
Citation: Valenti, I.; Tini, F.; Sevarika,

M.; Agazzi, A.; Beccari, G.; Bellezza,

I.; Ederli, L.; Grottelli, S.; Pasquali, M.;

Romani, R.; et al. Impact of Enniatin

and Deoxynivalenol Co-Occurrence

on Plant, Microbial, Insect, Animal

and Human Systems: Current

Knowledge and Future Perspectives.

Toxins 2023, 15, 271. https://doi.org/

10.3390/toxins15040271

Received: 9 March 2023

Revised: 30 March 2023

Accepted: 31 March 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxins

Review

Impact of Enniatin and Deoxynivalenol Co-Occurrence on Plant,
Microbial, Insect, Animal and Human Systems: Current
Knowledge and Future Perspectives
Irene Valenti 1 , Francesco Tini 2,* , Milos Sevarika 2 , Alessandro Agazzi 3 , Giovanni Beccari 2 ,
Ilaria Bellezza 4 , Luisa Ederli 2, Silvia Grottelli 4, Matias Pasquali 1 , Roberto Romani 2 , Marco Saracchi 1

and Lorenzo Covarelli 2

1 Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy;
irene.valenti@unimi.it (I.V.); matias.pasquali@unimi.it (M.P.); marco.saracchi@unimi.it (M.S.)

2 Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
milos.sevarika@unipg.it (M.S.); giovanni.beccari@unipg.it (G.B.); luisa.ederli@unipg.it (L.E.);
roberto.romani@unipg.it (R.R.); lorenzo.covarelli@unipg.it (L.C.)

3 Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
alessandro.agazzi@unimi.it

4 Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
ilaria.bellezza@unipg.it (I.B.); silvia.grottelli@unipg.it (S.G.)

* Correspondence: francesco.tini@unipg.it

Abstract: Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious
threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal
field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot
always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are
among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably
the most common contaminant of cereal grains worldwide. The purpose of this review is to provide
an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined
effects in multiple organisms. Our literature analysis shows that just a few studies on ENN–DON
toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic,
antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore
this specific ability deserves to be explored to better understand their complex biological role. Addi-
tionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on
different model organisms, using concentrations closer to real exposures.

Keywords: mycotoxins; biological systems; co-exposure; synergism; antagonism; toxicity; Fusarium

Key Contribution: This work provides an overview of ENN–DON toxicity in some biological systems.
Data from the literature show the importance of investigating the interactions between mycotoxins
which could show synergistic, antagonistic, and additive effects. Further investigations are required
to improve our knowledge of these aspects to mitigate the toxic effects on different organisms.

1. Introduction

Fusarium head blight (FHB) is one of the most widespread and damaging fungal
diseases of common and durum wheat, as well as other small-grain cereals [1], caused
by species of the genus Fusarium [2]. It is able to impair grain yield and quality due to
mycotoxin accumulation. Fusarium species distribution is usually related to agricultural
practices, cultivar susceptibility, climatic conditions (especially at wheat anthesis), and
fungicide application [3–8]. For this reason, the composition of the species involved in
the FHB complex is dynamic [9]. Generally, Fusarium graminearum is considered the most
important and aggressive FHB causal agent [10]. However, other species such as Fusarium
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culmorum, Fusarium avenaceum, and Fusarium poae are very often detected in many cultiva-
tion areas across the world [11–14]. Fusarium species associated with FHB can biosynthesize
a wide range of mycotoxins and secondary metabolites with toxic effects on animals and
humans [15]. Among them, trichothecenes are subject to extensive studies due to their
toxicity and frequent occurrence [16]. They are sesquiterpenoid mycotoxins and are divided
into A and B groups, characterized by different hydroxyl groups in the C-8 position of the
trichothecene backbone [17]. Deoxynivalenol (DON) is chemically known as (3α,7α)3,7,15-
trihydroxy-12,13-epoxytrichothec-9-en-8-one. It is a cyclic sesquiterpenoids epoxide that
contains three hydroxyl groups at C-3, C-7, and C-15 and a carbonyl function at the C-8 of
the 12,13-epoxytrichothec-9-ene core [18]. DON with its acetylated derivatives (3-acetyl
deoxynivalenol, and 15-acetyl deoxynivalenol), is principally produced by F. graminearum
and F. culmorum and is considered the most common trichothecene detected in cereals
worldwide [19–21].

