Supplementary materials: Chronic Low Dose Oral Exposure to Microcystin-LR Exacerbates Hepatic Injury in a Murine Model of Non-Alcoholic Fatty Liver Disease

Apurva Lad, Robin C. Su, Joshua D. Breidenbach, Paul M. Stemmer, Nicholas J. Carruthers, Nayeli K. Sanchez, Fatimah K. Khalaf MBChB, Shungang Zhang, Andrew L. Kleinhenz, Prabhatchandra Dube, Chrysan J. Mohammed, Judy A. Westrick, Erin L. Crawford, Dilrukshika Palagama, David Baliu-Rodriguez, Dragan Isailovic, Bruce Levison, Nikolai Modyanov, Amira F. Gohara, Deepak Malhotra, Steven T. Haller and David J. Kennedy

Figure S1. Effect of MC-LR on survival and gross liver morphology in both healthy (C57Bl/6J) and NAFLD (Lepr^{db}/J) mice. (**A**) Kaplan-Meier analysis of the survival period of the C57Bl/6J (WT) and LepR^{db}/J (db)

mice showed a non-significant (log-rank p = 0.0702) decrease in survival in mice receiving 50 µg/kg (n = 17, 94% survival) and 100 µg/kg MC-LR (n = 17, 82% survival) versus db/Vehicle (n = 15) (100% survival), no deaths were observed in the WT/Vehicle (n = 5) or WT/100 µg/kg MC-LR exposure (n = 5) C57Bl/6J mice; Representative images showing the gross morphology of the livers of Leprdb/J mice that were exposed to (**B**) Vehicle; (**C**) 50 µg/kg MC-LR or (**D**) 100 µg/kg MC-LR. In each case the animals died overnight and there was no observed acute trauma (e.g. tracheal rupture resulting in immediate death) or other signs of improper gavage technique such as visible signs of discomfort or bloating in the time preceding death. Full necropsies to determine cause of death were unable to be completed due to partial cannibalization by littermates, hence we are not able to fully exclude mortality attributable to the gavage procedure in these animals.

Figure S2. Effect of MC-LR exposure on liver injury enzymes in NAFLD (Lepr^{db}/J) mice. Circulating levels of (**A**) Alanine aminotransferase (ALT) were non-specifically elevated 30 days after study initiation across all exposure groups of LepR^{db}/J mice compared with 15 days after study initiation (db/Vehicle (n = 15) ***, p < 0.001, db/50 µg/kg MC-LR exposed (n = 16), ***, p < 0.001, db/100 µg/kg MC-LR exposed (n = 14), *, p < 0.05), while (**B**) Alkaline Phosphatase (ALP) were significantly elevated only in the MC-LR exposed groups as assessed at 15- and 30-days after study initiation (50 µg/kg MC-LR exposed *, p < 0.05, 100 µg/kg MC-LR exposed **, p < 0.01) via paired *t*-tests. "ns" denotes not significant.

Figure S3. Phosphorylation sites affected by MC-LR exposure in NAFLD (Lepr^{db}/J) mice. Volcano plots (**A** and **C**) and minus-average plots (**B** and **D**). Values shown in parts A and B are comparisons of the 50 μ g/kg microcystin exposed mice to vehicle controls and **C** and **D** are from the 100 μ g/kg microcystin exposed vs vehicle controls. Sites that were affected by microcystin (q < 0.1) are highlighted in dark grey. 50 μ g/kg MC-LR group (n = 8), 100 μ g/kg MC-LR group (n = 7), Vehicle (n = 8), for all proteomics analyses.

Figure S4: Fuzzy c-means clusters of phosphorylation site abundance versus microcystin dose in NAFLD (Lepr^{db}/J) mice. 6 clusters were generated. Only the 4 associated with Reactome pathways are shown, because the other two could not be interpreted biologically. Clusters that were dephosphorylated in microcystin exposed samples relative to unexposed are dark grey (clusters 2 and 3). Cluster 1 (medium gray) was hyperphosphorylated relative to unexposed samples. Cluster 4 (light grey) includes sites which were dephosphorylated at 50 µg/kg microcystin, but which were phosphorylated at 100 ug/kg microcystin. 50 µg/kg MC-LR group (n = 8), 100 µg/kg MC-LR group (n = 7), Vehicle (n = 8), for all proteomics analyses.

Table	S1.	Effe	ect of N	AC-LR	expo	osure on t	issue	weights in	۱ Le	pr ^{db} /J mice.	The	weights o	f the	organs	are
measu	red	in	grams.	. One-w	vay	ANOVA	was	performed	t to	determine	the	significan	ce b	etween	the
exposi	ure g	grou	ıps.												

Organ	db/Vehicle	db/50 µg/kg MCLR	db/100 µg/kg MCLR	
		Weight (grams) ± S	5.E.M.	ANOVA <i>p</i> -value
Heart	0.13 ± 0.02	0.148 ± 0.007	0.14 ± 0.004	0.74
Lung	0.11 ± 0.01	0.121 ± 0.005	0.121 ± 0.005	0.84
Liver	3.06 ± 0.22	3.242 ± 0.165	2.975 ± 0.148	0.58
Kidney	0.22 ± 0.04	0.202 ± 0.006	0.245 ± 0.026	0.47

Table S2. Effect of MC-LR exposure on tissue weights in C57Bl/6J mice. The weights of the organs are measured in grams. Unpaired t-test was performed to determine the significance between the exposure groups.

Organ	WT/Vehicle	WT/100 µg/kg MCLR	
	Weight	t (grams) ± S.E.M.	Unpaired <i>t</i> -test <i>p</i> -value
Heart	0.16 ± 0.01	0.16 ± 0.01	0.91
Lung	0.26 ± 0.01	0.27 ± 0.04	0.87
Liver	1.88 ± 0.13	1.42 ± 0.16	0.07
Kidney	0.19 ± 0.01	0.18 ± 0.01	0.91

