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Abstract: Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in
maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive
literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A
total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified
25 of these papers for quantitative analysis. The unselected papers (199) were categorized as “actions”
because they provided a sounding board for the expected impact of CC on AFB1 contamination,
without adding new data on the topic. The remaining papers were considered as “reactions” of the
scientific community because they went a step further in their data and ideas. Interesting statements
taken from the “reactions” could be summarized with the following keywords: Chain and multi-actor
approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision.
In addition, fields meriting increased research efforts were summarized as the improvement of
predictive modeling; extension to different crops and geographic areas; and the impact of CC on
fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.

Keywords: Aspergillus flavus; mycotoxin; crop modeling; predictive model; co-occurrence; food; feed;
risk assessment; safety

Key Contribution: Advances in modeling the impact of climate change (CC) on aflatoxin occurrence
in maize over the last decade have been limited, mainly being considered by Italy, the United
Kingdom and the United States, with few contributions from the continents where mycotoxin
contamination is a major problem (Africa and Asia). Interestingly, related topics have been purposed,
such as the co-occurrence of fungi and their impact on mycotoxin contamination, the chain approach
(from cropping season to final products of the value chain), and the link between the expected
increase in aflatoxin occurrence resulting from CC and its impact on human and animal health.

1. Conceptual Framework

The mycotoxins of greatest concern to food and feed safety are produced by members
of a few genera of filamentous fungi, with Aspergillus, Fusarium and Penicillium playing a
key role. These fungi colonize many crops and are adapted to a wide range of environmen-
tal conditions, having different but partially overlapping ecological niches [1]. A key point
of interest in relation to maize are the aflatoxin (AF) producers Aspergillus flavus and A.
parasiticus, Fusarium verticillioides and F. proliferatum, known for fumonisin (FB) production,
and F. graminearum, able to biosynthesize both trichothecenes, such as deoxynivalenol
(DON), and zearalenones (ZEN) [2,3]. Among staple crops, maize is of concern for myco-
toxin contamination; mycotoxins are regulated in Europe and in several other countries
worldwide, and several co-occurring fungal organisms are often detected [4].
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Knowledge of environmental factors affecting fungal survival, growth, metabolic
activity and interaction with other organisms, including host plants, is essential for un-
derstanding their dynamics and the resulting toxin contamination [5]. The environment
provides all the leading factors for mycotoxin prevalence. In particular, high temperatures
and drought stress directly affect maize and the occurrence of A. flavus, favoring fungal
growth, conidiation and spore dispersal, and impairing the growth and development of
maize [6]. FB-producing fungi can be found wherever maize is grown, but their occurrence
varies geographically. FB occurrence is typically higher in maize-growing areas at low
latitudes and elevations, where conditions are relatively warmer compared with those of
high-latitude or high-altitude maize-growing regions where [7–9], on the contrary, DON is
commonly dominant [2].

Climate change (CC) is predicted to have a significant impact on the security of staple
commodities. Based on available data, atmospheric concentrations of CO2 are expected to
double or triple (from 350–400 to 800–1200 ppb) in the next 25–50 years. Therefore, different
regions of Europe is expected to face increases in temperature of 2–5 ◦C coupled with
elevated CO2 (800–1200 ppm) and drought episodes, with concomitant effects on pests
and diseases and ultimately crop yield [10–12], as well as mycotoxins. Until a few years
ago, AFs had not been identified as a matter of concern for primary production in Europe.
However, the year 2003 saw the first alarming contamination of maize in Italy [13]. AFs
are potent carcinogens existing as four primary structural analogues: AFB1, AFB2, AFG1
and AFG2. The International Agency for Research on Cancer (IARC) has classified AFB1
as a Group 1A carcinogen, i.e., carcinogenic to humans [14]. In addition to hepatocellular
carcinoma, AFs are associated with occasional outbreaks of acute aflatoxicoses, leading to
death shortly after exposure [15].

The European Food Safety Authority (EFSA), with a mandate to identify emerging
risks in the food and feed sectors, has identified changing patterns in mycotoxin production
in cereals due to CC as a potential matter of concern. Therefore, in 2009, the EFSA’s Emerg-
ing Risks Unit delivered a call for scientific information (CFP/EFSA/EMRISK/2009/01),
based on models and scenarios, to predict the possible increase of AFs in cereals in the EU
due to CC. Two CC scenarios, +2 ◦C and +5 ◦C above pre-industrial levels, which consider
whether or not mitigation strategies for CC are applied, in addition to the present (base-
line) scenario were considered in the funded project, MODMAP-AFLA. These scenarios
provided the data input for AFLA-maize [16], a mechanistic model, able to predict AF
contamination risk using weather data as input. The project’s output predicted an increased
risk of AF contamination in maize in the future [17,18]. Findings also suggested that CC
effects will be (a) regional; and (b) detrimental or advantageous depending on geographical
region and the CC scenario considered [18]. In northern Europe, the effects may be positive,
with the enlargement of maize growing area without or with minimal AF risk. Conversely,
the Mediterranean basin is expected to be a hot spot of many adverse effects, with extreme
changes in rainfall/drought, elevated temperatures and CO2 impacting food production
and AF contamination in maize.

In this study, we identified the actions and reactions of the scientific community based
on the results of the MODMAP-AFLA project [17,18].

1.1. Dataset Creation: Scientific Paper Search, Filtering, and Selection

A comprehensive literature search was performed using the Scopus search engine to
extract peer-reviewed studies that were published until the end of 2020 (Scopus last access 28
March 2021). The citations included, either (a) the EFSA report: Modelling, predicting and
mapping the emergence of aflatoxins in cereals in the EU due to climate change [17]; or (b) the
accompanying manuscript: AFB1 contamination in maize in Europe increases due to CC [18].

Two-step filtering was conducted during database creation. The step I exploited the
exclusion criteria available directly in the Scopus search engine: Document type, and
language (Figure 1). Only papers, conference papers, and book chapters published in
English were selected.
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Figure 1. Workflow showing the phases of paper selection.

Bibliometric metadata for the selected research papers were then exported from the
Scopus search engine. Metadata text files were elaborated using the scientific mapping
software VOSviewer [19].