The International Agency for Research on Cancer (IARC) has classified DON in Group
3, so it is not classifiable as carcinogenic to humans [22]. However, the ingestion of DON in
mammals can result in acute toxic effects such as nausea, gastroenteritis, vomiting, diarrhea,
and increased salivation. In addition, chronic toxic effects such as immunotoxicity, altered
nutritional effects, weight loss, and anorexia have been frequently observed. However,
these effects of DON ingestion may differ depending on the metabolism, absorption, and
elimination mechanisms of different organisms [20,23–25]. Therefore, the European Union
(EU) has set maximum levels for several mycotoxins, including DON, in various food
matrices, such as raw cereals and some derived products for human consumption [26].
In addition, also other countries, such as China, Russia, Brazil, the USA, Canada, and
Japan, have also indicated or are indicating DON tolerable limits in several raw cereals and
derivatives [16,27,28].

In accordance with the data collected, a very high incidence of samples positive for
the presence of DON in wheat has been observed worldwide [29]. In some cases, very high
values have been detected in wheat grains coming from different countries. In addition to
these extreme values, samples were also shown to be often above the legal limit in baby
food, pasta, and noodles [20,29,30]. High DON contamination has been detected not only
in wheat but also in other cereals, such as barley, oats, and maize samples [15,16,29,30].

In addition to DON, several data published in the last decades have shown an in-
creasing incidence of other Fusarium secondary metabolites, also known as emerging
mycotoxins [31]. Among them, enniatins (ENNs) are very common worldwide in wheat,
barley, and other cereals, and their derivatives for human and animal consumption [32–35].
ENNs are N-methylated cyclic hexadepsipeptides composed of alternating residues of N-
methyl branched-chain amino acids, and hydroxy acids [36]. Due to the pore-like structure
of the cyclodepsipeptide ring of ENNs, they possess ionophoric properties. Electrophysio-
logical analyses showed that they can be easily incorporated into the cell membrane and
form passive cation-selective channels evoking changes in intracellular ion concentration.
This property may explain the broad range of biological activities attributed to ENNs [37].

To date, at least 29 different analogs have been characterized, but only a few of them
are generally detected in cereals: enniatin A (ENA), enniatin A1 (ENA1), enniatin B (ENB)
and enniatin B1 (ENB1) [32]. In turn, within these four analogs, ENB and ENB1 showed the
highest levels in cereal grains in many cultivation areas both in terms of concentration and
occurrence [11,38–43]. ENNs are mainly produced by members of the Fusarium tricinctum
species complex (FTSC), such as F. avenaceum and F. tricinctum. Despite their frequent
occurrence worldwide, to date, ENNs have not yet been included in any regulation because
their proprieties and impact on humans and animals are still unclear [31,44]. In 2014, a
scientific opinion from the European Food Safety Authority (EFSA) on the risks to human
and animal health related to ENN presence in feed and food was published. However, given
the lack of toxicity data, no conclusions on toxic exposure were drawn [45]. Nevertheless,
since a concern due to possible interactions with other mycotoxins and chronic exposure
was highlighted [45], regulation could be evaluated in the next future.
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The single-field coexistence of different Fusarium species is very common [9,46–50] and,
consequently, a wide range of Fusarium mycotoxins can be present within a single-grain
sample collected from the same field. Due to the high worldwide diffusion of F. graminearum
and F. avenaceum, according to data collected in many surveys, co-occurrence of ENNs and
DON is common in raw samples, food, or feed [11,48,51–60].

While DON possesses a well-studied activity towards plants [61], insects [62,63],
animals, and humans [19], ENNs started to attract researchers’ attention in the last few
years. Some studies, for example, have begun to elucidate their role in fungal virulence [64],
in the in vitro interaction with other FHB causal agents [65], and their impact on animals
and humans [66]. However, little is still known about ENN’s role in different systems and,
in particular, about their interactions with major mycotoxins such as DON.

For this reason, considering the frequent ENN and DON co-occurrence, this paper
aims to review the information already published that can be useful in understanding
the combined effect of the two mycotoxins. Specifically, the effects of ENN and DON
combination were described on: fungal virulence towards the host; competition among
FHB causal agents; wheat microbiota; insects; dairy cows; humans. For each system
mentioned, missing aspects and what could be conducted to better clarify the combined
role of ENNs and DON is outlined.

