining the experimental details is 
shown in Figure 4. The maximal relaxation induced by acetylcholine (ACh) indicates the 
integrity of the endothelium. Thirty minutes after the administration of HDP-1, the 
relaxation level was calculated relative to the tension level registered after ACh washout 
with a PE (10 µM)-containing solution for thirty minutes; this value was taken as 0% 
relaxation. 

Figure 2. Effect of HDP-1 (500 nM) on the force–frequency relation of the PMs. (a) Representative
traces show the dependence of the contraction force on the stimulation frequency. The stimulation
rate was increased stepwise to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0, and 3.0 Hz. (b) Statistical data,
where the ordinate shows the force of contraction normalized to the force of contraction obtained at
0.1 Hz in the control. Data are presented as the mean ± SEM. n = 6. * p < 0.05.

2.3. Effect of HDP-1 on Post-Rest Potentiation of PMs

The effect of HDP-1 on the post-rest potentiation of the PMs was studied at a concen-
tration of 500 nM, and the data obtained are shown in Figure 3. As can be seen, for all
pause durations studied, with the exception of 2 s, the potentiation effect was significantly
reduced by exposure to 500 nM HDP-1 (Figure 3). Moreover, already with a pause dura-
tion of 10 s, it decreased by 23 ± 5%, reaching a maximum decrease of 26 ± 7% with a
30 s pause.
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Figure 3. Effect of HDP-1 (500 nM) on post-rest potentiation of PMs. (a) Representative traces show
the dependence of the contraction force on the duration of the pause. (b) Statistical data, where the
ordinate shows the force of contraction normalized to the force of contraction obtained at 0.1 Hz in
the control. Data are presented as the mean ± SEM, n = 5. * p < 0.05.

2.4. Vasorelaxant Effects of HDP-1 on Rat ARs

To study the possible vasorelaxant effects of HDP-1, experiments on rat ARs precon-
stricted with 10 µM phenylephrine (PE) were carried out. ARs with an intact endothelium
were used. A schematic illustration explaining the experimental details is shown in Figure 4.
The maximal relaxation induced by acetylcholine (ACh) indicates the integrity of the en-
dothelium. Thirty minutes after the administration of HDP-1, the relaxation level was
calculated relative to the tension level registered after ACh washout with a PE (10 µM)-
containing solution for thirty minutes; this value was taken as 0% relaxation.
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Figure 4. Schematic illustration of the experiments on the contraction of the ARs. KCl, isotonic
solution with 80 mM KCl; ACh, 10 µM acetylcholine; PE, 10 µM phenylephrine. (a) Control. In
(b), HDP-1 was added at a concentration of 100 nM. Horizontal lines indicate the presence of the
corresponding reagent in the washing solution. The rectangle shows the registered relaxant effect of
HDP-1 at the concentration applied (10 nM to 1 µM).

Vasorelaxant effects were observed at different concentrations of HDP-1. Thus, at an
HDP-1 concentration of 10 nM, the vasorelaxant effect was equal to 38 ± 7%, although it was
not significantly different from the control value of 21 ± 4% (Figure 5). As the concentration
increased, the effect showed a tendency to intensify, and it reached 44 ± 8% at 100 nM,
57 ± 12% at 500 nM, and 48 ± 5% at 1 µM (Figure 5). Although the difference with the
control for these concentrations was statistically significant, no significant differences were
detected between the effects of different concentrations of HDP-1.
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Figure 5. Influence of HDP-1 on tension of ARs preconstricted with 10 µM PE. (a) Representative
traces showing the control (n = 9) and the effects of HDP-1 at concentrations of 10 nM (n = 6), 100 nM
(n = 7), 500 nM (n = 4), and 1 µM (n = 5), where n is the number of ARs studied. (b) Quantitative data,
where the ordinate shows the level of relaxation. Data are presented as the mean ± SEM. * p < 0.05
compared to the control. In the control experiment, no HDP-1 was added.