1.2. Topic Categorization and Other Classification Criteria

A second level of filtering was performed to determine eligibility of the selected
research papers, based on the following exclusion criteria: (a) Adequacy of the paper topic
to match the objectives of aflatoxin and CC; (b) mixed criterion accounting for at least
one topic within (a) crop model, (b) fungal model, (c) weather data, (d) climate data, (e)
current impact, (f ) future impact and (g) single occurrence or co-occurrence (Table 1). For
all papers compliant with at least one of the aforementioned criteria, the authors extracted
information about the area of study and matrix. The authors then proceeded with a careful
reading of the full text of each eligible article.

2. Motivations Underpinning Action-Reaction Analysis

This review considers all papers citing the output of EFSA project MODMAP-AFLA [17]
on the effect of CC on A. flavus and AF contamination in maize across Europe [18].

Step I filtering identified 224 papers [5,6,20–242]: 187 citing Battilani, et al. [18] and
37 citing Battilani, et al. [17]. Step II filtering identified 25 papers (Table 1; 21 citing [18] and
4 citing [17]) relevant to the study, which were included in a deeper analysis. These papers
were categorized as “reactions” to the cited results because they went a step further. All
the other papers (199) were considered “actions” following those publications; they played
the role of sounding board for the expected impact of CC on AFB1 contamination, without
adding new data on the topic.

The overall workflow of database creation with single steps and corresponding num-
ber of selected or excluded papers is shown in Figure 1.
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Table 1. Overall research paper dataset tabulated according to topic categorization. Reference number refers to bibliography reference; Study area as ISO 3166-1 alpha-2 country code,
otherwise Continents or Global for larger study area; aw = water activity; AFB1 = aflatoxin B1; WOFOST = WOrld FOod STudies; DON = deoxynivalenol; JRC MARS = Joint Research
Centre Monitoring Agricultural ResourceS; DAYMET = daily weather observation data; CRONOS = Climate Retrieval and Observations Network Of the Southeast; ECHAM5 = Global
climate model 5th generation; HadCM3Q0 = Hadley Centre Coupled Model version 3, A1B Special Report on Emissions Scenarios; HadGEM2-ES = Hadley Centre Global Environment
Model version 2 Earth System; RACMO2 = Regional Atmospheric Climate Model version 2; HADRM3Q0 = Hadley Center Regional Model version 3, A1B Special Report on Emissions
Scenarios; AFM1 = aflatoxin M1; OTA = ochratoxin A; AFs = aflatoxins; FBs = fumonisins; NIV = nivalenol; ZEN = zearalenone.

Reference Study Area Matrix Model Approach Weather Data Climate Scenario Current Impact Future Impact Mycotoxin Occurrence Co-Occurrence

Djekic, et al. [64] RS Milk and dairy products NO Speculative Speculative 2015–2018 NO AFM1 (AFB1 in feed) NO
Hiatt and Beyeler [94] Global Speculative Speculative Speculative Speculative Speculative Speculative General NO

Adhikari, et al. [21] Global Coffee Speculative Speculative Speculative Speculative Speculative OTA-AFs-FBs NO
Fouché, et al. [78] Global Soil/Food/Feed Speculative Speculative Speculative Speculative Speculative AFs NO

Cervini, et al. [47] IT * Grape Water/light/temperature in
lab conditions LAB conditions Speculative Speculative Speculative OTA NO

Camardo Leggieri,
et al. [45] IT Maize aridity index-correlation index Air temperature, rainfall,

relative humidity Speculative 2014 Speculative NIV-DON-T2-HT2-ZEN-
FBs-AFB1 YES

Pleadin, et al. [151] Europe Food/Feed Speculative Speculative Speculative Speculative Speculative AFB1-OTA-FBs-
PATULINE-DON NO

Gasperini, et al. [85] BR/MX ** Maize Pre/post harvest + interactions
of Air temperature × CO2 × aw

LAB conditions Speculative Speculative Speculative AFB1 NO

Van der Fels-Klerx,
et al. [191] NL/UA Maize feed in UA/Milk

in NL

3 climate models + AFB1 model
+ WOFOST+ 5 carryover

models
JRC MARS ECHAM5,

HadCM3Q0 2005–2017 2030 AFB1-AFM1 NO

Moretti, et al. [131] Europe Food Speculative Speculative Speculative Speculative Speculative AFs-DON NO
Labanca, et al. [118] IT Maize for feed Speculative Speculative Speculative Speculative Speculative AFs NO
Ricciardi, et al. [159] Global Food Speculative Speculative Speculative Speculative Speculative General NO

Cervini, et al. [48] IT Grape NO LAB conditions NO Speculative Speculative OTA NO
Iizumi [99] Global Speculative Speculative Speculative Speculative Speculative Speculative General NO

Bailly, et al. [31] FR Maize Speculative Speculative Speculative Speculative Speculative AFB1 NO

Damianidis, et al. [57] US Maize Logistic regression Weather stations,
DAYMET, CRONOS NO Speculative Speculative AFs NO

Fanzo, et al. [72] US Food/ Feed Speculative Speculative Speculative Speculative Speculative General NO
Assunção, et al. [30] PT Dietary exposure NO Speculative Speculative Speculative Speculative AFs NO
Medina, et al. [128] GB Food Speculative Speculative Speculative Speculative Speculative General YES

Raiten and Aimone [157] CA/US Speculative Speculative Speculative Speculative Speculative Speculative General NO
Magan and Medina [121] GB Maize and Coffee Linear regression Lab conditions Speculative Speculative Speculative All mycotoxins NO

Van de Perre, et al. [241] ES/PL Tomato Climate + Alternaria model Weather stations HadGEM2-ES 1981–2000 2031–2050
2081–2100 Alternaria NO

Giorni, et al. [211] GB/IT Maize NO NO NO NO NO AFs NO
Van der Fels-Klerx,

et al. [242] Europe *** Wheat Wheat phenology + Climate +
DON model JRC MARS RACMO2,

HADRM3Q0 1975–1994 2031–2050 DON NO

Medina, et al. [226] Global Feed/Food Data from review +
in vitro data Speculative Speculative Speculative Speculative All mycotoxins NO

* Lab/in vitro study reproducing climatic conditions of Apulia region (Italy); ** combination of in situ and in vitro studies; *** refers to north-western Europe.
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3. Overview of Selected Papers

The results of the scientific mapping, including papers categorized as “actions” and
“reactions,” are summarized in four figures highlighting the journal where papers were
published, keywords and their link to each other, and the countries to which the authors
were affiliated (Figures 2–5).

