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Mycotoxins are secondary fungal metabolites which pose a significant threat for global
food and feed security [1], due to their adverse effects on human and animal health [2],
high chemical stability and ubiquitous presence [3]. The simultaneous exposure to several
mycotoxins produced by the same or different fungal species exacerbates the risk of food
and feed toxicity [4,5]. According to research, plant materials are often contaminated with
both DON and ZEN, and the health risks associated with simultaneous exposure to both
mycotoxins constitute an interesting topic of study [6,7].

Present in plant material, DON and ZEN belong to a large group of fusarium myco-
toxins [8] which are produced by various fungal species, including Fusarium, Myrothecium,
Cephalosporium, Verticimonosporium and Stachybotrys [3]. To date, the following mechanisms
of toxicity of these mycotoxins have been identified in cells or proteins: (i) DON binds
to the 60S ribosome subunit at the molecular level and induces ribotoxic stress, which
activates protein kinase and, consequently, inhibits protein synthesis, and provokes en-
doplasmic reticulum stress [9], cell signalling, cell differentiation, cell proliferation and
cell death [5,10]; (ii) ZEN [11] exerts toxic effects by binding to and activating both ERs,
disrupting the cell cycle and inducing DNA fragmentation, which leads to the production
of micronuclei and chromosomal aberrations [4,5,10].

Mycotoxicosis are ambiguous subclinical disorders that affect livestock herds [12,13].
These disorders can be caused by the chronic impairment of general bodily functions [14]
or the increased susceptibility of specific tissues [15,16]. Acute poisoning and severe myco-
toxicosis are less frequently reported. Complex toxicological interactions (additive effects,
synergism, potentiation, and antagonism between mycotoxins) and the dose absorbed [17]
undoubtedly affect health and reproductive processes [18]. Depending on the absorbed
dose, the interactions between co-occurring mycotoxins or between mycotoxins and specific
tissues in mammals [19–21] may require further investigation and risk assessments [22]
based on an analysis of the biological activity of individual mycotoxins [12,16,17].

Low-dose exposure usually leads to subclinical states characterized by specific effects
which are manifested by (i) the modulation of feminization processes in sexually immature
gilts (which inhibits the somatic development of reproductive system tissues); (ii) disrup-
tions in the neuroendocrine coordination of reproductive competence [14–16,19,23]; (iii) the
balance between intestinal cells and the expression of selected genes encoding enzymes
that participate in biotransformation processes in the large intestine [24]; and (iv) flexi-
ble, adaptive responses to low mycotoxin doses. Zearalenone (ZEN) and deoxynivalenol
(DON) also induce non-specific effects that do not always decrease the feed conversion
efficiency [20,21] and do not lead to a deterioration in the animals’ overall health [25].
In addition, some mycotoxins, including DON, inhibit the activity of biologically active
substances [18]. Therefore, their effects are determined by the dose and the duration
of exposure.

According to the literature, systems for monitoring mycotoxins in animals should not
be based solely on the results of blood tests [12,15]. A solution that delivers reliable results
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has been proposed in in one of the published studies [12]. The cited study demonstrated
that blood samples from clinically healthy cows and/or cows with subclinical symptoms
of ZEN mycotoxicosis should be collected from the caudal vein medium (prehepatic blood
vessel) for toxicological tests. Samples collected from this site increase the probability that
subclinical ZEN mycotoxicosis will be reliably diagnosed.

The monitoring system is a highly practical tool for identifying contaminated herds in
the field and for evaluating the impact of chronic exposure on herd health and productivity.
Other matrices, such as urine, can also be effectively used for this purpose [16].

However, preventive measures involving other matrices, such as feed materials (pri-
mary and partially processed products), are always preferable [13]. This type of monitoring
relies on biosensor technologies that offer fast, highly selective, and highly sensitive de-
tection methods, require minimal sample pre-treatment, and reduce reagent consumption.
This article reviews recent advances in the development of biosensors for the quantification
of DON and ZEN in cereals and feed, which substantially contribute to feed safety.

The articles published in the Special Issue entitled “Influence of Deoxynivalenol
and Zearalenone in Feed on Animal Health” document the in vivo effects of low or very
low doses of ZEN and its metabolites on mammals. These effects can vary, and remain
insufficiently investigated. The above observations could also apply to other mycotoxins,
including DON. Sexually immature gilts respond differently to mycotoxins. The ratio of
α-ZEL (alpha-zearalenol) to β-ZEL (beta-zearalenol), where β-ZEL is the predominant
compound, could be one of the first biomarkers of mycotoxin contamination. The value of
this parameter is different in other age groups. This effect is ambiguous because β-ZEL
contributes to a minor increase in body weight, while slowing down the sexual maturation
of immature gilts. Initially, ZEN levels are very low, and metabolites are not detected
in the blood serum (especially at the MABEL dose), which confirms that gilts have a
high physiological demand for exogenous estrogen-like substances. These substances
are fully utilized by immature gilts. Exposure to higher mycotoxin doses generates “free
ZEN”, which plays different, not always positive roles. The concentrations of estradiol and
“free ZEN” increase proportionally to the ZEN dose, which decreases progesterone and
testosterone levels [26]. At the same time, the metabolic profile points to a greater loss of
energy and protein (stimulation), which suggests that feed is used more efficiently (weight
gain) and that mycotoxins are highly involved in biotransformation and detoxification
processes. Changes in the metabolic profile fluctuate over time. In the initial period
of exposure, metabolic activity is relatively high, which could also be attributed to the
compensatory effect. In successive periods, energy-intensive processes initiate adaptive
mechanisms. These mechanisms could also be triggered by the increasing involvement of
β-ZEL in the final biotransformation process.

The results of selected diagnostic tests could be used as biomarkers of prolonged
low-dose ZEN mycotoxicosis in sexually immature gilts in precision veterinary medicine.

The question that arises is whether cereal grains contaminated with such low doses of
ZEN and DON should be detoxified or eliminated from feed production. The results of the
study suggest that such low mycotoxin doses should be tolerated due to their potentially
stimulating effects on sexually immature gilts in commercial farms.

Author Contributions: Conceptualization, M.T.G.; writing—original draft preparation, M.G. All
authors have read and agreed to the published version of the manuscript.

Acknowledgments: The editors are grateful to all authors who contributed to the Special Issue. We
would like to thank all expert peer reviewers for rigorously evaluating the submitted manuscripts.
We are also grateful to the MDPI management team and staff for their valuable contributions,
organizational input, and editorial support.

Conflicts of Interest: The authors declare no conflict of interest.



Toxins 2023, 15, 419 3 of 4

References
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