3. Discussion

HDP-1 is a heterodimeric PLA2 exhibiting biological properties shared by many
svPLA2s [19]. In the present work, we investigated the influence of HDP-1 on the con-
tractility of rat PMs and thoracic aortas. Experiments were carried out at 30 ◦C. The main
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reason for choosing this temperature was to avoid possible ischemic tissue damage due
to the thickness of the PM preparations [36] since saline cannot completely replace blood
in ex vivo experimental conditions. It has also been shown [37] that at temperatures close
to 30 ◦C in rat trabeculae, the basic physiological reactions, such as the force–frequency
relationship and the frequency-dependent acceleration of relaxation, are very similar to
those recorded at physiological temperatures. It was found that the application of HDP-1
to PMs produced an inotropic effect. At a stimulation frequency of 0.3 Hz, this effect was
positive and concentration-dependent. At an HDP-1 concentration of 1 µM, it reached
about 40% of the control. It was previously shown that an acidic PLA2 (OHV A-PLA2)
from the venom of Ophiophagus hannah caused a positive chronotropic effect on isolated
rat right atria, and on isolated rat left atria and PMs at concentrations of 0.18–1.45 µM,
it produced a positive inotropic effect, followed by contracture [18]. No contracture was
observed at any of the HDP-1 concentrations up to 1 µM tested in our work; however,
we cannot exclude this effect at higher HDP-1 concentrations. It should be noted that
concentration-dependent muscle contracture was produced in isolated rat right atria by
the venom of B. jararacussu [11]. As this effect was abolished by the specific PLA2 inhibitor
p-bromophenacyl bromide, the authors ascribed the observed contracture to the action
of PLA2.

On the other hand, studies on PLA2 from the venom of N. nigricollis showed that it
produced cardiovascular effects through a mechanism that did not depend on phospho-
lipid hydrolysis [38,39]. The conclusion that phospholipolytic activity is not necessary
for cardiovascular effects is supported by studies of phospholipases from the venom of
Agkistrodon piscivorus piscivorus, basic Asp-49 PLA2 and its homolog basic Lys-49 PLA2,
which is enzymatically inactive [19]. In an isolated ventricle strip of the heart, both en-
zymes were practically equipotent [19]. Further, the cardiac effects of ammodytin L, a
basic PLA2 homolog, in which Asp-49 in the active center is changed to Ser, were stud-
ied using a Langendorff model of an isolated perfused rat heart [20]. The application
of ammodytin L significantly caused an increase in diastolic pressure and a reduction in
developed left ventricular pressure, systolic left ventricular pressure, coronary flow, and
heart rate [20]. These data confirm the hypothesis that enzymatic activity is not necessary
for cardiovascular effects.

Among the cardiotoxic effects that were detected in preparations of isolated atria, the
basic PLA2 from N. nigricollis decreased the amplitude of contraction, increased the time to
the peak force of contraction, and prolonged the latency to the initiation of contraction [17].
In our experiments, such effects were absent, and only at an HDP-1 concentration of 500 nM
we did observe a tendency towards growth in all the studied time parameters of contraction,
but this tendency was not statistically significant.