The source titles for all research papers filtered through the exclusion criteria during
the screening process (step I—224 papers) are shown in Figure 2. Toxins (MDPI) turned out
to be, by far, the most popular journal for publication, accounting for 14.3% (32 papers) of
the filtered publications, followed by World Mycotoxin Journal (9.8%, 22 papers—Wageningen
Academic Publishers), Frontiers in Microbiology (4.5%. 10 papers—Frontiers Media), Food
Additives and Contaminants—Part A Chemistry, Analysis, Control, Exposure and Risk Assessment
(3.6%, 8 papers—Taylor & Francis Online) and Microorganism (2.7%, 6 papers—MDPI).

Despite most of the selected articles (89%, 199 papers) citing Battilani, et al. [17] and
Battilani, et al. [18] only in the introduction, or not providing substantial advances to the
topic covered by these two publications, our keywords occurrence analysis (Figures 3
and 4) resulted in a well-defined pattern clustering the keywords into four groups, with
colored lines indicating strong co-occurrence links between them. In the network mapping
shown in Figure 3, (a) the first cluster (red color) comprises the keywords “Aspergillus
flavus,” “biological control,” “climate change,” “deoxynivalenol,” “food safety,” “Fusarium
graminearum” and “mycotoxins”; (b) the second cluster (green color), includes “aflatoxin
B1,” “aflatoxin M1,” “aflatoxins,” “biocontrol” and “maize”; (c) the third cluster (light blue
color) encompasses “detoxification,” “exposure,” “margin of exposure,” “risk assessment”
and “toxicity”; while (d) the fourth cluster covers “Aspergillus,” “fumonisins,” “Fusarium”
and “ochratoxins.” An in-depth analysis of the co-occurrence of keywords from different
clusters (Figure 4) revealed “climate change” as the key element for most papers, with this
keyword strongly linked (thick lines) to most of the main keywords of other clusters such
as “fumonisins,” “Aspergillus,” “aflatoxins,” “maize,” “aflatoxin B1” and “risk assessment.”

The bar graph in Figure 5 displays the top 20 countries affiliated with authors of the
selected papers. Italy and the United States were the leading countries where researchers
citing Battilani, et al. [17] and Battilani, et al. [18] came from, with 38 and 27 papers,
respectively. There were also scientists from the United Kingdom (14), Croatia (13) and
Austria (11) together with Hungary and Serbia. This top 20 highlight a deficit of papers
from some continents where mycotoxin contamination is considered a major problem,
with implications that affect human and animal health (i.e., Africa and Asia). Indeed,
only Nigeria (4 papers) and China (9 papers) ranked in this top 20 list. The pie chart
(Figure 5—upper corner right) illustrates the authors’ countries for the 25 studies selected
for quantitative analysis, considered as “reactions”: Here also, Italy (7), the United Kingdom
(5) and the United States (4) were the countries with the largest number of articles.
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Figure 2. Treemap of all source titles for the records (paper and report citations) identified during
step I filtering. Treemap elaborated and created using the DrasticData online tool [243].

Figure 3. Scientific mapping of all keyword networks based on records (paper and report citations)
from step I filtering.
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Figure 4. Scientific mapping of strictly linked networks for climate change as keyword, based on
records (paper and report citations) from step I filtering.

Figure 5. Bar graph showing the top 20 countries affiliated with authors of records from step I filtering. [Others: 3 papers
each from Belgium, Germany, Mexico, Romania, Slovenia; 2 papers each from Argentina, Canada, India, Iran, Malawi,
Malaysia, Philippines, Poland, South Africa, Switzerland, Thailand, Turkey; 1 paper each from Algeria, Brazil, Cyprus,
Egypt, El Salvador, Ghana, Haiti, Indonesia, Ireland, Japan, Lithuania, North Macedonia, Pakistan, Saudi Arabia]. Pie chart
(upper corner right) refers to the authors’ countries for the 25 studies selected for quantitative analysis.

4. Reactions

We selected 25 papers from the final dataset, accounting for the scientific community’s
reactions to the topic (Table 1). The eligible research studies were tabulated, according to
study area, matrix, model approach, weather data, climate scenario, current and future
impact, and mycotoxin occurrence and co-occurrence, in order to highlight the availability
of data and to outline some statements based on the above-mentioned tabulating criteria.
Most of the matrices analyzed were related to both food and feed (general), while maize
was the most represented crop. Milk and dairy products were also present, as well as
coffee, tomato, grapes and wheat. The majority (64%) of studies did not implement any
models, such as climate models, plant phenology or algorithms, or just referred to the
results published in other studies. As expected, most of the work was focused on AFs
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(AFB1, AFM1 and total AFs), while their co-occurrence with other mycotoxins (FBs and
DON) in the same matrix was only considered in two cases. The analysis of the impact of
current climate conditions on mycotoxin contamination was limited to six studies, which
was further reduced to three studies if the assessment of the impact of future climate
scenarios was also studied.

4.1. CC Impact on Aspergillus flavus and Aflatoxin Contamination

First confirmations of the predicted increase in risk of AFB1 occurrence in maize under
CC scenarios arrived soon after publication of the MODMAP-AFLA report in 2012 [17],
with an event occurring in Serbia in the same year [244,245]. This was also the case for
France, where, in 2015, exceptionally hot and dry climatic conditions caused 6% of maize
fields to be contaminated by aflatoxins. Strains of Aspergillus section Flavi were isolated
from maize samples, and A. flavus was the prevalent species (69% of strains), confirming
the presence of these potent toxin-producers in fields in France [31], in addition to those
reported in Italy before [13,246] and after publication of the report [247].