Group	Albumin (g/dL)	Alkaline phos- phatase (U/L)	Alanine amino- transferase (U/L)	Amylase (U/L)	BUN (mg/dL)	Non-fasted blood Glucose (mg/dL)	Total Protein (g/dL)	Globulin (g/dL)
				Day 15				
Vehicle	4.5 ± 0.1	219 ± 8.4	287.6 ± 16.6	1294.2 ± 30.1	20.1 ± 0.9	426.4 ± 31	6 ± 0.1	1.5 ± 0.02
50 μg/kg MC-LR	4.3 ± 0.2	212.5 ± 21.7	302 ± 447.3	1251.4 ± 50.6	19.5 ± 0.7	400.2 ± 37.8	5.9 ± 0.2	1.5 ± 0.1
100 μg/kg MC-LR	4.3 ± 0.2	234.3 ± 17	293.8 ± 347.2	1212.2 ± 47.8	20 ± 0.9	450.8 ± 37.6	5.9 ± 0.2	1.5 ± 0.1
				Day 30				
Vehicle	4.4 ± 0.2	263 ± 24.5	414.3 ± 17.7	1204.6 ± 59.4	20.9 ± 1.5	478.1 ± 44.0	6.1 ± 0.2	1.7 ± 0.1
50 μg/kg MC-LR	4.7 ± 0.2	301.8 ± 26	435.6 ± 304.8	1380.9 ± 68.7	20.4 ± 1.2	473.1 ± 32.8	6.5 ± 0.2	1.8 ± 0.1
100 μg/kg MC-LR	4.5 ± 0.1	322.4 ± 19.2	437.1 ± 296.7	1201.9 ± 75.5	23.4 ± 1.4	408.0 ± 40.0	5.4 ± 0.1	1.8 ± 0.1

Table S3. Effect of MC-LR exposure on blood chemistry in Lepr^db/J mice.

Table S4. Effect of MC-LR exposure on blood chemistry in healthy C57Bl/6J (WT) mice.

Group	Albumin (g/dL)	Alkaline phos- phatase (U/L)	Alanine amino- transferas e (U/L)	Amylase (U/L)	BUN (mg/dL)	Non-fasted blood Glucose (mg/dL)	Total Protein (g/dL)	Globulin (g/dL)
				Day 15				
Vehicle	3.7 ± 0.1	70.8 ± 4.7	67.6 ± 17.8	780 ± 21.8	24.6 ± 0.8	275.8 ± 8.04	4.8 ± 0.1	1.1 ± 0.1
100 μg/kg MC-LR	3.1 ± 0.1	72.6 ± 4.9	52.4 ± 21.2	721.6 ± 20.2	20.6 ± 1.2	253 ± 15.3	5 ± 0.2	1.9 ± 0.1
				Day 30:				
Vehicle	3.2 ± 0.1	58.4±8.0	59 ± 8.5	737.8 ± 47.6	24.4 ± 1.4	284.6 ± 13.8	4.8 ± 0.1	1.6 ± 0.1
100 μg/kg MC-LR	3.2 ± 0.1	58.2 ± 12.3	70.8 ± 17.5	730.0 ± 28.1	16.8 ± 0.9	204.6 ± 16.2	5.1 ± 0.2	1.9 ± 0.1

Table S5. Hematoxylin & Eosin (H&E), Periodic Acid-Schiff (PAS), and Composite Liver Injury Scores
in Lepr ^{db} /J (db) mice.

Exposure group	Mouse	Hl-E Iniury Score	PAS Iniury Score	Composito Injury Score
Exposure group	number	man injury score	I AS IIJUIY SCOLE	Composite injury Score
	1	2	1	1.5
	2	2	3	2.5
	3	2	2	2.0
	4	2	2	2.0
	5	2	2	2.0
	6	0	1	0.5
db/Vehicle	7	2	3	2.5
	8	2	2	2.0
	9	2	3	2.5
	10	2	3	2.5
	11	2	3	2.5
	12	2	3	2.5
	13	2	2	2.0
	1	4	4	4.0
	2	4	4	4.0
	3	4	4	4.0
	4	1	4	2.5
	5	2	1	1.5
	6	<u>-</u> 4	2	3.0
	7	4	$\frac{2}{4}$	4.0
db/50 ug/kg	8	3	2	2.5
MC-IR	9	3	2	2.5
exposed	10	3	2	3.0
exposed	10	2	3	2.5
	11	2	3	2.5
	12	3	1	3.5
	13	2	4	3.5
	14	(Dead)	(Dead)	(Dead)
	15	(Deuu)	(<i>Deuu</i>)	(<i>Deuu</i>)
	10	3 2	3 1	3.0
	17	2	2	2.0
	1	2	3	2.5
	2	3 2	4	3.5
	3	2	4	3.0
	4 5	4	3 2	3.5
	5	2	3	2.3
	0	$(\mathbf{D},\mathbf{r},\mathbf{l})$	$(\mathbf{D} \cdot \mathbf{r} I)$	4.0 (Dard)
11 /100 · · · · /1- ·	/	(Deuu)	(Deua)	(Deuu)
αθ/100 μg/kg	ð 0	3	3	3.0
MIC-LK	9	2	2	2.0
exposed	10	$(\mathbf{D}, \mathbf{r}, \mathbf{l})$	$(\mathbf{D} \cdot \mathbf{r} \mathbf{I})$	2.0
	11	(Dead)	(Dead)	(Deaa)
	12	2	3	2.5
	13	(Dead)	(Dead)	(Dead)
	14	2	3	2.5
	15	3	2	2.5
	16	3	3	3.0
	17	3	3	3.0

Table S6. Genetic analysis of hepatotoxicity in liver tissues in NAFLD (Lepr^{db}/J) mice. Hepatotoxicity Array for gene expression of liver tissue homogenates from MC-LR exposed Lepr^{db}/J mice (db/100 μ g/kg and db/50 μ g/kg MC-LR exposure) relative to db/Vehicle exposed mice. qPCR arrays were run with liver cDNA from n = 4 pooled samples per array and n = 3 arrays per group. Student's t-test was used for comparison between MC-LR exposure group and vehicle control.

