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Abstract

:

Toxin–antitoxin systems (TASs) are widely distributed in prokaryotes and encode pairs of genes involved in many bacterial biological processes and mechanisms, including pathogenesis. The TASs have not been extensively studied in Listeria monocytogenes (Lm), a pathogenic bacterium of the Firmicutes phylum causing infections in animals and humans. Using our recently published TASmania database, we focused on the known and new putative TASs in 352 Listeria monocytogenes genomes and identified the putative core gene TASs (cgTASs) with the Pasteur BIGSdb-Lm database and, by complementarity, the putative accessory gene TAS (acTASs). We combined the cgTASs with those of an additional 227 L. monocytogenes isolates from our previous studies containing metadata information. We discovered that the differences in 14 cgTAS alleles are sufficient to separate the four main lineages of Listeria monocytogenes. Analyzing these differences in more details, we uncovered potentially co-evolving residues in some pairs of proteins in cgTASs, probably essential for protein–protein interactions within the TAS complex.
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1. Introduction


Toxin–antitoxin systems (TASs) were discovered because of their involvement in a biological process called post-segregational killing (PSK), a plasmid maintenance mechanism based on two plasmid-encoded genes: a toxin gene (T) and its antagonistic antitoxin (A) [1,2,3]. In this context, the toxin and antitoxin are equally distributed in the two daughter cells; however, the instability of the antitoxin will lead to an active toxin killing the cell lacking the plasmid because the antitoxin cannot be replaced. This system also could be important under some stress (e.g., antibiotic in the medium), where the toxin is released from its less stable antitoxin partner, leading to a transient metabolic shutdown and growth arrest or cell death, similar to apoptosis in higher organisms. Of particular interest, TASs have been associated with pathogenic bacterial intracellular infection and with quorum sensing [4]. In addition, pandemic bacterial strains have been shown to carry more TASs compared to non-epidemic related species [5].



TAS toxicity relies on various molecular mechanisms targeting diverse biological processes, e.g., cell membrane integrity, assembly of the translational machinery, tRNA and mRNA stability, translation initiation and elongation steps, DNA replication, and ATP synthesis (see [6,7] for reviews). For example, the toxins MazF or PemK target and cut both free mRNA and mRNA bound to the translational machinery, while the toxin ParE targets DNA replication by inhibiting the DNA gyrase [6]. In terms of gene structure, TASs are usually found in operons with either AT or TA orientations. Those TAS operons can be acquired from mobile genetic elements such as plasmids or phages, and are also present in bacterial chromosomes [8], leading to complex heterogeneous genomic landscapes of TASs with both horizontal and vertical transmissions.



Listeria monocytogenes (Lm) is a Gram-positive bacterium and opportunistic food-borne pathogen [9,10,11]. It is the etiological agent of listeriosis in humans and animals causing abortion, septicemia, gastroenteritis, and central nervous system (CNS) infections [12,13]. L. monocytogenes strains are grouped into four distinct phylogenetic lineages called I, II, III, and IV [14,15,16]. Strains belonging to lineages I and II are the most abundant isolates worldwide and particularly Lineage I is frequent in disease [16,17], while Lineage III and IV strains are very rare and predominantly isolated from (asymptomatic) animals [18]. In silico predictions using TADB2 reveal only two TASs in L. monocytogenes EGD-e: lmo0113-0114 and lmo0887-0888 [19]. There are a few studies investigating TAS systems in L. monocytogenes [20,21,22] focusing only on a few L. monocytogenes strains and a few TAS pairs. The following TAS pairs were identified mainly using in silico methods in the strain ATCC19117 (with their corresponding gene names in L. monocytogenes EGD-e): lmo0113-0114, lmo0887-0888, and lmo1301-1302, predicting their 3D structure and potential inhibitory peptides. This report also showed by qPCR that lmo0113 is upregulated upon heat stress [21,22]. Another report investigated the TAS lmo0887-888 of L. monocytogenes EGD-e in more detail, ruling out the classical MazF action, but without demonstrating the exact role of this TAS in L. monocytogenes [20]. They showed that lmo0887-888 does not affect the level of persister formation upon antibiotic treatment, but the expression of σB-dependent genes opuCA and lmo0880 under sub-inhibitory norfloxacin treatment [20].