The same approach reported in the reference papers [17,18] was used effectively to
study the outcome of CC on A. flavus in maize in Malawi [248]. Malawi is projected to
get warmer (by 1–2.5 ◦C) and drier (reduction of 0–4% in annual rainfall levels) in all
regions, with some uncertainty regarding precipitation. These conditions are expected to
shorten the maize growing season, with a major impact on long-development varieties,
causing the pre-harvest conditions for Malawian maize to become more favorable for
AFB1 contamination. This was the only study that considered all components of CC, with
particular regards to the effect of climate on maize crop phenology, A. flavus ecology and
expected AFB1 contamination of grain.

The effect of CC was also reviewed in the context of mycotoxigenic fungi in coffee
cultivation regions, Mesoamerica and central Africa in particular [21]. CC is expected to
modulate the prevalence of fungal species, with a decline in Penicillium species and an
increase in aflatoxin-producing Aspergilli species. In addition, the impact on OTA produc-
tion seems species dependent. In fact, only for A. westerdijkiae, high CO2 (1000 ppm), high
temperature (30–35 ◦C) and sub-optimal aw (0.90, 0.95 and 0.97), significantly stimulated
OTA production in coffee beans. Suitable coffee growing areas will be affected by CC as
well. Predictions suggest that suitable coffee cultivation areas could decrease by ~50% by
2050, both for Arabica and Robusta varieties. All indications showed that CC will have an
extremely negative effect on future coffee production worldwide, in terms of both loss of
cultivation areas and increase in mycotoxin contamination. In particular, suitable areas will
migrate to higher altitudes where temperatures are cooler. Generally, Arabica is expected
to fare worse than Robusta. However, more research is needed to understand how shifts
in suitable areas for Arabica and Robusta will impact fungi and their mycotoxins under
various CC scenarios.

An interesting approach evaluated grain contamination and considered the impact of
CC on the maize-milk chain. This case study was based on maize grown in eastern Europe
and imported to the Netherlands to be fed—as part of compound feed—to dairy cows.
Three different climate models, one AFB1 prediction model and five different carryover
models (carryover intended as the passage from AFB1 in the feed to AFM1, its hydroxylated
metabolite, in the milk) were used and combined to obtain a predictive tool based on Monte
Carlo simulations [191]. The results showed that, given the case study and the scenarios
and models used, AFM1 contamination in milk is expected to be comparable or to increase
in future climates. The outputs were sometimes in disagreement, depending on the model
used; nevertheless, this study merits attention for the chain approach suggested.

The exposure of Serbia’s adult population to AFM1 from milk and dairy product
consumption in 2015–2018 was examined by Djekic, et al. [64] and confirmed the previous
data. In fact, these authors showed a moderate exposure risk compared with similarly
managed studies worldwide, but the research underlined the importance of promoting
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continuous monitoring of feed and dairy supply chains and providing exposure assessment
updates, with the exposure variable depending on the monitoring year.

However, all the studies mentioned above were missing essential aspects of fungal
and plant interaction. Medina, et al. [128] stressed this critical aspect, underlining the
importance of ecological studies to assess how fungal resilience is affected by interacting
CC factors. Camardo Leggieri, et al. [45] recently confirmed this concern by using maize
grown in 2014 in northern Italy as a case study. Wide unevenness in mycotoxin occurrence
was noticed, even within a small area, with changes in the prevalent compound and in the
level of contamination. This variability was attributed to CC effects on fungal complex
interaction, with the dominant fungal species alternating during the growing season.

The challenging topic of defining the impact of fungal co-occurrence under differ-
ent meteorological/ecological conditions on mycotoxin contamination was addressed by
Giorni, et al. [249], and Camardo Leggieri, et al. [44], respectively, in field and in vitro. A.
flavus, F. verticillioides and F. graminearum were artificially inoculated on maize grown in
northern Italy in the two-year period 2016–2017. In parallel, A. flavus and F. verticillioides
were inoculated on cornmeal medium and incubated under a wide range of temperature
and water activity (aw) conditions. Therefore, fungal interactions could be observed under
natural conditions, but the impact of temperature and aw could also be studied in detail and
modeled. Under natural conditions, AFB1 accumulation was stimulated by the presence of
F. graminearum, while no effects on FBs or DON, caused by F. verticillioides—F. graminearum
co-occurrence were noticed. Interestingly, the co-occurrence of A. flavus with F. verticillioides
or F. graminearum significantly reduced both FBs and DON production. Only A. flavus and
F. verticillioides were included in the in vitro study, and each fungus was affected by the
co-occurrence of the other; in particular, showing a decrease in colony diameter of 10%, and
44%, respectively, when they were grown together compared with growth alone. On the
contrary, the dynamics of toxin production under different temperature regimes followed a
similar trend for fungi grown alone, or together, but with a decrease in production rate and
a shift in optimal temperature for AFB1 production. Although these preliminary results
seem in partial disagreement, they need attention and careful elaboration. They provide
basic knowledge for inclusion in predictive models to account for fungi co-occurrence in
the CC scenario and to predict resulting mycotoxin co-occurrence.

Several researchers underlined the importance of acquiring detailed data in vitro
on fungal responses to ecological conditions in the context of CC. In particular, Giorni,
et al. [211] studied the effect of temperature and relative humidity on A. flavus sclerotia
sporulation; data obtained were used to develop equations included in the AFLA-maize
predictive model [16,204].

A step forward in ecological study was explored by Magan and Medina [121]. They
examined the relationship between three-way interacting environmental factors, represen-
tative of CC scenarios (water stress × temperature + 2/4 ◦C × elevated CO2 650/1000 ppm)
on growth and mycotoxin gene cluster expression for A. flavus. This impacted significantly
on AFB1 production both on maize based medium (around 80 x the control) and on maize
grain (x 3–4 the control). Studies on species of the Aspergillus section Circumdati and A.
section Nigri on maize grain and coffee suggested that, while fungal growth may not
be significantly affected, mycotoxin production seems to be stimulated by CC factors,
Comparable conclusions were reported by Raiten and Aimone [157], based on ecological
studies with a CC perspective on maize grain and coffee. Apart from revealing the up- or
down-regulation of genes, a genomic approach represents a powerful tool for exploiting
relative toxin production under extreme stress conditions, such as CC scenarios.