Gene	Description	50 µg/kg vs. V	ehicle	100 µg/kg vs. V	ehicle
		Fold Regulation	<i>p</i> -value	Fold Regulation	<i>p-</i> value
	Cholestasis				
Abcc3	ATP-binding cassette, sub-family C (CFTR/MRP), member 3	174.2	0.091	123.3	0.214
Abcb1a	ATP-binding cassette, sub-family B (MDR/TAP), member 1A	26.6	0.132	15.8	0.365
Abcb4	ATP-binding cassette, sub-family B (MDR/TAP), member 4	95.1	0.123	46.1	0.258
Abcc2	ATP-binding cassette, sub-family C (CFTR/MRP), member 2	14.3	0.562	11.1	0.778
Atp8b1	ATPase, class I, type 8B, member 1	5.9	0.250	5.9	0.163
Pdyn	Prodynorphin	-480.5	0.368	-161.4	0.370
Rdx	Radixin	9.2	0.084	5.0	0.384
Slc51a	Organic solute transporter alpha	3.9	0.171	2.9	0.072
	Hepatotoxicity				
Aldoa	Aldolase A, fructose-bisphosphate	229.4	0.073	122.7	0.082
Apex1	Apurinic/apyrimidinic endonuclease 1	5.8	0.487	5.1	0.526
Avpr1a	Arginine vasopressin receptor 1A	5.5	0.322	7.4	0.090
Bhmt	Betaine-homocysteine methyltransferase	34.7	0.481	32.5	0.433
Btg2	B-cell translocation gene 2, anti-proliferative	3.4	0.509	3.1	0.511
Car3	Carbonic anhydrase 3	17.5	0.145	19.1	0.079
Casp3	Caspase 3	15.6	0.010	11.8	0.087
Ccng1	Cyclin G1	19.3	0.019	11.4	0.176
Cryl1	Crystallin, lambda 1	8.2	0.417	8.8	0.232
Cxcl12	Chemokine (C-X-C motif) ligand 12	170.3	0.008	150.0	0.085
Cyp1a2	Cytochrome P450, family 1, subfamily a, polypeptide 2	187.2	0.017	238.1	0.016
Ddit4l	DNA-damage-inducible transcript 4-like	19.7	0.115	46.3	0.364
Ddx39	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39	33.3	0.098	54.7	0.230
Dnajb11	DnaJ (Hsp40) homolog, subfamily B, member 11	4.1	0.409	9.0	0.340
Dnajc3	DnaJ (Hsp40) homolog, subfamily C, member 3	1.5	0.358	2.1	0.232
Fads1	Fatty acid desaturase 1	2.3	0.129	2.4	0.135

Fxc1	Fractured callus expressed transcript 1	-1.1	0.989	-1.1	0.989
Gadd45a	Growth arrest and DNA-damage-inducible 45 alpha	5.1	0.054	9.0	0.366
Gclc	Glutamate-cysteine ligase, catalytic subunit	-2.1	0.386	-5.0	0.376
Gusb	Glucuronidase, beta	-1.3	0.390	-16.0	0.209
Hsp90ab1	Heat shock protein 90 alpha (cytosolic), class B member 1	-13.7	0.882	-17.4	0.835
Krt18	Keratin 18	27.3	0.094	6.4	0.356
Krt8	Keratin 8	18.8	0.258	14.8	0.423
Mbl2	Mannose-binding lectin (protein C) 2	18.9	0.574	19.2	0.568
MGDC	Mouse Genomic DNA Contamination	-12.5	0.374	-16.5	0.374
Nqo1	NAD(P)H dehydrogenase, quinone 1	9.3	0.136	4.0	0.387
Pla2g12a	Phospholipase A2, group XIIA	1.0	0.737	-2.8	0.118
Rb1	Retinoblastoma 1	2.5	0.044	2.0	0.108
Slc17a3	Solute carrier family 17 (sodium phosphate), member 3	2.5	0.963	2.4	0.881
Txnrd1	Thioredoxin reductase 1	3.5	0.707	3.5	0.707
	Necrosis:				
Cd68	CD68 antigen	5.0	0.460	6.4	0.193
Cdc14b	CDC14 cell division cycle 14 homolog B (S. cerevisiae)	-3.9	0.377	-3.2	0.379
Cdkn1a	Cyclin-dependent kinase inhibitor 1A (P21)	22.2	0.272	23.8	0.245
Col4a1	Collagen, type IV, alpha 1	33.2	0.025	36.1	0.229
Ddx39	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39	33.3	0.098	33.3	0.098
Emc9	Family with sequence similarity 158, member A	1.5	0.311	1.5	0.311
Fam214a	CDNA sequence BC031353	15.6	0.013	19.5	0.011
Lgr5	Leucine rich repeat containing G protein coupled receptor 5	3.2	0.188	3.2	0.138
Mcm10	Minichromosome maintenance deficient 10 (S. cerevisiae)	14.1	0.188	3.3	0.371
Mlxipl	MLX interacting protein-like	97.1	0.016	46.3	0.207
Osmr	Oncostatin M receptor	3.5	0.416	3.5	0.416
Rhbg	Rhesus blood group-associated B glycoprotein	2.0	0.274	2.2	0.317
Serpine1	Serine (or cysteine) peptidase inhibitor, clade E, member 1	-2.4	0.933	-2.9	0.069
Skil	SKI-like	-1.3	0.649	-73.9	0.374
Tmem2	Transmembrane protein 2	-2.2	0.372	-2.2	0.372
	Nongenotoxic Hepatocarcinog	enicity:			
Aldoa	Aldolase A, fructose-bisphosphate	229.4	0.073	122.7	0.082

Apex1	Apurinic/apyrimidinic endonuclease 1	5.8	0.487	5.1	0.526
Btg2	B-cell translocation gene 2, anti-proliferative	3.4	0.509	3.1	0.511
Ccng1	Cyclin G1	19.3	0.019	11.4	0.176
Cdkn1a	Cyclin-dependent kinase inhibitor 1A (P21)	22.2	0.272	23.8	0.245
Ddx39	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39	33.3	0.098	54.7	0.230
Krt18	Keratin 18	27.3	0.094	6.4	0.356
Krt8	Keratin 8	18.8	0.258	14.8	0.423
Mrps18b	Mitochondrial ribosomal protein S18B	12.0	0.433	10.4	0.499
Txnrd1	Thioredoxin reductase 1	3.5	0.707	3.5	0.707
	Phosholipidosis:				
Abcb1a	ATP-binding cassette, sub-family B (MDR/TAP), member 1A	26.6	0.132	15.8	0.365
Asah1	N-acylsphingosine amidohydrolase 1	9.1	0.273	6.2	0.427
Fxc1	Fractured callus expressed transcript 1	-1.1	0.989	-1.1	0.989
Hpn	Hepsin	16.0	0.092	16.0	0.092
Lss	Lanosterol synthase	2.7	0.113	2.7	0.113
Mrps18b	Mitochondrial ribosomal protein S18B	12.0	0.433	10.4	0.499
S100a8	S100 calcium binding protein A8 (calgranulin A)	3.0	0.334	2.2	0.765
Serpina3n	Serine (or cysteine) peptidase inhibitor, clade A, member 3N	280.5	0.374	13.3	0.708
	Steatosis:				
Cd36	CD36 antigen	32.0	0.115	15.4	0.307
Fasn	Fatty acid synthase	38.6	0.156	22.9	0.328
Scd1	Stearoyl-Coenzyme A desaturase 1	-7.0	0.862	-2.7	0.740

Table S7: Genetic analysis of oxidative stress response in liver tissues of NAFLD (Lepr^{db}/J) mice. Oxidative Stress Array for gene expression of liver tissue homogenates from MC-LR exposed Lepr^{db}/J mice (db/100 μ g/kg and db/50 μ g/kg MC-LR exposure) relative to db/Vehicle exposed mice. qPCR arrays were run with liver cDNA from *n* = 4 pooled samples per array and *n* = 3 arrays per group. Student's t-test was used for comparison between MC-LR exposure group and vehicle control.