In this article, we first identified putative core gene TASs in a larger set of 579 L. monocytogenes genomes and discovered how some of these gene pairs have potentially co-evolved. In a second step using putative accessory gene TASs, we correlated our phenotypic metadata to the presence/absence of TAS genes, revealing the potential impact of specific TASs in the pathogenicity of L. monocytogenes strains.




2. Results


2.1. Identification of Core Gene TASs


The TASmania database [23] was queried to identify the putative TASs in the 352 Lm genomes that are currently in the database (list of L. monocytogenes genomes in TASmania, Table S1, list of TASs, Table S2). These 352 genomes were typed using the scheme cgMLST1748 at the Pasteur BIGSdb-Lm web site [24] to obtain the core gene alleles for all strains. By comparing with the TASmania hits we identified n = 14 core gene TASs (cgTASs) (Table 1) and their respective alleles (list of alleles in the 14 cgTASs, Table S3). The current knowledge on TASs in L. monocytogenes is rather scarce and our list included the two cgTASs already identified by TADB2 (lmo0113-0114 and lmo0887-0888). TASmania extended the number of TAS candidates by one order of magnitude in all L. monocytogenes strains, but only a subset of them consists of core genes according to cgMLST1748.



Out of these 14 cgTASs, two cgTASs appear as orphans (lmo0168 and lmo0887). Their genetic environment was studied in the annotations of the EGD-e strain [25]. In the case of lmo0168, no possible partner was found, as the gene is surrounded by genes located on the other strand, confirming a probable orphan antitoxin. The potential partner of lmo0887 is lmo0888, which likely is a toxin mRNA interferase containing a pemK-like domain and a plasmid_toxin domain (according to TASmania), is a mazEF (according to TADB2); however, it is not identified as a core gene according to the cgMLST1748 scheme and thus must be ignored in our co-evolution analysis below.



In a second step, we added our own collection of L. monocytogenes strains [26] (n = 227) with their cgMLST alleles (Table S4) and metadata annotation (Table S5). We extracted their non-redundant gene alleles corresponding to the previously identified 14 cgTASs (Table S6). By clustering the non-redundant cgTAS alleles patterns with nominal hierarchical clustering, we obtained the dendrogram (Figure 1) showing that the 14 cgTASs are sufficient to separate the L. monocytogenes lineages (I, II, III, and IV). These results are in agreement with previous MLST analysis using seven housekeeping genes [14]. This clustering allows for characterizing the lineage membership of strains that did not have metadata information available (e.g., Lm_gca_000729665 as Lineage I and Lm_gca_001466115 as Lineage II). However, one cannot infer any causal role for the cgTASs in the lineage separation, as clustering the alleles of some subsets of core genes among the 1748 core genes would potentially show the same lineage split.




2.2. Co-Evolution Analysis


We analyzed the six complete cgTAS pairs for co-evolutionary residues and excluded the orphan cgTASs (lmo0168 and lmo0887). We grouped the sequences by gene, translated them to proteins and fused the toxin (T) alleles with the corresponding antitoxin (A) alleles per genome in a multiple sequence alignment (MSA) using our own Perl script and MAFFT [27]. With this MSA, the BIS2Analyzer server [28] was able to identify potential co-evolutionary residues, i.e. a mutated amino acid in a toxin associated to another mutated residue in the cognate antitoxin of the same TAS (e.g., red arrows in Figure 2 and Table 2). Only two cgTAS pairs (lmo1466-1467 and lmo1309-1310) revealed co-evolving residues between the two partners. For instance, the residue at location 435 (within the first partner lmo1466) co-evolves with the residue at location 828 (within the second partner lmo1467) (Figure 2a and Table 2). More than one residue per partner can be co-evolving as shown with the pair lmo1309-1310 (Figure 2b and Table 2). One cgTAS pair (lmo2793-2794) had co-evolving residues visible on the MSA using Jalview (Figure 2c red arrows), but it failed to reach a significant p-value (<0.05) in BIS2Analyzer.