Over a wide range of concentrations, HDP-1, unlike other svPLA2s, including crotoxin,
caused a long-lasting, time-sustained, inotropic effect in PMs that did not turn into con-
tractures. As can be seen in Figure 2, the inotropic effect of HDP-1 is frequency-dependent.
Differences in the mean values are seen at almost all frequencies including 0.2 and 0.4 Hz.
Indeed, they are statistically significant only at three points, and the significance is achieved
at the points of the greatest difference in contraction forces. The most pronounced increase
is observed at a stimulation frequency of 0.3 Hz. It is known that the myocardium of mice
and rats is characterized by a specific biphasic-type force–frequency relationship [40]. In
this case, the force of contraction on the descending branch mainly depends on the release of
calcium ions from the sarcoplasmic reticulum, while at the same time, the ascending branch
is strongly dependent on L-type Ca2+ channels [41]. The frequency of 0.3 Hz is in the center
of the frequency range, and the increase in this region is likely due to a combination of
several mechanisms. The sustained positive inotropic effect may have several explanations.
Thus, PLA2 has been shown to inhibit Na-K ATPase [42], which, by analogy with ouabain,
may have a positive inotropic effect. Additional sources of increased contraction force could
be an increase in SERCA2a activity; however, such a change would lead to an acceleration
of the contraction kinetics, as shown in experiments on transgenic mice with enhanced
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SERCA function [43,44], and an increase in the absolute values of the rest effect [43], which
was not observed in our experiments. Another potential source of increased contractility
may be an increase in L-type Ca2+ currents; however, in our experiments, for stimulation
frequencies above 1 Hz, at which the contribution of L-type Ca2+ currents to the activation
of contraction is highest [45], a slight decrease in contraction force was seen. The reason
for the negative inotropic response may be either a decrease in the Ca2+ currents or their
frequency-dependent activation, as well as a decrease in the activity of SERCA2a, which
also contributes to contractility at frequencies close to physiological ones [46]; however,
an increase in the force of contractions can be caused not only by the direct activation of
L-type Ca2+ channels but also by changes in the activity of various types of potassium
channels, which can indirectly change the increase in the entry of extracellular Ca2+ through
both L-type Ca2+ channels and NCX [47]. Further investigations are needed to accurately
establish the mechanisms underlying the effects we found.

Many toxins are known to affect the activities of the sarcoplasmic reticulum (SR)
of myocardial cells [2]. In this regard, we investigated this aspect of HDP-1’s action by
analyzing the post-rest effect, which is known to be a qualitative indicator of the Ca2+

content in the SR. This effect arises because introducing a pause in rhythmic stimulation
causes potentiation of the first contraction after the pause. Typically, it is the ratio of the
strength of the first contraction after a pause to the strength of the rhythmic contractions
that is used as an indicator of the post-rest effect [48]. Therefore, the observed decrease in
the rest effect of PMs by HDP-1 indicates a decrease in the Ca2+ content in the SR. There
may be several reasons behind this, e.g., increased leakage from the SR through ryanodine
receptors. This may also be caused by a decrease in SERCA2a activity, as has been shown
for PLA2 from B. jararcussu venom [49], although this is likely not possible due to the
absence of changes in the contraction kinetics mentioned above. Other mechanisms may
also be involved, but further studies are needed to identify them.

Considering the action of snake venom PLA2s on blood vessels and on aortas in
particular, it should be noted that both vasorelaxant and vasoconstrictive effects have been
described in the literature. For instance, in rat ARs preconstricted with noradrenaline, acidic
PLA2 from V. russelli venom induced relaxation in a concentration-dependent manner [41].
The application of the effectors of the arachidonic acid cascade and the guanylate cyclase
inhibitor showed that in the rat aorta, the relaxation induced by PLA2 is partially mediated
by lipoxygenase products and cyclic GMP [41]. Similarly, two PLA2s from O. scutellatus
venom induced a relaxant effect in mesenteric arteries with an intact endothelium [50].
Interestingly, in arteries without an endothelium, the effect of one PLA2 was significantly
reduced, while the relaxation evoked by another was not significantly affected [50]. The
authors suggested that these PLA2s induced vascular relaxation through the release of
dilator autacoids, which could be nitric oxide, prostaglandins, and some others [51]. In
our work, the effect of HDP-1 on endothelium-intact aortas was studied. The observed
relaxant effect of HDP-1 is in good agreement with the literature data, which means
that the molecular mechanisms discussed above for other PLA2s may be involved in
HDP-1’s action.