2. Effects of ENN and DON Co-Occurrence on Biological Systems
2.1. Host Plants

The mycotoxin DON is well-known both for its role as a virulence factor [67], and
for its phytotoxic activity. In various plant species, DON is a potent protein synthesis and
cell division inhibitor and causes a significant mitosis reduction, especially in wheat and
bean [68,69]. DON strongly inhibits coleoptile and shoot elongation in wheat [70], and also
negatively affects root growth [65,71,72]. Contradictory results regarding DON activity on
cell death are available in the literature. For example, on wheat was shown that treatments
with variable concentrations of this mycotoxin induced oxidative stress, accumulation of
hydrogen peroxide, and apoptosis-like programmed cell death (PCD) [61]. It was reported
that exposure of Arabidopsis leaves to DON caused the inhibition of plant antioxidant
systems, resulting in an oxidative burst and an increase in lipid peroxidation [71]. Instead,
other studies showed suppression of PCD by DON, mainly at low concentrations [65,73].
Treatments with DON in wheat genotypes caused alterations in carbohydrate and protein
metabolism. This resulted in increased free amino acids, probably derived from irregular
protein hydrolysis or related to an active plant response induced by the same mycotoxin [74].
On the other hand, a potential role as a defense priming molecule has been documented
for DON or its masked forms [75,76].

In contrast to DON, little is known about the effects of ENNs on plants. Previous
studies reported the inhibition of germination and the induction of plant wilting caused by
these mycotoxins [77,78]. More recent studies showed that ENB affected the virulence of F.
avenaceum in potato tubers but not in durum wheat and pea [64]. The only study conducted
in planta about the effects of DON and ENB co-occurrence demonstrated their synergistic
activity in inhibiting germination, growth, and chlorophyll degradation. Conversely, they
acted antagonistically relative to cell death, which was significantly induced by ENB and
counteracted by DON [65]. Furthermore, a pilot study reports that treatments with ENB
reduced the antioxidant capacity in wheat, confirming the role of this mycotoxin in the
induction of oxidative stress [79].

The presence of different mycotoxins in cereal grains is currently increasing [51–53,80,81].
For this reason, investigations regarding the effects of DON, ENB, and their association in
plant tissues, and in the virulence of F. graminearum and F. avenaceum would be desirable.
In addition, elucidating the mode of action of DON and ENNs in defense priming may
be an important advancement for future understanding and enhancement of the immune
response to diseases of important plant species such as wheat.
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2.2. Fusarium Head Blight Causal Agents

Many plant species can often be simultaneously infected by more than one pathogenic
species [82]. For this reason, the impact of plant diseases is generally not the result of a single
species/single strain infection but the consequence of a multispecies interaction of more
pathogens. They may coexist, taking advantage or competing with each other in a specific
biological niche [83,84]. In these interactions, fungal metabolites may protect producing
fungi against other microorganisms and help in realizing a more suitable environmental
niche [85,86]. The coexistence of many FHB species is common in grain coming from one
field, with wide variability among species [5,49,87–89]. However, different Fusarium species
can co-exist also in the same niche, such as the wheat head [90–92]. The co-occurrence of
more Fusarium species in the same head means a significant increase [93] or decrease [91,94]
in mycotoxin contamination.

Despite these fluctuations, secondary metabolites may play a crucial role in the possible
synergistic or antagonistic relationships among Fusarium species within the same plant
tissue (head).

Due to their wide diffusion and co-occurrence at the field level [48,87,95], F. gramin-
earum and F. avenaceum may coexist in the same head. Their main mycotoxins, DON and
ENNs, respectively, could regulate the interactions between these two pathogens with other
Fusarium species.

Generally, DON biosynthesis by F. graminearum may facilitate the pathogen during
competition with other eukaryotic organisms [67]. However, few studies explore the
toxicity of DON on the microbiota [96]. Recently, it has been observed that DON promotes F.
avenaceum growth in vitro [65] showing that it could not be an important factor in Fusarium
competition, but only a strategic compound in disease development in wheat [61]. In
addition, other authors [97,98] suggested a negligible role of DON in fungal interactions
with non-Fusarium fungi.

ENNs have always been considered compounds acting as enzyme inhibitors and
immunomodulators [99]. These compounds showed antimicrobial activity against some
fungi [100], and bacteria [101]. Nevertheless, no evidence of Fusarium growth inhibition was
observed as a direct effect of ENB [100]. However, recently, a negative interference of ENB
on F. graminearum in vitro development was observed, and an advantage on F. avenaceum
growth was also reported. Conversely to DON, ENNs seem not to be fundamental for
FHB progression in wheat [64], but they could have an important role in interspecific
competition [65]. A synergistic effect was observed with the co-presence of DON and ENB
in reducing F. avenaceum and F. graminearum growth [65].