2.3. Accessory Gene TAS Analysis


By subtracting the cgTAS hits from the L. monocytogenes strains in TASmania, all other TASs are classified as accessory TASs (acTASs) (Table S7, Figure A1). In order to obtain a better understanding of the role of accessory TASs, we performed a gene analysis with a set of 227 L. monocytogenes strains [26] for which we have the corresponding metadata (Table S5). These isolates are not part of the TASmania database, so we processed them by first predicting protein genes with Prodigal [30] and annotating them with the TASmania HMMs [23]. Finally, we built a heatmap of those acTASs (Table S8) for antitoxins (Figure 3a) and toxins (Figure 3b) after removing the core genes and the redundancy as described above.



Figure 3a shows on the rightmost column that the antitoxin cluster A32 (HTH_3) is the most abundant and is more frequently found in animal cases of Lineage II. In TASmania, this A32 antitoxin cluster is observed as being paired with at least six different toxin clusters (T2, T13, T14, T38, T48, and T85, whose nearest Pfam identifiers are HipA_C, Zeta_toxin, HipA_C, RelE, Gp49 and Gp49, respectively). All of these pairs were analyzed for their co-occurrence in the L. monocytogenes strains above, but no candidate pair seems to exist in Lineage I, while only A32.T2 (nearest Pfam HTH_3.HipA_C) can be found rarely in Lineage II (Table A2).



In Figure 3b, a small, interesting group of isolates carry one or two genes having a hit to the T138 (nearest Pfam AbiEii) toxin cluster. It is mainly found in Lineage I isolates causing rhombencephalitis, 12 out of 15 (9 in cattle, 2 in goat, and 1 in sheep). The three remaining isolates are not rhombencephalitis, but could be related by their proximity to animals: 1 sheep abortion and 2 environmental isolates. In addition, one case carrying T138 in Lineage II, a cattle rhombencephalitis, is reported. This renders this toxin quite interesting regarding rhombencephalitis. However, in the L. monocytogenes strains of TASmania, no antitoxin partner is known for this toxin that seems to be often encoded in a prophage region.



For the 352 L. monocytogenes strains described in TASmania unfortunately, no metadata is available, but the list of acTASs and their abundance is similar to our annotated dataset, with A32, A1, A2, and A34 (nearest Pfam HTH_3, ParBc, MraZ, and Omega_Repress/Rep_trans, respectively) being the most prevalent antitoxin clusters, and T9, T1, T57, T7, and T44 (nearest Pfam ParE, PhoH, PemK_toxin, Gp49, and HicA_toxin, respectively) being the main toxin clusters, as shown in Figure A1.



Using TASmania, a closer look at the Pfam annotation of the toxin clusters highlights the diversity of the TA systems uncovered in L. monocytogenes. Indeed, ParE targets the DNA gyrase and, along with Gp49, belongs to the Pfam clan called “plasmid_antitox CL0136”, whose members are originally described as plasmid-encoded TASs involved in plasmid maintenance. The PhOH domain is found in cytoplasmic proteins predicted as ATPase and which are induced by phosphate starvation [31]. PemK toxins belong to the Pfam superfamily of CcdB/PemK (CL0624) known as growth inhibitors that can bind to their own promoter and act also as endonucleases. HicA is an mRNA interferase that binds to target mRNA potentially in a translation-independent manner. The Firmicutes phylum has a prevalence of ParE and PemK like toxins in chromosomal TASs, which correspond to the prevalence in L. monocytogenes (Figure A2). More experimental investigation is required to confirm these putative TASs and to understand the conditions that regulate their expression in L. monocytogenes of various pathogenicity.





3. Discussion


Toxins and antitoxins have many roles in the bacterial cells by targeting a broad range of biological processes. Their role in pathogenic bacteria involves plasmid and pathogenicity island maintenance or biofilm formation [4]. We previously stated [23] that the TASs identified in the TASmania database are putative TASs predicted purely in silico by computational means and would benefit from in vivo validation. This is also the case in this report; all TASs that we identified in L. monocytogenes are candidates to be confirmed experimentally.



We obtained those candidates by combining large-scale database searches leveraging on the “guilt-by-association” neighborhood criteria (“guilt-by-association” refers to potential T or A proteins identified only by their neighborhood to a hit in TASmania) with the available metadata.