Most of the research efforts during recent years have focused on harvest or post-
harvest contamination of AFs in feed/food commodities, but the soil ecosystem has been
poorly considered. Fouché, et al. [78] recently reviewed studies that addressed the environ-
mental and toxicological consequences of AF contamination, with the aim of clarifying the
eventual risk that AF contamination poses to soil ecosystems. Many aspects of AF occur-
rence, degradation and the effects of its transformation products in the soil environment



Toxins 2021, 13, 292 10 of 21

are still unknown and remain an essential area of research for both soil health and soil
productivity. In terms of soil moisture and air temperature changes, a climatic approach is
important for future risk assessments of AF contamination.

4.2. CC Impact on Other Pathosystems

Following the prediction of CC impact on A. flavus and AFB1 in maize under CC
scenarios, another pathosystem, Alternaria spp. in tomatoes and related mycotoxins, was
analyzed, this being an emerging matter of concern. Van de Perre, et al. [241] evaluated
the effect of CC in two regions, Badajoz in Spain and Krobia in Poland. There was a
significant difference in the potential growth of Alternaria among time frame scenarios
in Poland, with far future > near future > current time frame. The results suggested that
Poland’s situation in the far future (2081–2100) will become similar to Spain’s situation
in the present time frame (1981–2000), showing a geographic shift in the problem. There
were no significant differences among the scenarios studied for Spain because the higher
temperatures predicted will become limiting for Alternaria spp.

Similarly, DON production in wheat was assessed for north-western Europe, indicat-
ing that both flowering and complete maturation of wheat will be earlier in the season
because of CC effects. At the same time, DON contamination was expected to increase in
most of the regions studied, raising initial concentrations by up to three times [242]. Fusar-
ium species involved in Fusarium head blight (FHB) of cereals in the CC context were also
addressed by Moretti, et al. [131] in 2019. In-depth modifications to the profile of toxigenic
Fusarium species occurring on kernels at maturity in different global geographical areas
are expected. A substantial modification in mycotoxin occurrence profile will most likely
cause the advent of new mycotoxin risks in specific regions due to the shift of Fusarium
species into new environments.

The CC scenarios examined by Cervini, et al. [48], considering an increase of more
than 2.5 times CO2 concentration in the northern Apulia region (southern Italy), predicted
an increase in colonization rate by A. carbonarius and ochratoxin A (OTA) production in
grapes, a matter of concern in that Italian region. Furthermore, preliminary evidence
indicated that temperature increase, likely to happen in the same area, may reduce both
berry spoilage caused by A. carbonarius and OTA production in grapes [47]. In particular,
with a temperature range 18/31 ◦C and under water stress conditions (0.93 aw), the fungal
growth rate was slower than at 0.99 aw, but an over-expression of OTA genes was observed.
On the contrary, at 20/37 ◦C a higher growth rate was observed at 0.93 aw. Therefore,
high T and water stress seem not favorable for OTA production. Predictions of CO2 and
temperature increase, resulting from CC seem to lead to contrasting results that need to be
verified in the future.

Overall, in the context of ecological studies, only one work [85] addressed the re-
silience of non-toxigenic strains of A. flavus to CC factors to ensure they have the necessary
ecological competence to compete effectively and reduce toxin contamination pre- or
post-harvest. The efficacy of non-toxigenic strains in controlling AFB1 production was sup-
ported by expression of target structural and regulatory genes; they maintained biocontrol
of AFB1 contamination under elevated CC interacting factors (37 ◦C × 1000 ppm CO2 and
drought stress).

4.3. CC Impact on Human and Animal Health

During recent years, research has focused on studying or reviewing CC impact
on fungal behavior and toxin production, as well as on related human health risks.
Fanzo, et al. [72] examined the relationships between CC, diets and nutrition through
a food system lens. They included food safety issues that were not only focused on my-
cotoxins, and identified adaptation and mitigation interventions for each step of the food
supply chain to move towards a more climate-smart, nutrition-sensitive food system. The
authors proposed that climate-smart agriculture is a promising approach for mitigating
direct CC constraints. However, more action is needed to link climate-smart approaches to
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diets and nutrition, especially for the most vulnerable individuals in the population. Hiatt
and Beyeler [94] provided a review synopsis of what is known about CC-induced exposure
and its relevance for cancer events. Considering the predicted increase in AFs with CC, of
etiological importance for liver cancer, no evidence of increases in hepatocellular cancer
associated with CC has been directly attributed to AFs.

The food system appears to show good resilience to CC, but this is apparently not the
case for livestock, where two specific and possible impacts on the production system were
underlined: (i) contamination of livestock feed by mycotoxins; and (ii) animal health under
heat stress (HS) conditions [118]. This suggests the importance of linking feed safety with
the integrated approach proposed to adequately tackle food safety risks associated with
CC, including perspectives from different natural and social sciences [30]. The potential
consequences of an incompletely explored perspective of CC must be considered.

Taking account of the impact of CC as a whole on social and environmental health ele-
ments, and of the increased risk of adverse health effects, especially on the most vulnerable
groups in the population, such as children and the elderly, the Symposium “Health and
Climate Change” was organized in Rome in 2018 as a joint initiative of the Italian Institute
of Health and EFSA. The meeting aimed to promote an inter-sectoral and multidisciplinary
approach to CC-related events to counteract expected adverse health effects; the launch of
the International Charter on Health and Climate was the concrete output [159].

5. Steps Forward and Perspectives

On a global level, CC is expected to have significant impacts on plant biogeography
and fungal populations, with effects on mycotoxin patterns, as confirmed by predictive
approaches and field surveys. AFB1 is expected to increase in Europe as a result of CC; this
prediction is based on the AFLA-maize model and confirmed by field surveys. This result
has captured the scientific community’s attention, as confirmed by the numerous citations
gained by the papers reporting this data [17,18].