Given the high frequency of ENN and DON co-occurrence, future studies should
focus on the role of this combination in F. avenaceum and F. graminearum competition with
other species composing the FHB community. In detail, the in vitro activity of ENNs+DON
towards the main FHB species (F. graminearum, F. culmorum, F. poae, and F. avenaceum)
could be investigated by evaluating the possible fungal growth inhibition/stimulation.
In addition, to determine a possible ENN+DON activity on the synergism/competition
between Fusarium species in planta, head co-inoculation could be performed. Ideally, F.
avenaceum and F. graminearum mutants unable to produce ENNs and DON, respectively,
should be used.

2.3. Microbiota

Natural microorganisms colonizing a specific environment such as a cereal field, dis-
play a key role in the plant’s growth [102]. The microbial heterogeneity includes archaea,
bacteria, cyanobacteria, fungi, and protozoa [103]. Some of these soil and plant-associated
microbes bring beneficial advantages to the plants by improving their fitness and pro-
ductivity [104]. Several microbiota members can be used as biological control agents
(BCAs) for their active competition limiting pathogens’ growth and their ability to produce
unsafe secondary metabolites such as mycotoxins [105]. For example, several studies
have described promising results in reducing the FHB incidence and DON production
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by the bacterial genera Streptomyces [106–108], Bacillus [109,110], Cryptococcus [111], and
Pseudomonas [112]. Bacteria can also induce mycotoxin detoxification by biosorption or
biodegradation [113,114]. DON can be reduced in vitro from 43% up to 86% by the micro-
bial flora coming from animal stables and wheat fields [115]. Instead, the ENNs can be
degraded by probiotic bacterial strains up to 99% [116]. Although some microorganisms
have been described as mycotoxin degraders in vitro [117], mycotoxin biodegradation is
still an interesting challenge.

To date, the well-known antibacterial property of ENNs was tested against a wide
range of both Gram-positive and Gram-negative human pathogens reporting an
IC50 > 10 µg/mL [118]. This level was significantly higher than the recently detected envi-
ronmental concentrations [81]. ENNs were also described to have antimicrobial properties
against Mycobacterium tuberculosis [119], Plasmodium falciparum [120], Candida albicans [121],
and other human pathogens [122]. Interestingly, in Saccharomyces cerevisiae ENNs showed
an inhibitory capacity towards transmembrane Pdr5p pump (involved in the multidrug
resistance mechanism) [123], suggesting their potential effect in modulating xenobiotic
efflux. The antagonistic effect of ENB was also investigated on some fungal species such as
the BCAs Trichoderma harzianum and Beauveria bassiana, showing a minimum inhibitory con-
centration (MIC) value of 1 and 5 µg, respectively [100]. Conversely, the fungal pathogens
belonging to the genera Fusarium, Aspergillus, and Penicillium showed no sensitivity to the
highest concentrations tested.

To date, most of the analyses performed on ENNs have considered just acute toxicity.
Focusing on the data about the microorganisms’ sensitivity (Supplementary Table S1), more
than 40% of organism models showed no effect at the highest concentrations used, greater
than those reported in natural contaminations [46,81,95,124–126]. According to these data,
microorganisms showed dissimilar sensitivity from 2000 µg to 10 ng or in the range of
75–0.2 µg/mL. Moreover, the most sensitive microorganism was Plasmodium falciparum
K1, showing an IC50 from 1.9 to 0.2 µg/mL depending on the type of ENN [120]. In this
regard, the ENN category is another variable in the results. For example, Staphylococcus
aureus CECT 240 showed no sensitivity when it was exposed to 2000 µg of ENB [122]. On
the other hand, a MIC value of 1000 ng and 10 ng was detected considering ENJ1 and ENJ3,
respectively [127]. Moreover, Bifidobacterium adolescentis 5871 exhibited toxicity effects just to
ENB1 and not to ENA, A1, and A2 [101]. Most of the data reported in Supplementary Table
S1 are focused on human pathogens and probiotic bacteria, excluding BCAs or competing
pathogens, considered key role organisms in preventing FHB disease. Additionally, DON’s
impact on microorganisms has been poorly investigated. The antibiofilm activity of DON
was detected in C. albicans, but not in C. tropicalis, E. coli, A. tumefaceiens, S. aureus, and
P. aeruginosa [128]. In addition, a recent study has shown no significant effects in vitro on
Bacillus strains grown in the presence of different DON concentrations [96]. Interestingly,
some studies suggest a DON influence on both intestinal pig microbiota [129] and soil
microflora altering the community structure [130].