Gene	Description	50 μg/kg vs. V	ehicle	100 μg/kg vs. Vehicle	
		Fold Regulation	<i>p</i> -value	Fold Regulation	<i>p</i> -value
	Antioxidants:	-		-	
	Glutathione Peroxidases	(GPx):			
Gpx2	Glutathione peroxidase 2	3.4	0.378	1.1	0.826
Gpx5	Glutathione peroxidase 5	4.7	0.044	6.0	0.133
Gpx6	Glutathione peroxidase 6	4.0	0.855	3.7	0.753
	Peroxiredoxins (TPx)):			
Ehd2	EH-domain containing 2	7.0	0.590	5.7	0.921
Prdx1	Peroxiredoxin 1	568.1	0.097	534.2	0.110
Prdx2	Peroxiredoxin 2	2876.3	< 0.001	3121.4	< 0.001
Prdx3	Peroxiredoxin 3	36.2	0.513	37.7	0.453
Prdx4	Peroxiredoxin 4	27.6	0.558	29.8	0.445
Prdx5	Peroxiredoxin 5	39.7	0.310	39.9	0.300
Prdx6	Peroxiredoxin 6	40.5	0.482	39.6	0.513
	Other Peroxidases:				
Apc	Adenomatosis polyposis coli	14.0	0.528	13.6	0.574
Cat	Catalase	68.4	0.616	77.1	0.441
Epx	Eosinophil peroxidase	-2.9	0.373	-5.9	0.235
Мро	Myeloperoxidase	2.3	0.343	1.2	0.765
Ptgs2	Prostaglandin-endoperoxide synthase 2	1.9	0.455	-8.3	0.149
Serpinb1b	Serine (or cysteine) peptidase inhibitor, clade B, member 1b	4.3	0.236	1.1	0.815
Тро	Thyroid peroxidase	-7.4	0.307	-6.8	0.309
	Other Antioxidants	:			
Sod3	Superoxide dismutase 3, extracellular	2.1	0.435	2.5	0.267
	Genes Involved in Reactive Oxygen Speci	ies (ROS) Metabolism	:		
	Superoxide Dismutases (SOD):			
Sod3	Superoxide dismutase 3, extracellular	2.1	0.435	2.5	0.267
	Other Genes Involved in Superoxi	de Metabolism:			
Cyba	Cytochrome b-245, alpha polypeptide	15.5	0.276	15.0	0.311
Ncf1	Neutrophil cytosolic factor 1	32.1	0.228	43.1	0.103
Ncf2	Neutrophil cytosolic factor 2	105.4	0.217	119.8	0.152

Nox4	NADPH oxidase 4	45.5	0.157	44.5	0.188
Noxa1	NADPH oxidase activator 1	32.5	0.327	34.0	0.293
Noxo1	NADPH oxidase organizer 1	14.2	0.580	32.1	0.093
Recql4	RecQ protein-like 4	4.8	0.355	1.5	0.629
Ucp2	Uncoupling protein 2 (mitochondrial, proton carrier)	-4.6	0.375	-4.7	0.375
	Oxidative Stress Responsive	Genes:			
Cat	Catalase	68.4	0.616	77.1	0.441
Epx	Eosinophil peroxidase	-2.9	0.373	-5.9	0.235
Gclc	Glutamate-cysteine ligase, catalytic subunit	54.4	0.164	40.4	0.416
Gpx2	Glutathione peroxidase 2	3.4	0.378	1.1	0.826
Gpx5	Glutathione peroxidase 5	4.7	0.044	6.0	0.133
Gpx6	Glutathione peroxidase 6	4.0	0.855	3.7	0.753
Hspa1a	Heat shock protein 1A	2.7	0.180	-1.2	0.499
Krt1	Keratin 1	13.3	0.218	1.0	0.898
Мро	Myeloperoxidase	2.3	0.343	1.2	0.765
Nqo1	NAD(P)H dehydrogenase, quinone 1	236.7	0.071	197.8	0.125
Park7	Parkinson disease (autosomal recessive, early onset) 7	-1.2	0.598	28.4	0.965
Prdx1	Peroxiredoxin 1	568.1	0.097	534.2	0.110
Prdx2	Peroxiredoxin 2	2876.3	< 0.001	3121.4	< 0.001
Prdx6	Peroxiredoxin 6	40.5	0.482	39.6	0.513
Prnp	Prion protein	14.3	0.323	16.5	0.200
Psmb5	Proteasome (prosome, macropain) subunit, beta type 5	40.6	0.424	40.4	0.434
Тро	Thyroid peroxidase	-7.4	0.307	-6.8	0.309
Txn1	Thioredoxin 1	3.7	0.296	4.1	0.199
Ucp3	Uncoupling protein 3 (mitochondrial, proton carrier)	6.6	0.375	9.7	0.342
-	Oxygen Transporters:				
Mb	Myoglobin	98.4	0.374	1.0	0.898
Ngb	Neuroglobin	11.4	0.074	10.6	0.030
	Other Reactive Oxygen Species (ROS) M	letabolism Genes:			
Il19	Interleukin 19	-16.4	0.141	-6.9	0.206

Table S8. Identification of the clusters of pathways affected by 50 μ g/kg MC-LR versus control in NAFLD (Lepr^{db}/J) mice using Reactome database. Reactome pathways in liver were identified as affected by 50 μ g/kg MC-LR versus control (False Discovery Rate, FDR < 0.2) and enriched in a c-means cluster (Fisher's exact test *p* < 0.02).