However, it should be noted that some snake venom PLA2s could exert vasoconstric-
tive effects. For instance, AhV_aPA, the PLA2 from the venom of A. halys pallas, induced
a further contractile response of about 20% in mouse thoracic ARs preconstricted with
60 mM K+ [52]. Later, it was shown that AhV_aPA treatment with p-bromophenacyl bro-
mide, a specific PLA2 inhibitor, did not significantly reduce the vasoconstrictive effect.
This result indicates that the contractile response is independent of the phospholipolytic
activity [53]. The authors suggested that this effect could be produced by Ca2+ released
from the SR. Crotoxin was also shown to induce contractions in rat ARs both with and
without an endothelium [31]. It was shown that indomethacin blocked crotoxin’s effect,
while Nω-nitro-L-arginine was ineffective. The authors hypothesized that the activation
of cyclooxygenase by crotoxin underlies the observed contractile response. This response
is different from the relaxant effect of HDP-1 found in our work. The rationale for this
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difference is unclear. It might be explained by the nature of the PLA2 or the experimental
conditions. This is a limitation of our work and of all other works where a single PLA2 is
investigated. To address this uncertainty, we plan to study one more heterodimeric PLA2
along with a monomeric homolog.

The systemic effects of snake PLA2s usually include bradycardia and hypotension,
which may be a consequence of their direct action on the heart and blood vessels [46,54].
As discussed above, the cardiac and vascular effects of some PLA2s are not related to
phospholipolytic activity [20,38,39]. In HDP-1, one subunit exhibits enzymatic activity,
while the other one is inactive. It would be interesting to know which subunit is responsible
for the cardiovascular effects discovered in this work. Our future research goal is to isolate
individual subunits and study their cardiac and vascular effects. Interestingly, in vipoxin, a
very close homolog of HDP-1, the enzymatically inactive subunit is practically non-toxic to
mice [55]. If this HDP-1 subunit manifests effects similar to those of heterodimeric HDP-1,
it may be considered as a basis for the design of cardiostimulating and/or vasorelaxant
drugs. Moreover, it is possible that some short fragment of the amino acid sequence may
reproduce the observed effects of HDP-1, and the discovery of such a fragment would
provide a direction for further research.

4. Conclusions

The effects of the heterodimeric PLA2 HDP-1 from the viper V. nikolskii on PM contrac-
tility and the relaxation of ARs were studied. Over a wide range of concentrations, HDP-1
produced in PMs a long-term, stable, positive inotropic effect, which did not turn into
contractures. This distinguishes it from the monomeric svPLA2s, which, at high concentra-
tions, inhibited cardiac function. HDP-1, when acting on ARs preconstricted with 10 µM
phenylephrine, induced a vasorelaxant effect, similar to some other svPLA2s. These are the
first indications of the cardiac and vascular effects of true vipers’ heterodimeric svPLA2s.
Although we were unable to find evidence of damage to the cardiovascular system as
a result of Nikolsky’s viper bites, it should be kept in mind that such complications are
quite possible. On the other hand, the positive inotropic and vasorelaxant effects of HDP-1
reported here can serve as a basis for the design of new medications.

5. Materials and Methods
5.1. Materials

HDP-1 was isolated from V nikolskii viper venom according to a previously described
procedure [25]. The venom was obtained from vipers kept in captivity, as in [56]. Glucose
and inorganic salts were acquired from Merck KgaA (Darmstadt, Germany). All other
reagents acquired from a local supplier were of analytical grade or higher purity.

5.2. Animal Handling

Adult male Wistar rats (3–4 months old, 300–350 g body weight) were used in the
present work. Every effort was made to minimize animal suffering, and all operations were
performed under sodium pentobarbital anesthesia (50 mg/kg i.p.). From each animal, 1
to 3 PMs and 2 to 4 ARs were prepared. The total number of used animals was 16. This
study did not involve endangered or protected species and was performed in accordance
with Directive 2010/63/EU [57] of the European Parliament. All experimental procedures
were approved by the Biological Safety and Ethics Committee of the Institute of Cell Bio-
physics of the Federal Research Center “Pushchino Scientific Center of Biological Research,”
Pushchino Branch, Russian Academy of Sciences. Instructions for the use of laboratory
animals at the Institute of Cell Biophysics № 57 of 30 December 2011.