Despite all these data, the effect of both mycotoxins on wheat microbiota should be
further investigated. The impact of DON and ENB, ENB1, and beauvericin mixture (EB),
alone or in combination, was examined on piglets’ gut microbiota where a microbial pattern
alteration was observed in all treatments. However, only EB led to a significant decrease
in microbiota diversity [80]. On the other hand, the ENN–DON co-occurrence on wheat
microbiota is still unexplored.

Therefore, given the important role of the microbial community in plant vitality, a bet-
ter understanding of the interactions between microbiota and mycotoxins may contribute to
more sustainable crop management practices. In particular, the effect of ENNs and DON on
the overall endophytic and surface colonizing populations of wheat, and the role of these
mycotoxins during the interaction of pathogens with BCAs could be further investigated.
This could allow deciphering how molecular interactions can shape the plant microbiome.
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2.4. Insects

Fusarium species are important fungal pathogens that infect plants and are also ex-
ploited by various insects. Thus, insects and pathogens are often exposed to each other and
can directly or indirectly interact and therefore affect the same host plant. Currently, there is
no information about a possible mechanism of biotoxic action. However, insects are able to
metabolize and degrade mycotoxins ingested during the developmental stage by exploiting
different enzymatic detoxification mechanisms (mainly based on Cyt P450-enzyme and
NADPH) [131,132].

Most of the studies carried out, showed a correlation between insect activity and the
level of Fusarium infection and/or mycotoxin accumulation. Wheat plants infested with
aphids and infected with F. graminearum showed significantly more symptoms after six
days of inoculation [133]. Moreover, the plants infested with the aphid Sitobion avenae and
influenced with F. graminearum expressed a two- and fivefold increase in the amount of
pathogen DNA and DON, respectively [63]. Recent findings showed that the timing of
aphid colonization has a lower effect on disease severity [63]. Similar results were reported
in the case of F. graminearum and lepidopteran injury in maize, where insect damage to
cobs resulted in elevated DON accumulation and disease incidence [134,135]. The wounds
made in late ear development and to the side of the ear had higher effects than those during
silking, kernel establishment, silk clipping, tip injury, or kernel grazing [134]. In the case
of aphids feeding on wheat plants infected with F. graminearum, higher aphid mortality
was reported due to higher DON concentrations; thus, aphids tend to reside and develop
on plant heads devoid of fungal infection [63,133]. Fusarium species interact with plants
by changing their chemical volatile profile. Plants infected with Fusarium species were
repellent towards aphids when tested in a Y-tube olfactometer, due to the 2-pentadecanone
compound [63], resulting from the presence of Fusarium mycotoxins [62]. In addition,
aphids also interact with plants by inducing defense genes, thus provoking earlier and
enhanced sensitive responses of plants against Fusarium species [133].

The complex insects–fungi/mycotoxins interactions have been shown by the DON
effect on the parasitic wasp of the aphid S. avenae. In this study [136], the sublethal and
lethal effect of DON on S. avenae, and the subsequent effect on its parasitoid Aphidius ervi,
in terms of decreased offspring production, were demonstrated.

Direct effects of mycotoxins on insects were mainly observed on insects used for food
and feed. The species used as model organisms were Dipterans (Hermetia illucens) and
Coleopterans (Alphitobius diaperinus and Tenebrio molitor). The most studied mycotoxin was
DON, whose effect differed from species to species. In the case of H. illucens and Spodoptera
frugiperda, no effect on its larval biomass was recorded, while T. molitor and H. zea exhibited
significantly lower growth performance when exposed to DON [137–139]. DON had a
significant effect on the mortality of the aphid Acyrthosiphon pisum, while no or slight effect
(<10%) was observed in other insect species (H. illucens, T. molitor, S. avenae) [138,140–144].
Moreover, these insects showed low levels of mycotoxin accumulation. In the case of H.
illucens no mycotoxins could be detected when fed with a diet containing high levels of
DON (up to 125,000 µg/kg) [143,145]; a similar effect was recorded also for T. molitor larvae
when exposed to 12,000 µg/kg [141,142,144].