Pathway	Mean t- statistic	Sites	FDR
Cluster 1			
Processing of capped intron containing pre-mRNA	0.239	243	0.13031
Metabolism of RNA	0.191	403	0.13031
Pre-mRNA splicing	0.275	223	0.11026
mRNA splicing	0.275	223	0.11026
Sphingolipid metabolism	0.746	41	0.05012
Regulation of Actin dynamics for phagocytic cup formation	0.705	24	0.16038
Cluster 2			
ER to Golgi anterograde transport	0.539	83	0.020048
Asparagine N-linked glycosylation	0.442	98	0.064154
Transport to the Golgi and subsequent modification	0.520	84	0.026731
Cluster 5			
ER to Golgi anterograde transport	0.539	83	0.020048
Asparagine N-linked glycosylation	0.442	98	0.064154
Transport to the Golgi and subsequent modification	0.520	84	0.026731
Copii-mediated vesicle transport	1.149	36	0.020048

0						
Name	Test Statistic 50 μg/kg	FDR up, 50 µg/kg	FDR down, 50 μg/kg	Test Statistic, 100 μg/kg	FDR up, 100 µg/kg	FDR down, 100 µg/kg
Coronary vasculature development	-1.0323	1	0.039853	-0.75538	0.9996	0.35437
Embryonic limb morphogenesis	-0.9234	1	0.03282	-0.24075	0.9996	0.60095
Embryonic appendage morphogenesis	-0.9234	1	0.03282	-0.24075	0.9996	0.60095
Regulation of stem cell proliferation	-0.83803	1	0.03282	-0.36321	0.9996	0.48615
Regulation of glial cell differentiation	-0.83542	1	0.050215	-0.80835	0.9996	0.32969
Embryonic skeletal system development	-0.83197	1	0.050215	-0.57295	0.9996	0.4033
Appendage morphogenesis	-0.81328	1	0.03282	-0.1334	0.9996	0.71406
Limb morphogenesis	-0.81328	1	0.03282	-0.1334	0.9996	0.71406
Secondary metabolic process	-0.79835	1	0.090477	-0.74858	0.9996	0.35437
Regulation of reproductive process	-0.7809	1	0.060867	-0.33621	0.9996	0.54364
Kidney epithelium development	-0.75495	1	0.046495	-0.88391	0.9996	0.31733
Lung alveolus development	-0.73629	1	0.050215	-0.80052	0.9996	0.32969
Regulation of T cell proliferation	-0.72964	1	0.039853	-0.72412	0.9996	0.32969
Limb development	-0.70986	1	0.039056	-0.31014	0.9996	0.53082
Appendage development	-0.70986	1	0.039056	-0.31014	0.9996	0.53082
Regulation of mononuclear cell proliferation	-0.68949	1	0.03282	-0.72014	0.9996	0.31733
Regulation of leukocyte proliferation	-0.68949	1	0.03282	-0.72014	0.9996	0.31733
Regulation of lymphocyte proliferation	-0.68949	1	0.03282	-0.72014	0.9996	0.31733
Positive regulation of neuron apoptotic process	-0.68007	1	0.050215	-0.93462	0.9996	0.2897
Regulation of cellular response to oxidative stress	-0.67735	1	0.047824	-0.38762	0.9996	0.47396
Aerobic respiration	-0.67186	1	0.067418	-0.21038	0.9996	0.634
Tricarboxylic acid metabolic process	-0.66531	1	0.075278	-0.64745	0.9996	0.33792
Regulation of sister chromatid segregation	-0.65905	1	0.047824	-0.34456	0.9996	0.49524
Regulation of oxidative stress-induced cell death	-0.65798	1	0.078197	-0.45709	0.9996	0.45018
T cell differentiation in thymus	-0.65302	1	0.079111	-0.43452	0.9996	0.45298
Antibiotic metabolic process	-0.63816	1	0.03282	-0.61795	0.9996	0.32969
Cellular aldehyde metabolic process	-0.63584	1	0.074243	-0.46195	0.9996	0.42795
Cellular respiration	-0.63557	1	0.050215	-0.36331	0.9996	0.47936

Table S9. GO Biological Process enrichment analysis in NAFLD (Leprdb/J) mice.

Regeneration	-0.63153	1	0.097937	-0.34434	0.9996	0.52374
Regulation of response to oxidative stress	-0.62609	1	0.050215	-0.29387	0.9996	0.54364
Regulation of mitotic nuclear division	-0.60244	1	0.03282	-0.47837	0.9996	0.35519
Positive regulation of WNT signaling pathway	-0.59662	1	0.097937	-0.28342	0.9996	0.56835
Regulation of centrosome cycle	-0.5964	1	0.097937	-0.59589	0.9996	0.36526
Positive regulation of neuron death	-0.59283	1	0.039056	-0.66786	0.9996	0.32114
Regulation of striated muscle tissue development	-0.5898	1	0.050215	-0.54419	0.9996	0.35437
Regulation of muscle tissue development	-0.5898	1	0.050215	-0.54419	0.9996	0.35437
Regulation of muscle organ development	-0.5898	1	0.050215	-0.54419	0.9996	0.35437
Regulation of nuclear division	-0.5872	1	0.036707	-0.42514	0.9996	0.38427
Cell maturation	-0.58646	1	0.099436	-0.52822	0.9996	0.38824
Defense response to bacterium	-0.58604	1	0.097937	-1.1837	0.9996	0.2441
Regulation of chromosome segregation	-0.58367	1	0.041846	-0.36938	0.9996	0.4541
Lung morphogenesis	-0.57429	1	0.09821	-0.78393	0.9996	0.32969
Kidney development	-0.56637	1	0.03282	-0.51822	0.9996	0.32969
Regulation of lipid catabolic process	-0.56276	1	0.050215	-0.77661	0.9996	0.31733
Positive regulation of muscle tissue development	-0.54693	1	0.097937	-0.56794	0.9996	0.35654
Positive regulation of muscle organ development	-0.54693	1	0.097937	-0.56794	0.9996	0.35654
Positive regulation of striated muscle tissue development	-0.54693	1	0.097937	-0.56794	0.9996	0.35654
Response to interferon-gamma	-0.51951	1	0.056828	-0.26497	0.9996	0.56008
Regulation of DNA binding	-0.51891	1	0.099436	-0.34696	0.9996	0.49524
Renal system development	-0.50585	1	0.03282	-0.49304	0.9996	0.32969
Drug catabolic process	-0.50027	1	0.067418	-0.2297	0.9996	0.59712
Protein-DNA complex assembly	-0.49815	1	0.078197	-0.47807	0.9996	0.37118
Negative regulation of DNA-binding transcription factor activity	-0.49449	1	0.0547	-0.80439	0.9996	0.24798
Urogenital system development	-0.49283	1	0.041846	-0.48143	0.9996	0.32969
Memory	-0.49241	1	0.097937	-0.4507	0.9996	0.39629
Dicarboxylic acid metabolic process	-0.4887	1	0.080861	-0.10898	0.9996	0.73234
Positive regulation of mitotic cell cycle	-0.48853	1	0.046495	-0.32172	0.9996	0.4541
Cellular response to interferon-gamma	-0.488	1	0.097937	-0.29948	0.9996	0.53749
Monosaccharide metabolic process	-0.47864	1	0.039056	-0.40071	0.9996	0.37118
Response to hydrogen peroxide	-0.47562	1	0.063625	-0.41561	0.9996	0.39616
Regulation of organ growth	-0.4692	1	0.081699	-0.24578	0.9996	0.56323
Positive regulation of cell cycle process	-0.46384	1	0.03282	-0.34756	0.9996	0.38824