By looking at L. monocytogenes core genes, we identified 14 putative cgTASs that were analyzed for potential co-evolving residues. In addition, clustering their alleles confirmed the L. monocytogenes lineage separation. However, this lineage split is not necessarily due to the presence of these cgTASs. One of the cgTASs (lmo0168) appears as a putative orphan antitoxin (nearest Pfam “MazE_antitoxin”). Whether this putative antitoxin is expressed and functional remains unclear. If expressed, one could speculate about an interaction in trans with the toxin of another TAS.



Since we unraveled the possibility of co-evolving residues, further work is needed to demonstrate these hypothetical protein–protein contacts between those residues. Interestingly, co-evolution was reported for a Type III toxin between amino acid residues of the toxin CptIN and nucleic acids of its cognate antitoxin ncRNA [32]. An intriguing gene is lmo0888, which is recognized as part of a TAS together with lmo0887, but it is not defined as a core gene contrary to its partner lmo0887. It is not clear to us why this happens, as, intuitively, the whole pair should be part of the core genes. One possible explanation could be that this gene is found in multiple copies in part of the L. monocytogenes genomes and thus was removed from the core genes [24].



Additional knowledge or hypotheses on TASs could be extracted, such as TAS association with diseases. For instance, when looking at the phenotypic link to acTASs, the toxin cluster AbiEii T138 is of particular interest given its frequent association with rhombencephalitis in ruminants. Even though not all strains isolated from rhombencephalitis harbored this toxin, the association of toxin T138 with ruminant rhombencephalitis was significant (p-value = 0.0413, Χ2 test). Looking at the TASs, no obvious partner antitoxin is found for this toxin probably because it is part of a prophage region that is usually less well annotated. Further work remains to be done to demonstrate which pathway or target is activated. The presence of this prophage should be validated for its suitability as a diagnostic tool in the surveillance of animal farms.



By using large-scale in silico analysis of toxin–antitoxin systems in Listeria monocytogenes, we demonstrated that knowledge could be extracted from combined genome sequences and associated metadata. This includes potential co-evolutionary residues, the detection of putative new toxin or antitoxin partners, as well as the suspected role for a specific prophage TAS in rhombencephalitis in ruminants.




4. Materials and Methods


4.1. Data Used


Sequences were obtained from ENSEMBL.Bacteria [33] (352 L. monocytogenes strains chosen because they are included in our TASmania database) and from our previous work PRJEB15123, PRJEB15195 [34,35], and PRJEB22706 [26] (227 L. monocytogenes strains collected by our group with their associated metadata).




4.2. Identification of Putative TAS Genes using the TASmania Database


TAS candidates were extracted from our TASmania database https://bugfri.unibe.ch/tasmania [23] in all 352 L. monocytogenes strains included in the TASmania database with an R script directly querying the database. This list of candidates (Table S2) allows for the discovery of new TAS pairs.




4.3. Identification of Core Gene TASs


In a first step, typing of all the 352 L. monocytogenes strains was performed at the BIGSdb-Lm https://bigsdb.pasteur.fr/listeria/database [24] with a full genome sequence query on the cgMLST1748 scheme, in order to identify the alleles of each of the 1748 core genes. In the second step, the candidate TAS genes of TASmania were crossed with the core genes, leading to a list of 14 core gene TASs (cgTASs) (Table 1). Core genes (cgMLST1748) are 1748 genes that were identified among all L. monocytogenes comparing thousands of L. monocytogenes genomes [24]. Accessory genes are only found in a subset of L. monocytogenes strains.



Another set, including 227 L. monocytogenes field isolates not belonging to TASmania, was added to the study. For these isolates, we knew the cgMLST profiles from a preceding study (Aguilar-Bultet, manuscript in preparation). The cgTAS genes identified above were identified in these 227 genomes by BLASTn and combined with the alleles of the 352 L. monocytogenes strains. From this, a matrix with allele information of all isolates, but containing only the 14 cgTAS loci previously identified from the combination TASmania-BIGSdb, was obtained.




4.4. Removing Redundancy and Clustering


First, the strains containing more than 50% of alleles with no hits in the 14 core gene set were removed. Second, only one genome was kept as representative for all the strains with 100% identical cgTAS allele patterns (in the 14 cgTASs).