On the other hand, only a few studies investigated ENN toxicity in insects (Supple-
mentary Table S2) after ENN purification from Fusarium lateritium cultures. For example,
ENN insecticidal properties on the lepidopteran Choristoneura fumiferana [146,147] were
observed, contrary to what was observed in the case of Galleria mellonella [148]. Moreover,
mycelial extracts from Cordyceps fumosorosea, containing also ENNs, expressed insecticidal
activity towards Bemisia tabaci and Aphis craccivora [149]. In addition, T. molitor fed on
wheat kernels colonized with F. avenaceum and F. culmorum showed a significantly higher
mortality rate (even though not substantial) [150].

To date, no information on the effect of the combination of the two mycotoxins on
insects is available. For this reason, specific data on the role played by DON and ENNs on
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entomophagous insects referring to the wheat–Fusarium–aphid biological system would
be desirable.

2.5. Dairy Cows

Multiple mycotoxins can occur in both forages and concentrates for animal nutrition,
so the relative carry-over in animal-derived products represents a huge concern for animal
health and food safety [151].

The presence of ENNs in livestock feedstuff [152], cereals [34,41,43,66,153–155] and
by-products [156,157] has been extensively outlined during past years. As an example,
some researchers reported as more than 78% of the analyzed maize silage samples were
contaminated by ENNs [40], with the most abundant ones represented by ENB and ENB1.
The co-occurrence of ENNs with DON was often reported at ranges included between 58%
and 61% of the analyzed samples [57]. A recent survey showed how increased content of
emerging mycotoxins could be accompanied by high DON content in mixed infections [154]
and, in some cases, the presence of DON and ENNs at the same time reached 100% of the
analyzed samples [52].

To date, few conclusions for the in vivo effects of multiple mycotoxin contamination
are available. However, undesirable effects in ruminants are often related to low feed
intake and rumination activity, immunosuppression, and increased pro-inflammatory cy-
tokines [158], leading to subclinical and not specific health problems and impaired milk
production [159]. Negative effects are more pronounced in high-yielding dairy cows fed
with high fermentable diets [160], because of microbial shifts in the rumen [161] and con-
sequent impairment of mycotoxin detoxification by the resident microbiota [162]. The
co-occurrence of ENNs with DON is reported in feeds [60,163] and, consequently, possible
synergistic, additive, or antagonistic effects on animals can be hypothesized. However, so
far, only in vitro studies have been conducted [53,164,165]. Given the lack of in vivo trials
on ENN and DON co-occurrence, we can only speculate on the possible effects resulting
from the simultaneous presence of these two mycotoxins. DON in ruminants leads to
gastrointestinal disorders, and immunosuppression, with decreased feed consumption and
lower performance [25,166,167]. These effects were due to a shift of energy metabolism
available for production to sustain immune system depression and increased inflamma-
tion [159], together with an induced ruminal dysbiosis and increased permeability of the
rumen and/or gut epithelia [168]. A study [53] showed that ENN and DON co-occurrence
did not change the toxicity of DON itself. In addition, limits for ENN concentration in the
diets of ruminants have not been established. However, a recent in vitro study showed that
over 70% of ENB was degraded after 48 h under ruminal physiological pH [162]. On the
other hand, the same authors reported that, in the case of a subacute rumen acidosis, ENB
degradation was inhibited, outlining how a portion may pass to the intestine under altered
rumen conditions. The carry-over of ENNs into milk may be possible but, to date, it has
only been detected at very low levels in sheep milk [169].

However, no data on the occurrence of these emerging mycotoxins in bovine milk are
currently available.

2.6. Humans

Fusarium mycotoxins contaminate several products destined for human consumption.
Consequently, they can be absorbed through the gastrointestinal tract resulting in biological
effects on different tissues. According to different studies, contaminated cereal foods,
including baby food and gluten-free pasta, contained at least one mycotoxin. ENN–DON
co-occurrence has often been reported, even if with dissimilar proportions with levels
ranging from 0.03 to 710 µg/kg for ENB and from 16 to 295 µg/kg for DON [170–173].

Mycotoxin contamination also regards non-cereal-based food such as milk thistle (ENB
up to 8340 µg/kg, DON up to 5958 µg/kg) [174], tea (ENB up to 9260 µg/kg, DON up
to 2890 µg/kg) [175,176]. In addition, eggs and meat can be contaminated by mycotoxins
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(ENB up to 15 µg/kg, DON up to 0.79 µg/kg), suggesting that, although marginally,
animal-derived foods can contribute to human mycotoxin exposure [177,178].