Energy derivation by oxidation of organic compounds	-0.46023	1	0.03282	-0.44166	0.9996	0.32969
Hindbrain development	-0.45555	1	0.078197	-0.47906	0.9996	0.35437
Response to light stimulus	-0.44092	1	0.039056	-0.32478	0.9996	0.43147
Learning	-0.4314	1	0.082513	-0.50844	0.9996	0.33792
Defense response to another organism	-0.43079	1	0.036707	-0.5297	0.9996	0.31733
Regulation of epithelial cell differentiation	-0.42359	1	0.074243	-0.085002	0.9996	0.77042
Regulation of epithelial cell proliferation	-0.41428	1	0.03282	-0.53129	0.9996	0.2897
Cognition	-0.4137	1	0.046495	-0.43928	0.9996	0.33792
Blood vessel morphogenesis	-0.4099	1	0.050215	-0.40647	0.9996	0.35437
Morphogenesis of a branching structure	-0.3965	1	0.09821	-0.3946	0.9996	0.39616
Positive regulation of developmental growth	-0.39581	1	0.056331	-0.36499	0.9996	0.38824
Embryonic organ morphogenesis	-0.39286	1	0.049009	-0.21415	0.9996	0.56404
Response to reactive oxygen species	-0.38934	1	0.085241	-0.36628	0.9996	0.41163
Hexose metabolic process	-0.38425	1	0.091131	-0.38871	0.9996	0.38824
Generation of precursor metabolites and energy	-0.37515	1	0.03282	-0.40782	0.9996	0.32969
Alpha-amino acid metabolic process	-0.37459	1	0.050215	0.14898	0.9996	0.97806
Regulation of DNA-binding transcription factor activity	-0.36756	1	0.039056	-0.58771	0.9996	0.2441
Response to wounding	-0.3666	1	0.049009	-0.34247	0.9996	0.38427
Regulation of developmental growth	-0.36623	1	0.039853	-0.32618	0.9996	0.38427
Innate immune response	-0.3635	1	0.03282	-0.35999	0.9996	0.33792
Cellular amino acid metabolic process	-0.35803	1	0.063625	0.11727	0.9996	0.97096
Heart morphogenesis	-0.35388	1	0.097937	-0.38264	0.9996	0.36832
Learning or memory	-0.35308	1	0.09821	-0.47487	0.9996	0.33477
Protein autophosphorylation	-0.34599	1	0.056828	-0.52372	0.9996	0.31733
Regulation of microtubule cytoskeleton organization	-0.34505	1	0.050215	-0.28394	0.9996	0.44346
Wound healing	-0.34439	1	0.089806	-0.35837	0.9996	0.388
Ribose phosphate biosynthetic process	-0.32493	1	0.097937	-0.40958	0.9996	0.33792
Activation of protein kinase activity	-0.32491	1	0.097821	-0.58535	0.9996	0.31733
Lung development	-0.32251	1	0.097937	-0.4715	0.9996	0.32969
Respiratory tube development	-0.32251	1	0.097937	-0.4715	0.9996	0.32969
Stress-activated protein kinase signaling cascade	-0.31809	1	0.097937	-0.3516	0.9996	0.39629
Immune effector process	-0.30741	1	0.067338	-0.44791	0.9996	0.32969
Regulation of microtubule-based process	-0.30347	1	0.079999	-0.24658	0.9996	0.48779
Cell junction assembly	-0.30113	1	0.099436	-0.29692	0.9996	0.44346

Epithelial tube morphogenesis	-0.29883	1	0.097937	-0.31585	0.9996	0.39616
Multicellular organismal homeostasis	-0.27123	1	0.091767	-0.2067	0.9996	0.54364
Positive regulation of growth	-0.26326	1	0.097937	-0.24782	0.9996	0.47936
Embryonic organ development	-0.25395	1	0.097937	-0.14627	0.9996	0.64959
Sulfur compound metabolic process	-0.25007	1	0.09821	-0.21717	0.9996	0.53134
Membrane docking	1.7117	0.13949	1	1.1412	0.34872	0.9997

Name	Test Statistic, 50 μg/kg	FDR up, 50 µg/kg	FDR down, 50 µg/kg	Test Statistic, 100 μg/kg	FDR up, 100 µg/kg	FDR down, 100 µg/kg
Transport of mature mRNA derived from an intron less transcript	0.0058767	0.80688	0.95806	-1.2463	0.9998	0.034343
Transport of mature mRNAs derived from intron less transcripts	0.0058767	0.80688	0.95806	-1.2463	0.9998	0.034343
Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal	-0.1484	0.89593	0.95806	-1.1858	0.9998	0.034343
Amplification of signal from the kinetochores	-0.1484	0.89593	0.95806	-1.1858	0.9998	0.034343
Mitotic spindle checkpoint	-0.1484	0.89593	0.95806	-1.1858	0.9998	0.034343
tRNA processing in the nucleus	0.26557	0.66085	0.95806	-1.151	0.9998	0.049062
Resolution of sister chromatid cohesion	-0.052978	0.85276	0.95806	-1.1431	0.9998	0.034343
Interactions of REV with host cellular proteins	-0.10241	0.85567	0.95806	-1.1382	0.9998	0.052566
Toll-like receptor TLR6:TLR2 cascade	-0.12584	0.89593	0.95806	-1.0464	0.9998	0.034343
Myd88:Mal cascade initiated on plasma membrane	-0.12584	0.89593	0.95806	-1.0464	0.9998	0.034343
Toll like receptor 2 (TLR2) cascade		0.89593	0.95806	-1.0464	0.9998	0.034343
Toll like receptor TLR1:TLR2 cascade		0.89593	0.95806	-1.0464	0.9998	0.034343
Rho GTPases activate formins	-0.14974	0.90799	0.95806	-1.0337	0.9998	0.038961
SNRNP assembly	0.014016	0.80688	0.95806	-1.0256	0.9998	0.052566
Non-coding RNA metabolism	0.014016	0.80688	0.95806	-1.0256	0.9998	0.052566
tRNA processing	0.15539	0.73985	0.95806	-0.99186	0.9998	0.056728
Sumoylation of chromatin organization proteins	0.049597	0.79947	0.95806	-0.98923	0.9998	0.079112
NS1 mediated effects on host pathways	0.035866	0.80688	0.95806	-0.98845	0.9998	0.079112
Interactions of VPR with host cellular proteins	-0.081569	0.85567	0.95806	-0.9872	0.9998	0.064672
Host interactions with influenza factors	-0.04111	0.83047	0.95806	-0.93593	0.9998	0.079875
Myd88 cascade initiated on plasma membrane	-0.082142	0.85567	0.95806	-0.86987	0.9998	0.064672
Toll like receptor 7,8 (TLR7, 8) cascade	-0.082142	0.85567	0.95806	-0.86987	0.9998	0.064672
Toll like receptor 9 (TLR9) cascade	-0.082142	0.85567	0.95806	-0.86987	0.9998	0.064672
Toll like receptor 10 (TLR10) cascade		0.85567	0.95806	-0.86987	0.9998	0.064672
Toll like receptor 5 (TLR5) cascade	-0.082142	0.85567	0.95806	-0.86987	0.9998	0.064672
Myd88 dependent cascade initiated on endosome	-0.082142	0.85567	0.95806	-0.86987	0.9998	0.064672
Traf6 mediated induction of NF κ B and MAPKinases upon TLR7, 8 or 9 activation	-0.082142	0.85567	0.95806	-0.86987	0.9998	0.064672
Toll like receptor 4 (TLR4) cascade	-0.17957	0.94834	0.95806	-0.86876	0.9998	0.034343