The representative cgTAS patterns (Table S6) were clustered according to the cgMSLT allele identifiers using the Nominal Clustering nomclust R package [36]. The Nominal Clustering performs hierarchical cluster analysis (HCA) with objects characterized by nominal (categorical) variables with a distance measured by the Goodall 1 dissimilarity measure. The dendrogram obtained with hclust was then plotted with plot as a fan with labels colored according to the lineages (Figure 1).




4.5. Identification of Accessory Gene TASs


The accessory gene TASs (acTASs) were deduced by subtracting the cgTASs from the list of TASs extracted from TASmania. Redundancy among the 100% identical acTAS pattern was removed by keeping a single representative genome. The heatmaps were calculated with R package pheatmap, allowing for the addition of metadata (Tables S5 and S8).




4.6. Identification of Potential Co-Evolving Residues


The BIS2Analyzer web site [28] was used to identify potential co-evolving residues. The input MSA for each of the 6 cgTAS pairs was built with an in-house Perl script and computed with MAFFT (File F1). The Dimension parameter was set to 2, allowing up to 2 exceptions on a column, and all other parameters were kept as defaults (Table 2). The residue positions and p-values (Fischer test) were evaluated by the CLAG score [37] and the server, respectively.
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Figure A1. Heatmaps of the counts of accessory TAS genes (non-redundant for the strains) for (a) Antitoxins and (b) Toxins in 322 L. monocytogenes of TASMANIA. The closest Pfam name is given to the TASMANIA cluster. 
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Figure A2. Comparison of the Firmicutes toxin closest to the Pfam family distribution between plasmid and chromosome. For simplicity, only TASs from the non-ambiguous two-gene AT/TA pseudo-operons were analyzed. The xT/Tx or Ax/xA pairs were ignored. L. monocytogenes strains, as Firmicutes in general, present a high prevalence of PemK and ParE-like chromosomal toxins, while YoeB and HicA toxins are more prevalent in plasmids. 






Figure A2. Comparison of the Firmicutes toxin closest to the Pfam family distribution between plasmid and chromosome. For simplicity, only TASs from the non-ambiguous two-gene AT/TA pseudo-operons were analyzed. The xT/Tx or Ax/xA pairs were ignored. L. monocytogenes strains, as Firmicutes in general, present a high prevalence of PemK and ParE-like chromosomal toxins, while YoeB and HicA toxins are more prevalent in plasmids.



[image: Toxins 12 00029 g0a2]







[image: Table] 





Table A1. List of residues that are significantly co-evolving intra-protein for each pair of cgTASs.
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	Lmo1466-1467
	4.024153e-16
	


	Positions:
	340
	412



	27 sequences:
	F
	M



	22 sequences:
	L
	V



	1 sequence:
	M
	A





	intra-protein Lmo1466



	
	4.719742e-07
	


	Positions:
	114
	134
	186
	235
	351
	424



	45 sequences:
	K
	S
	E
	V
	A
	L



	5 sequences:
	N
	T
	A
	I
	S
	F





	intra-protein Lmo1466



	
	4.342162e-06
	


	Positions:
	141
	315



	46 sequences:
	N
	T



	4 sequences:
	S
	S





	intra-protein Lmo1466



	Lmo1309-1310
	3.977592e-11
	


	Positions:
	186
	281
	412



	24 sequences:
	V
	S
	D



	15 sequences:
	A
	T
	E





	intra-protein Lmo1310
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Table A2. List of possible A32 TAS pairs in TASMANIA (all bacteria) vs. Lm strains.
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	First in Pair
	Second in Pair
	Pair Present in Lm
	Remark





	A32
	T13 (Zeta toxin)
	No
	



	A32
	T14 (HipA_C)
	No
	



	A32
	T2 (HipA_C)
	Yes
	Only found rarely in Lineage II, in animals with mastitis (cattle) or rhomboencephalitis (goat and sheep)