The resistance of mycotoxins to food processes has been reported, although with
contradictory results. For example, a reduction of up to 80% in drying pasta cooked at
70–90 ◦C was detected [179]. On the other hand, 60% of DON and 83–100% of ENNs were
retained in samples of cooked pasta [173].

More importantly, upon ingestion, mycotoxins can be found in tissues and in body
fluids. The wastewater-based epidemiology is a biomonitoring approach that provides
direct information on human exposure to food contaminants. The analyses of 29 samples
collected in Latvia revealed that ENB can be detected in more than 86% of samples and
DON was found in all the samples [180]. The analyses of mycotoxin presence in 24 h urine
samples and serum of both vegans (n = 36) and omnivores (n = 36) revealed that ENB
in serum and DON glucuronide in urine were detected in 57–90% of samples, with no
significant differences between diets. The presence of mycotoxins in the blood and urine
of 3000 Swedish adolescents revealed that 4.8% of urine samples were positive for DON
and 99.2% of blood samples contained ENB [181]. Both DON and ENB were also detected
in breast milk [182–184] and in infants’ urine suggesting gut absorption [185]. All these
data strongly support the hypothesis of mycotoxin bioaccumulation in tissues which might
result in chronic low-dose exposure. For this reason, the ENN–DON co-occurrence in foods
and body fluids makes the understanding of their combined effects of great importance for
human health.

Several reports examined the in vitro effects of single mycotoxin exposure on human
cells, but only a very limited number of them investigated the combined effects of ENN
and DON on experimental models based on human cell lines.

The combined effects of ENB and DON on cell proliferation were explored in the
colorectal carcinoma cell line Caco-2 after 24 h of incubation. The IC50 values were 6.3 µM
and 13.0 µM for ENB and DON, respectively. When the mycotoxins were used in a
1:2 proportion an antagonistic response was detected [186]. A 72 h incubation of Caco-2
cells with ENB or DON led to a significant reduction in cell viability with an IC50 of 3.9 µM
and 5.5 µM, respectively. The cell viability decreased significantly during the co-exposure
in a 1:1 proportion. The results showed synergism when mycotoxins were used at IC75 or
IC90 concentrations for 48 h [164].

The cytotoxic effects of a 24 h ENB and DON exposure was examined on SH-SY5Y
human neuroblastoma cells, resulting in a calculated IC50 of 0.43 µM and 0.94 µM, respec-
tively. Moreover, the co-exposure in a 1:5 ratio resulted in a cytotoxic effect superimposable
to that produced by DON alone. In the presence of DON, antagonism was observed also in
this cell model [187].

The antagonistic response of DON could be due to its ability in enhancing Aryl
hydrocarbon receptor (AhR) expression and activation [188]. In fact, AhR mediates the
upregulation of xenobiotic metabolizing enzymes and drug efflux transporters, including
ABC transporters [189], involved in the export of ENB out of the cell to mitigate its cytotox-
icity [190]. Thus, we may consider that the activation of AhR by DON might result in its
antagonistic behavior against ENNs.

Given the frequent co-contamination of foods with ENNs and DON, further studies are
urgently needed to better define the effects of chronic mycotoxin co-exposure. In particular,
the analyses should examine the integrity of the intestinal epithelial barrier, the hepatic
metabolism, and the immune response in order to obtain a better assessment of the risk to
human health.

3. Discussion

Mycotoxins are among the major threats to food safety and consequently to the health
of related biological systems. The presence of ENNs in the world [11,33,81,125,191] and the
co-occurrence of different mycotoxins in cereal grains, are currently increasing [51–53,80,81].
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This work illustrates that, in contrast to DON, little is known about the impact of
ENNs and even less about their co-occurrence on biological systems. This review provides
an overview of this double exposure, considering that DON is the most frequent mycotoxin
in cereal crops [192–194], and ENNs, among the non-regulated mycotoxins, are present in
many field surveys. Therefore, looking at the effects of the ENN–DON interactions would
allow a better understanding of the complex biological effects of secondary metabolite
combinations on different biological systems.