5.3. Contractility of PMs

PMs were cut from the right ventricle of anesthetized rat hearts. To study their me-
chanical activity, an automated instrument consisting of a personal computer and an L-154
ADC/DAC board (L-Card, Moscow, Russia) were used. The mechanical activity of the
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PMs was recorded using a 6 × 2M mechanotron. To calibrate the system, a load of 1 g was
applied. The consistency of the recordings was checked before each experiment. Measure-
ments of the isometric force of PM contractions were performed in oxygenated (95% O2/
5% CO2) Tyrode solution containing the following (in mM): NaCl, 135; KCl, 4; MgCl2, 1;
CaCl2, 1.8; NaHCO3, 13.2; NaH2PO4, 1.8; and glucose, 11 (pH 7.4). This was previously
described in [58]. Briefly, the freshly cut PMs horizontally mounted in a temperature-
controlled chamber (30 ± 0.1 ◦C) were stretched to a length at which the tension of con-
traction was at its maximum. Stimuli were applied as rectangular pulses with a duration
of 5 ms and an amplitude 25% higher than the excitation threshold, for which bipolar Ag-
AgCl electrodes were used. Before each experiment, PMs were stimulated at a frequency
of 0.3 Hz for 1 h until complete mechanical stabilization. Muscles that had autorhythmic
activity, were mechanically unstable, or demonstrated a contractile force of less than 1 mN
were excluded from the study. HDP-1 was dissolved in the Tyrode solution and added to
the chamber to obtain the studied concentration. The following parameters were recorded:
the time to 50 and 95% relaxation, the time to peak tension, and the force of contraction. In
order to measure the force–frequency relationship (after complete mechanical stabilization),
the stimulation rate was increased stepwise to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0,
and 3.0 Hz. The rest effect was studied at a stimulation frequency of 1 Hz. After each
measurement, the PMs were paced until full mechanical recovery of the muscles.

5.4. Contractility of ARs

Aortas were cut from anesthetized rats, placed in a Tyrode solution (similar to that
used for the PMs but with 2.5 mM CaCl2), and cleaned of loose connective tissue and fat.
Rings of 2–3 mm were cut. A total of 2 to 4 ARs were obtained from one rat. The ARs
were mounted horizontally on two tungsten wires. One wire was fixed to the wall of the
organ chamber, and the other was connected to a force transducer to record the isometric
tension. For the isometric tension recording, an instrument similar to that used for the PM
studies was used. The only difference was the ADC/DAC board, with an E14-440 (L-Card)
being installed for the AR investigation. The temperature of the Tyrode solution flowing
through the tissue chamber at a flow rate of 1 mL/min was maintained at 30 ± 0.1 ◦C.
After establishing the initial load of 2 g, the ARs were adapted for 60 min. After this period,
the tension on the ARs was taken as the resting tension. To test the ability of the ARs to
develop contractions, the rings were exposed to an isotonic depolarizing solution (with an
equimolar replacement of NaCl to obtain 80 mM KCl in solution) for 20 min. After washing
(40 min), 10 µM PE was added, and then after 30 min, 10 µM ACh was added to check the
integrity of the endothelium. After 15 min, the ACh was washed out with Tyrode solution
containing PE, and the tension returned to the PE level. At this point, HDP-1 in Tyrode
solution with PE was applied. No HDP-1 was added to the control. Anywhere from 4 to
7 ARs were used for each measurement.

5.5. Data Analysis and Statistics

Student’s t-test was used to compare the continuous variables. One-way ANOVA
with Dunnett’s post hoc test was used for multiple-group comparisons. A p value < 0.05
was predetermined as a statistically significant difference. All data are presented as the
mean ± standard error (S.E.).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins16020100/s1, Figure S1: Isolation of HDP-1 by cation-exchange
chromatography under conditions described in [25]. Figure S2: High-resolution mass-spectra of
HDP-1 registered in positive mode. Figure S3: Effect of different HDP-1 concentrations on the kinetic
parameters of contraction. TPT, time to peak tension; TR 50%, the time to 50% relaxation; TR 95%,
the time to 95% relaxation. No statistically significant differences with control were observed for
all experiments. Table S1: Effect of different HDP-1 concentrations on the kinetic parameters of the
papillary muscle contraction.

https://www.mdpi.com/article/10.3390/toxins16020100/s1
https://www.mdpi.com/article/10.3390/toxins16020100/s1
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