Table S10. REACTOME enrichment analysis in NAFLD (Lepr^{db}/J) mice.

Sumoylation of DNA damage response and repair proteins	-0.019179	0.8163	0.95806	-0.85362	0.9998	0.079112
Glycolysis	-0.20596	0.95309	0.95806	-0.83329	0.9998	0.034343
Neurotransmitter receptors and postsynaptic signal transmission	0.0099267	0.80688	0.95806	-0.82623	0.9998	0.079112
L1CAM interactions	-0.19482	0.95416	0.95806	-0.82517	0.9998	0.034343
Mitotic prometaphase	-0.097994	0.89593	0.95806	-0.82129	0.9998	0.034343
Toll-like receptors cascades	-0.17753	0.94834	0.95806	-0.82067	0.9998	0.056728
MAPKinase activation	-0.034018	0.83047	0.95806	-0.77462	0.9998	0.094619
Interleukin-17 signaling	-0.034018	0.83047	0.95806	-0.77462	0.9998	0.094619
Glucose metabolism	-0.30347	0.98499	0.95806	-0.77425	0.9998	0.038961
Gene silencing by RNA	0.25973	0.65381	0.95806	-0.77197	0.9998	0.094619
G alpha (q) signaling events	-0.011793	0.8163	0.95806	-0.75782	0.9998	0.079112
Transmission across chemical synapses	0.022646	0.80688	0.95806	-0.73544	0.9998	0.094619
Separation of sister chromatids	0.096406	0.77449	0.95806	-0.73402	0.9998	0.060346
Carbohydrate metabolism	-0.3009	0.9976	0.73593	-0.72332	0.9998	0.034343
Interleukin-1 family signaling	-0.16524	0.94834	0.95806	-0.71753	0.9998	0.079112
Toll like receptor 3 (TLR3) cascade	-0.068011	0.85567	0.95806	-0.71637	0.9998	0.094619
Trif(ticam1)-mediated tlr4 signaling	-0.061923	0.85567	0.95806	-0.70443	0.9998	0.089482
Myd88-independent tlr4 cascade	-0.061923	0.85567	0.95806	-0.70443	0.9998	0.089482
Cellular senescence	-0.20013	0.95309	0.95806	-0.66012	0.9998	0.079112
Host interactions of HIV factors	0.036324	0.80155	0.95806	-0.60512	0.9998	0.096406
Neuronal system	-0.040978	0.85567	0.95806	-0.56144	0.9998	0.082354
M phase	0.12954	0.66085	0.95806	-0.52435	0.9998	0.056728
Asparagine n-linked glycosylation	0.4424	0.036796	1	-0.29577	0.9998	0.42546
Transport to the Golgi and subsequent modification	0.52014	0.044156	1	-0.18367	0.9998	0.79725
ER to Golgi anterograde transport	0.53861	0.036796	1	-0.18155	0.9998	0.80716
Copii-mediated vesicle transport	1.1485	0.018398	1	0.23287	0.9998	0.95442
Sphingolipid metabolism	0.74576	0.018398	1	0.55462	0.80952	0.9979

UniProt Accession	Protein Description	Phos pho– site posit ion	Phosp ho-site Amin o Acid	Localiza -tion Class	<i>t-</i> statistic, 50 μg/kg vs control	q-value 50 μg/kg vs control	<i>t-</i> statistic, 100 μg/kg vs control	<i>q</i> -value 100 μg/kg vs control
P0C7T6	Ataxin-1-like	328	Т	ClassI	-9.16775432	0.00081556	-9.753024	0.0001505
Q8BTI8	Serine/arginine repetitive matrix protein 2	928	S	ClassI	4 5.586003855	9 0.02596753	961 6.5007074 87	32 0.0016071 55
Q8CIT0	Corticoliberin	73	S	ClassI	6.038618108	0.02773057 7	5.6490871 23	0.0165483 59
P26149	3 beta-hydroxysteroid dehydrogenase/Delta 5->4- isomerase type 2;3-beta-hydroxy- Delta (5)-steroid dehydrogenase; Steroid Delta-isomerase	53	S	ClassI	5.515083534	0.02773057 7	4.5112944 51	0.0350229 41
Q9Z0U1	Tight junction protein ZO-2	145	S	ClassI	7.017959912	0.03797532	6.5878586 8	0.0199034
Q8BTI8	Serine/arginine repetitive matrix protein 2	926	S	ClassI	4.895673186	0.04685052 9	5.8581247 69	0.0043869 13
Q8BSE0	Regulator of microtubule dynamics protein 2	53	Т	ClassII	5.009656453	0.08708965 1	6.8994504 3	0.0036076 16
P57748	Matrix metalloproteinase-20	64	S	ClassI	4.892490726	0.09632939 3	4.0936408 88	0.0764620 84
Q9CQX2	Cytochrome b5 type B	37	Т	ClassI	9.036986063	0.15335505 1	6.7639223 06	0.0823380 31
Q8CIT0	Corticoliberin	86	Т	ClassI	4.383353013	0.15787123 7	3.9690387 21	0.0810520 99
Q6P4S6	Serine/threonine-protein kinase SIK3	493	S	ClassI	-3.93188809 8	0.20443147 6	-4.674863 414	0.0243510 89
Q8C4X2	Casein kinase I isoform gamma-3	271	Т	ClassI	-5.16679792 8	0.21759969 1	-5.489980 669	0.0669110 22

Table S11. Phosphorylation sites that were affected by microcystin exposure at 50 or 100 µg/kg in NAFLD (Lepr^{db}/J) mice.