	T85 (Gp49)
	A32
	No
	



	T48 (Gp49)
	A32
	No
	



	T38 (relE)
	A32
	No
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Figure 1. Dendrogram of the non-redundant L. monocytogenes strains based on the cgTAS alleles. The lineage coloration is based on the known lineages thanks to the metadata. Those without metadata are tentatively colored according to the branch. Black = Lineage I; red = Lineage II; blue = Lineage III; green = Lineage IV; light blue = Listeria innocua as outgroup (wrongly annotated L. monocytogenes in ENA). 
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Figure 2. The MSA of the fusion pseudo-protein (first partner in orange, second partner in green) with the co-evolving amino acid residues highlighted (inter-protein = red arrows; intra-protein = blue arrows) within Jalview [29]. In that view, all common residues letters are hidden, only varying residues are displayed with their letters. The numbering at the top corresponds to the amino acid positions along the artificially fused protein sequence (same numbers and colors as Table 2). For clarity, only the red arrows (inter-protein) are labeled with residues highlighted in Table 2. 
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Figure 3. Heatmaps of the counts of accessory genes for (a) Antitoxins and (b) Toxins in 227 L. monocytogenes isolates. Metadata is given on the left side of the heatmap: lineage classification, source description, source type, and isolation year. 
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Table 1. List of 14 putative cgTASs identified in TASmania L.monocytogenes. Gene locus names are taken from the reference EGD-e annotation (NCBI accession number NC_003210.1). The term “Guilt-by-association” refers to potential T or A proteins identified only by their neighborhood to a hit in TASmania [23]. The alternative shading is used to group the pseudo-operon TAS loci.
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	Core Gene Locus
	Putative Type
	HMM Cluster Hit
	Description
	TAS Pair ID and Orientation





	lm0113
	Toxin
	Guilt-by-association
	Peptidase_M78 domain-containing protein
	1 AT



	lm0114
	Antitoxin
	TASMANIA.A78
	Toxin–antitoxin system, antitoxin component, Xre family
	1 AT



	lmo0168
	Antitoxin
	TASMANIA.A8
	Orphan antitoxin mazE
	2 A orphan



	lmo0887
	Antitoxin
	TASMANIA.A5
	CopG family ribbon-helix-helix protein
	3 AT



	lmo1309
	Antitoxin
	TASMANIA.A3
	Chromosome partitioning protein ParB
	4 TA



	lmo1310
	Toxin
	Guilt-by-association
	DUF3440 domain-containing protein
	4 TA



	lmo1466
	Antitoxin
	Guilt-by-association
	Cyclic-di-AMP phosphodiesterase PgpH
	5 TA



	lmo1467
	Toxin
	TASMANIA.T1
	PhoH family protein
	5 TA



	lmo2041
	Toxin
	Guilt-by-association
	Ribosomal RNA small subunit methyltransferase H
	6 AT



	lmo2042
	Antitoxin
	TASMANIA.A2
	Transcriptional regulator MraZ
	6 AT



	lmo2790
	Antitoxin
	TASMANIA.A1
	ParB/RepB/Spo0J family partition protein
	7 TA



	lmo2791
	Toxin
	Guilt-by-association
	Partition protein, ParA homolog
	7 TA



	lmo2793
	Toxin
	Guilt-by-association
	Uncharacterized protein
	8 AT



	lmo2794
	Antitoxin
	TASMANIA.A1
	Nucleoid occlusion protein
	8 AT
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Table 2. List of residues that are inter-protein co-evolving for each pair of cgTASs according to BIS2Analyzer. Positions numbered for the fusion pseudo-protein; orange = residues in the first partner; green = residues in the second partner. See Materials and Methods for more details. (Intra-protein co-evolving residues are shown in Table A1). Add fusion protein info.
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	cgTAS
	p-Value
	Positions from BIS2Analyzer
	Jalview Confirmed





	Lmo1466-1467
	1.126763e-14
	


	Positions:
	435
	828



	28 sequences:
	I
	T



	22 sequences:
	V
	M





	Yes inter-protein



	Lmo1309-1310
	3.039477e-06
	


	Positions:
	31
	56
	85
	360
	387



	35 sequences:
	T
	D
	F
	T
	V



	3 sequences:
	L
	G
	Y
	K
	I



	1 sequence:
	P
	N
	M
	N
	T





	Yes inter-protein



	
	1.215791e-05
	


	Positions:
	166
	221
	248
	284
	422



	35 sequences:
	T
	R
	T
	N
	A



	4 sequences:
	A
	Q
	S
	D
	S





	Yes inter-protein



	Lmo2793-2794
	Not significant
	


	Positions:
	68
	302



	25 sequences:
	V
	L



	9 sequences:
	I
	I





	Yes inter-protein but not significant with BIS2Analyzer.











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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