Predictive models have become crucial for addressing future uncertainties and high-
lighting risk conditions on a geographic basis. They are likely to be essential tools for
mycotoxin prediction, in production chain management and as support for all stakeholders,
farmers, extension services and policymakers [250,251]. Scientific mapping of keyword
networks of papers citing the EFSA project results [17,18] revealed the total absence of
“crop modeling” as a keyword, although the studies analyzed contemplate most of the
topics for a holistic approach. In fact, advances in modeling the impact of CC were very
limited, as detailed in “reactions”. This is undoubtedly one of the areas where research
needs to be encouraged, together with extension to crops other than maize, as pointed
out by Van Der Fels-Klerx, et al. [190], as well as other interacting factors, such as insects
pests [252]. Furthermore, when evaluating the pressure risk of mycotoxins based on CC,
we strongly advise not neglecting a pre-analysis of the suitability of countries/study areas
for cultivation and the specific crop for which the current and future impact of mycotoxins
must be assessed.

An increased risk of AFs is paired with fungal and related mycotoxin co-occurrence.
The modeling approach should therefore include this event. Scarce data is available on
this topic, and it is apparently not easy to interpret and convert into quantitative models.
Therefore, new efforts should be addressed towards this research field, possibly integrated
with the support of omics methodologies.

The top 20 authors’ countries identified Italy, the USA and the UK as leading actors in
this area, but surely does not reflect the main countries where AFs are a matter of concern
for people’s health, as highlighted very recently [155]. Therefore, major involvement of
developing countries in studies aimed at predicting the impact of CC on AF occurrence is
strongly desirable.

Several aspects related to AFB1 and CC need more attention, based on our literature
review; nevertheless, interesting statements can be captured, which can be summarized
using the following keywords: chain and multi-actor approach, intersectoral and multidisci-
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plinary, resilience, human and animal health, global vision. To further summarize, the food
system should be considered as a whole [253], taking advantage of smart agriculture [23].
We can learn from each other, both from different steps in the chain and from different geo-
graphic areas. Scenario analyses build on multi-actor, intersectoral and multidisciplinary
approaches, which can provide all stakeholders, policymakers and risk managers the best
support in facing health threats, related to CC, and build the needed resilience.

Author Contributions: Conceptualization, P.B.; methodology, P.T.; formal analysis M.C.L. and P.T.;
data curation, P.T. and M.C.L.; writing—original draft preparation, P.B., P.T. and M.C.L.; writing—
review and editing, P.B., P.T. and M.C.L.; supervision, P.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario:

Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [CrossRef] [PubMed]
2. Logrieco, A.; Bottalico, A.; Mule, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for

some mediterranean crops. Eur. J. Plant Pathol. 2003, 109, 645–667. [CrossRef]
3. Bottalico, A. Fusarium disease of cereals: Species complex and related mycotoxin profile in europe. J. Plant Pathol. 1998, 80, 84–103.
4. Palumbo, R.; Crisci, A.; Venâncio, A.; Cortiñas Abrahantes, J.; Dorne, J.L.; Battilani, P.; Toscano, P. Occurrence and co-occurrence

of mycotoxins in cereal-based feed and food. Microorganisms 2020, 8, 74. [CrossRef] [PubMed]
5. Medina, Á.; González-Jartín, J.M.; Sainz, M.J. Impact of global warming on mycotoxins. Curr. Opin. Food Sci. 2017, 18, 76–81.

[CrossRef]
6. Ojiambo, P.S.; Battilani, P.; Cary, J.W.; Blum, B.H.; Carbone, I. Cultural and genetic approaches to manage aflatoxin contamination:

Recent insights provide opportunities for improved control. Phytopathology 2018, 108, 1024–1037. [PubMed]
7. Bush, B.J.; Carson, M.L.; Cubeta, M.A.; Hagler, W.M.; Payne, G.A. Infection and fumonisin production by Fusarium verticillioides

in developing maize kernels. Phytopathology 2004, 94, 88–93. [CrossRef]
8. Miller, J.D. Factors that affect the occurrence of fumonisin. Environ. Health Perspect. 2001, 109 (Suppl. 2), 321–324.
9. Wu, F.; Bhatnagar, D.; Bui-Klimke, T.; Carbone, I.; Hellmich, R.; Munkvold, G.; Paul, P.; Payne, G.; Takle, E. Climate change

impacts on mycotoxin risks in us maize. World Mycotoxin J. 2011, 4, 79–93. [CrossRef]
10. Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S. Integrating pests and pathogens into the climate change/food security

debate. J. Exp. Bot. 2009, 60, 2827–2838.
11. Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang.

2013, 3, 985–988. [CrossRef]
12. Bebber, D.P.; Gurr, S.J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 2015, 74, 4.

[CrossRef]
13. Piva, G.; Battilani, P.; Pietri, A. Emerging issues in southern europe: Aflatoxins in italy. In The Mycotoxin Factbook. Food & Feed

Topics; Barug, D., Bhatnagar, D., Egmond, H.P.V., Kamp, J.W.V.D., Osenbruggen, W.A.V., Visconti, A., Eds.; Wageningen Academic
Publishers: Wageningen, The Netherlands, 2006; pp. 139–153.

14. IARC. Iarc monographs on the evaluation of carcinogenic risks to humans. In Some Naturally Occurring Substances: Food Items
and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; World Health Organization, Ed.; IARC Press: Lyon, France, 1993;
Volume 56, pp. 445–466.

15. Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Rogers, H.S.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore,
A.; DeCock, K.; et al. Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ. Health Perspect. 2005, 113,
1779–1783. [CrossRef]

16. Battilani, P.; Camardo Leggieri, M.; Rossi, V.; Giorni, P. Afla-maize, a mechanistic model for Aspergillus flavus infection and
aflatoxin b1 contamination in maize. Comput. Electron. Agric. 2013, 94, 38–46. [CrossRef]

17. Battilani, P.; Rossi, V.; Giorni, P.; Pietri, A.; Gualla, A.; Van der Fels-Klerx, H.J.; Booij, C.J.H.; Moretti, A.; Logrieco, A.; Toscano, P.
Modelling, predicting and mapping the emergence of aflatoxins in cereals in the eu due to climate change. EFSA Sci. Tech. Rep
2012, 9, 223E. [CrossRef]

18. Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.;
Robinson, T. Aflatoxin b1 contamination in maize in europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [CrossRef]

http://doi.org/10.3390/microorganisms8101496
http://www.ncbi.nlm.nih.gov/pubmed/33003323
http://doi.org/10.1023/A:1026033021542
http://doi.org/10.3390/microorganisms8010074
http://www.ncbi.nlm.nih.gov/pubmed/31947721
http://doi.org/10.1016/j.cofs.2017.11.009
http://www.ncbi.nlm.nih.gov/pubmed/29869954
http://doi.org/10.1094/PHYTO.2004.94.1.88
http://doi.org/10.3920/WMJ2010.1246
http://doi.org/10.1038/nclimate1990
http://doi.org/10.1016/j.fgb.2014.10.012
http://doi.org/10.1289/ehp.8384
http://doi.org/10.1016/j.compag.2013.03.005
http://doi.org/10.2903/sp.efsa.2012.EN-223
http://doi.org/10.1038/srep24328


Toxins 2021, 13, 292 13 of 21

19. Vosviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 26 February 2021).
20. Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.M.Y.; Rivas-Caceres, R.R.; Salem, A.Z.M.

Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies—a review. Toxicon
2020, 177, 96–108. [CrossRef]

21. Adhikari, M.; Isaac, E.L.; Paterson, R.R.M.; Maslin, M.A. A review of potential impacts of climate change on coffee cultivation
and mycotoxigenic fungi. Microorganisms 2020, 8, 1625. [CrossRef]

22. Agbetiameh, D.; Ortega-Beltran, A.; Awuah, R.T.; Atehnkeng, J.; Elzein, A.; Cotty, P.J.; Bandyopadhyay, R. Field efficacy of two
atoxigenic biocontrol products for mitigation of aflatoxin contamination in maize and groundnut in ghana. Biol. Control 2020, 150.
[CrossRef]

23. Agrimonti, C.; Lauro, M.; Visioli, G. Smart agriculture for food quality: Facing climate change in the 21st century. Crit. Rev. Food
Sci. Nutr. 2020, 61, 971–981. [CrossRef]

24. Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies:
Prevention and detoxification in foods. Foods 2020, 9, 137. [CrossRef] [PubMed]

25. Ali, S.; Ejaz, S.; Anjum, M.A.; Nawaz, A.; Ahmad, S. Impact of climate change on postharvest physiology of edible plant products.
In Plant Ecophysiology and Adaptation Under Climate Change: Mechanisms and Perspectives i: General Consequences and Plant Responses;
Springer: Singapore, 2020; pp. 87–115.

26. Alshannaq, A.F.; Gibbons, J.G.; Lee, M.-K.; Han, K.-H.; Hong, S.-B.; Yu, J.-H. Controlling aflatoxin contamination and propagation
of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Sci. Rep. 2018, 8, 1–14. [CrossRef] [PubMed]

27. Antiga, L.; La Starza, S.R.; Miccoli, C.; D’Angeli, S.; Scala, V.; Zaccaria, M.; Shu, X.; Obrian, G.; Beccaccioli, M.; Payne, G.A.;
et al. Aspergillus flavus Exploits Maize Kernels Using an “Orphan” Secondary Metabolite Cluster. Int. J. Mol. Sci. 2020, 21, 8213.
[CrossRef] [PubMed]

28. Arce-López, B.; Lizarraga, E.; Vettorazzi, A.; González-Peñas, E. Human Biomonitoring of Mycotoxins in Blood, Plasma and
Serum in Recent Years: A Review. Toxins 2020, 12, 147. [CrossRef]

29. Aristil, J.; Venturini, G.; Maddalena, G.; Toffolatti, S.L.; Spada, A. Fungal contamination and aflatoxin content of maize, moringa
and peanut foods from rural subsistence farms in South Haiti. J. Stored Prod. Res. 2020, 85, 101550. [CrossRef]

30. Assunção, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate change and the health impact of
aflatoxins exposure in portugal—An overview. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35,
1610–1621. [CrossRef]

31. Bailly, S.; El Mahgubi, A.; Carvajal-Campos, A.; Lorber, S.; Puel, O.; Oswald, I.P.; Bailly, J.D.; Orlando, B. Occurrence and
identification of Aspergillus section flavi in the context of the emergence of aflatoxins in french maize. Toxins 2018, 10, 525.
[CrossRef]

32. Bandyopadhyay, R.; Ortega-Beltran, A.; Akande, A.; Mutegi, C.; Atehnkeng, J.; Kaptoge, L.; Senghor, A.; Adhikari, B.; Cotty, P.
Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate change. World Mycotoxin J.
2016, 9, 771–789. [CrossRef]
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control of aflatoxin in maize grown in serbia. Toxins 2020, 12, 162. [CrossRef] [PubMed]

167. Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during secondary food processing of maize for human consumption.
Compr. Rev. Food Sci. Food Saf. 2021, 20, 91–148. [CrossRef] [PubMed]

168. Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during the primary food processing of maize. Food Control 2021,
121, 107651. [CrossRef]

169. Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.;
Nebbia, C.S.; et al. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040.