Usually, a toxicological evaluation is based on individual mycotoxin and a single
model system. However, living organisms, humans included, continuously interact with
each other and with the environment, and are exposed to a mixture of toxic or potentially
toxic compounds. Hence, a community-level overview of multi-contaminations is required
to outline a more correct investigation for an appropriate risk assessment. In this regard,
Table 1 summarizes the data about the effects of ENN–DON co-occurrence. Very few stud-
ies analyzed the consequences of mycotoxin co-exposure and most of the studies shown in
Table 1 are focused on animal cell lines. Thus, it would be important to improve the knowl-
edge of the key role organisms that directly or indirectly are affected by these mycotoxins.
Data from the literature show the significance of analyzing the effects of combined my-
cotoxins which could show synergistic and/or antagonistic behaviors [53,65,164,186,187].
The ENB–DON co-exposure revealed a synergistic effect in both F. graminearum and F.
avenaceum growth [65]. On the other hand, this co-occurrence showed both synergistic
and antagonistic activity in Triticum aestivum [65] and in human colonic Caco-2 cells [164].
Moreover, data on both SH-SY5Y human neuroblastoma cells [187] and IPEC-1 porcine
intestinal cell line [53] showed that the toxicity of, respectively, ENB–DON and ENB1–DON
simultaneous exposure, was similar to the toxicity of DON alone.

ENN and DON’s ability in modulating drug efflux transporters is another impor-
tant factor arising from the literature data [123,188,189] that shall be considered for fully
assessing their biological role. Indeed, this activity could influence the uptake of some
xenobiotics, improving the interactions and consequently the complexity of their effects.

Table 1. In vitro toxicity studies of ENN–DON co-occurrence.

Species/Cell Line Mixture Dose-Effect Parameters Exposure
Time Interaction References

Fusarium avenaceum ENB + DON 100 mg/kg * 96 h Synergism

[65]Fusarium graminearum ENB + DON 10 mg/kg * 96 h Synergism

Triticum aestivum A416
(seeds, seedlings) ENB + DON 10 mg/kg + 10 mg/kg * 24 h Both synergism

and antagonism

IPEC-1 intestine piglet
cell line

ENB + DON

0.06 µM + 5.6 µM *

48 h ND

[53]

0.13 µM + 1.9 µM *

1.9 µM + 5.6 µM *

ENA1 + DON

0.03 µM + 5.6 µM *

48 h ND0.2 µM + 5.6 µM *

0.24 µM + 1.9 µM *

ENB1 + DON

0.06 µM + 5.6 µM *

48 h ND0.5 µM + 5.6 µM *

0.65 µM + 1.9 µM *
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Table 1. Cont.

Species/Cell Line Mixture Dose-Effect Parameters Exposure
Time Interaction References

Intestinal Caco-2 cells
ENB + DON (1:1)

5.59 µM 24 h

Antagonism at IC10 and IC25

[164]

Additivity at IC50, IC75
and IC90

4.05 µM 48 h

Antagonism at IC10 and IC25

Additivity at IC50

Synergism at IC75 and IC90

4.33 µM 72 h Antagonism at IC10, IC25,
IC50, IC75 and IC90

ENB + DON 5 µM + 10 µM 24 h Antagonism [186]

Neuroblastoma
SH-SY5Y cells

ENA + DON 0.15µM + 0.75 µM * 24 h Antagonism
[187]

ENB + DON 0.15 µM + 0.75 µM * 24 h Antagonism

* = MIC value; ND = not detected.

Considering the literature reports analyzed, future studies should try to fill some
knowledge gaps:

(i) Understand the interaction mechanisms during mycotoxin co-occurrence;
(ii) Increase data availability on the effects of ENNs and DON considering unexplored

taxonomic or functional groups of organisms;
(iii) Extend the dosage of mycotoxin concentrations tested to better simulate natural

contaminations.

On the other hand, it should be considered that the interactions between mycotoxins
and biotas or environmental matrices and other compounds could alter their chemistry
and bioavailability, making the predictions more complex to model.

4. Conclusions

By exploring the literature data, we understand that several plant pathogens can be
present at the same time in cereal fields. Consequentially, the grains may be contaminated
by a mix of mycotoxins, mainly including ENNs and DON. Both mycotoxins can express
their potential toxicity on multiple organisms. Their risk assessment is often carried out
by exploring the effects of single contaminants. Indeed, the response to ENN–DON co-
exposure is largely unexplored in key role organisms of the food chain such as insects,
dairy cows, and plant microbiota (biocontrol agents included). Thus, further investigations
would be required to complement the recent knowledge advancements on human and
animal cells, wheat, and its fungal pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins15040271/s1, Table S1: In vitro effects of ENNs on microor-
ganisms [195,196]; Table S2: Effects of ENNs on insects.
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