170. Singh, P.; Callicott, K.A.; Orbach, M.J.; Cotty, P.J. Molecular Analysis of S-morphology Aflatoxin Producers from the United States
Reveals Previously Unknown Diversity and Two New Taxa. Front. Microbiol. 2020, 11, 1236. [CrossRef]

171. Smith, J.W.; Groopman, J.D. Aflatoxins. In Encyclopedia of Cancer; Elsevier: Amsterdam, The Netherlands, 2018; pp. 30–43.
172. Soares, R.R.G.; Ricelli, A.; Fanelli, C.; Caputo, D.; De Cesare, G.; Chu, V.; Aires-Barros, M.R.; Conde, J.P. Advances, challenges and

opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018, 143, 1015–1035. [CrossRef] [PubMed]
173. Sojinrin, T.; Liu, K.; Wang, K.; Cui, D.; Byrne, H.J.; Curtin, J.F.; Tian, F. Developing Gold Nanoparticles-Conjugated Aflatoxin B1

Antifungal Strips. Int. J. Mol. Sci. 2019, 20, 6260. [CrossRef] [PubMed]
174. Söylemez, T.; Yamaç, M.; Yıldız, Z. Statistical optimization of cultural variables for enzymatic degradation of aflatoxin b1 by

Panus neostrigosus. Toxicon 2020, 186, 141–150. [CrossRef] [PubMed]
175. Steiner, D.; Sulyok, M.; Malachová, A.; Mueller, A.; Krska, R. Realizing the simultaneous liquid chromatography-tandem mass

spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. J. Chromatogr. A 2020,
1629, 461502. [CrossRef]

176. Stepman, F. Scaling-up the impact of aflatoxin research in africa. The role of social sciences. Toxins 2018, 10, 136. [CrossRef]
177. Sun, Y.; Liu, Z.; Liu, D.; Chen, J.; Gan, F.; Huang, K. Low-Level Aflatoxin B1 Promotes Influenza Infection and Modulates a Switch

in Macrophage Polarization from M1 to M2. Cell. Physiol. Biochem. 2018, 49, 1151–1167. [CrossRef]
178. Sun, Y.; Su, J.; Liu, Z.; Liu, D.; Gan, F.; Chen, X.; Huang, K. Aflatoxin b1 promotes influenza replication and increases virus related

lung damage via activation of tlr4 signaling. Front. Immunol. 2018, 9, 2297. [CrossRef]

http://doi.org/10.1111/1471-0307.12728
http://doi.org/10.1080/19440049.2018.1502476
http://doi.org/10.3390/toxins9110339
http://doi.org/10.3390/microorganisms7080220
http://doi.org/10.1016/j.foodres.2020.109899
http://doi.org/10.3389/fmicb.2019.02908
http://doi.org/10.1016/j.copbio.2016.10.006
http://doi.org/10.1093/jaoac/102.6.1681
http://doi.org/10.3390/toxins8120361
http://doi.org/10.18632/oncotarget.23382
http://www.ncbi.nlm.nih.gov/pubmed/29435124
http://doi.org/10.1016/j.fct.2018.11.047
http://www.ncbi.nlm.nih.gov/pubmed/30468841
http://doi.org/10.1016/j.aca.2018.02.036
http://www.ncbi.nlm.nih.gov/pubmed/29625687
http://doi.org/10.3390/toxins11120701
http://www.ncbi.nlm.nih.gov/pubmed/31810316
http://doi.org/10.1371/journal.pone.0155575
http://www.ncbi.nlm.nih.gov/pubmed/27213959
http://doi.org/10.3390/toxins12030162
http://www.ncbi.nlm.nih.gov/pubmed/32150883
http://doi.org/10.1111/1541-4337.12657
http://www.ncbi.nlm.nih.gov/pubmed/33443798
http://doi.org/10.1016/j.foodcont.2020.107651
http://doi.org/10.3389/fmicb.2020.01236
http://doi.org/10.1039/C7AN01762F
http://www.ncbi.nlm.nih.gov/pubmed/29384153
http://doi.org/10.3390/ijms20246260
http://www.ncbi.nlm.nih.gov/pubmed/31842251
http://doi.org/10.1016/j.toxicon.2020.08.003
http://www.ncbi.nlm.nih.gov/pubmed/32795459
http://doi.org/10.1016/j.chroma.2020.461502
http://doi.org/10.3390/toxins10040136
http://doi.org/10.1159/000493294
http://doi.org/10.3389/fimmu.2018.02297


Toxins 2021, 13, 292 19 of 21

179. Sun, Y.; Su, J.; Yang, S.; Liu, Z.; Liu, D.; Gan, F.; Chen, X.; Huang, K. Mannan oligosaccharide protects against the aflatoxin-b1-
promoted influenza replication and tissue damages in a toll-like-receptor-4-dependent manner. J. Agric. Food Chem. 2019, 67,
735–745. [CrossRef]

180. Szabo, B.; Toth, B.; Toldine, E.T.; Varga, M.; Kovacs, N.; Varga, J.; Kocsube, S.; Palagyi, A.; Bagi, F.; Budakov, D.; et al. A new
concept to secure food safety standards against Fusarium species and Aspergillus flavus and their toxins in maize. Toxins 2018,
10, 372. [CrossRef]

181. Tacconi, C.; Cucina, M.; Pezzolla, D.; Zadra, C.; Gigliotti, G. Effect of the mycotoxin aflatoxin b1 on a semi-continuous anaerobic
digestion process. Waste Manag. 2018, 78, 467–473. [CrossRef]

182. Thielecke, F.; Nugent, A.P. Contaminants in grain—A major risk for whole grain safety? Nutrients 2018, 10, 1213. [CrossRef]
183. Toreti, A.; Bassu, S.; Ceglar, A.; Zampieri, M. Climate change and crop yields. In Encyclopedia of Food Security and Sustainability;

Elsevier: Amsterdam, The Netherlands, 2018; pp. 223–227.
184. Udovicki, B.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Overview on the mycotoxins incidence in serbia in the period 2004–2016.

Toxins 2018, 10, 279. [CrossRef]
185. Udovicki, B.; Djekic, I.; Gajdos Kljusuric, J.; Papageorgiou, M.; Skendi, A.; Djugum, J.; Rajkovic, A. Exposure assessment and risk

characterization of aflatoxins intake through consumption of maize products in the adult populations of Serbia, Croatia and
Greece. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 940–951. [CrossRef]

186. Udovicki, B.; Djekic, I.; Stankovic, S.; Obradovic, A.; Rajkovic, A. Impact of climatic conditions on fumonisins in maize grown in
Serbia. World Mycotoxin J. 2019, 12, 183–190. [CrossRef]

187. Uka, V.; Cary, J.W.; Lebar, M.D.; Puel, O.; De Saeger, S.; Diana Di Mavungu, J. Chemical repertoire and biosynthetic machinery of
the Aspergillus flavus secondary metabolome: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2797–2842. [CrossRef]
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