P35831	Tyrosine-protein phosphatase	550	S	ClassI	-3.55036785	0.32096707	-4.388593	0.0402522
	non-receptor type 12				3	5	243	48
P70441	Na(+)/H(+) exchange regulatory	286	S	ClassII	4.287775135	0.35643436	9.6754525	0.0072806
	cofactor NHE-RF1		-			4	47	85
O9ERU9	E3 SUMO-protein ligase RanBP2	2729	S	ClassI	-3.55283551	0.35643436	-4.630854	0.0411500
Q/Lite)	20 00 protein ingabe manibi 2	_, _,	0	Clubbi	1	4	899	62
O5XC73	Acyl-CoA-binding domain-	418	S	ClassI	-3.27973947	0.35643436	-4.068487	0.0537279
QUACITY	containing protein 5	410	0	Clussi	2	4	104	85
P11083	T-complex protein 1 subunit	544	c	ClassI	2 256786627	0.35643436	3.7585227	0.0810520
F 11965	alpha	344	3	Classi	3.330280032	4	94	99
	Company la ma d'in	(70	C	Class	-3.09283606	0.39539108	-3.752820	0.0810520
Q8CC35	Synaptopodin	672	5	Classi	3	7	137	99
	Transcriptional repressor p66-	105	C		2 22 40 4 (51 (0.39539108	3.8370083	0.0870387
Q8VHK5	beta	135	5	Classii	3.234946516	7	09	17
CORVER	Serine/threonine-protein kinase	224	6	<u> </u>	-3.08419321	0.40201859	-4.053466	0.0688952
Q8BYC6	TAO3	324	S	ClassI	5	5	047	59
	Serine/arginine repetitive matrix		-			0.41252526	4.3455981	0.0411500
Q8B118	protein 2	1832	S	ClassI	3.001399373	8	47	62
	Hsp90 co-chaperone Cdc37;							
O61081	Hsp90 co-chaperone Cdc37, N-	13	S	ClassI	-2.82595893	0.46782556	-4.189869	0.0516332
~	terminally processed	-	-		4	5	127	5
	Serine/arginine repetitive matrix					0.47821981	4.1939152	0.0464188
Q8BTI8	protein 2	2535	S	ClassI	2.714245165	5	.54	72
	Serine/arginine repetitive matrix					0.50260590	3 6860226	0.0870387
Q8BTI8	nrotein ?	1225	S	ClassII	2.69441292	5	47	17
	Perovisonal multifunctional					0	-17	17
	enzyme type 2:(3R)-bydroyyacyl-					0 50456285	4 4755929	0.0531960
P51660	CoA debudrogenase:Enoul CoA	3	S	ClassI	2.774174943	8		0.0001700
	budratase 2					0	05	71
	Protein kinase C delta type:							
	Protoin kinase C delta type,							
D200/7	rioteni kinase C dena type		C	CleasII	-3.22793682	0.50456285	-5.326986	0.0810520
12000/	regulatory subunit; Protein	643	5	Classif	5	8	379	99
	Kinase C delta type catalytic							
	subunit							

 P18653	Ribosomal protein S6 kinase	348	Т	ClassII	-2.73992625	0.50590789	-4.632721	0.0515848
	alpha-1				5	2	838	01
056976	Thyroid hormone receptor-	935	S	ClassI	-2.37785076	0.56971591	-3.837330	0.0810520
Q00720	associated protein 3	200	0	Clubbi	2	8	674	99
$\bigcirc 0 \bigcirc 0$	Protoin tyrosing kinasa 2 hota	375	S	ClassI	-2.30491341	0.56971591	-3.721142	0.0810520
QJQVIJ	Tioteni-tyrosnic kindse 2-beta	575	0	Classi	9	8	254	99
P24788	Cyclin dependent kinges 11B	584	т	ClassI	-2 2050221	0.57932611	-3.723226	0.0810520
1 247 00	Cyclin-dependent kinase 11D	564	1	Classi	-2.2939331	7	161	99
D08078	Disabled homolog 2	202	c	ClassII	2 46020004	0.60045070	-6.693720	0.0237185
1 90070	Disabled nonlolog 2	393	3	Classif	2.40929904	5	307	06
000744		111	C	Class	0 17000007	0.61030072	-3.638290	0.0837675
Q9CZ44	INSFL1 coractor p47	114	5	Classi	-2.17228507	4	832	41
D2 4700	Cooling descendent lines 11D		C	Class	0 10454571	0.63247709	-4.413191	0.0464188
P24788	Cyclin-dependent kinase 11b	65	5	Classi	-2.18436571	2	431	72
0001.00	Data 1 and the shire	200	C	Class	-2.11730995	0.69009483	-5.006010	0.0349256
Q99L88	beta-1-syntrophin	300	5	Classi	7	6	323	86
0(4705	Complement component receptor	4 - 4	C	Class	-1.92089503	0.72176907	-5.045062	0.0158141
Q64735	1-like protein	454	5	Classi	6	9	234	82
	NIE hanne Destinations and the	1 / 1	C	Class	1.077201200	0.72423062	3.8103394	0.0810520
Q55Z17	NF-kappa-B-activating protein	141	5	Classi	1.86/301398	8	56	99
	Dhaankataa ay haatin waxalatay 4	264	C	Class	-1.73513327	0.76390831	-3.973485	0.0779384
Q501J7	Phosphatase and actin regulator 4	264	5	Classi	9	9	431	74
		500	C	CI I	-1.65311968	0.78657167	-6.120754	0.0219753
Q3UQN2	F-BAR domain only protein 2	532	5	Classi	5	1	634	41
OOKOL 0	Trafficking protein particle	2.42	C		-1.45025654	0.79954299	-6.821162	0.0147738
Q8K2L8	complex subunit 12	343	5	Classii	8	5	211	48
		100	C		-1.42473786	0.82453226	-6.668229	0.0340209
AZAD Y9	Protein DDII homolog 2	120	5	Classii	5	2	839	57
0001140	Centrosomal protein of 170 kDa	0.01	C		-1.34029148	0.82712687	-5.201899	0.0243510
Q80049	protein B	881	5	Classii	4	2	116	89
0(0400		220	C		-1.29942601	0.86916035	-8.280938	0.0908769
Q62433	Protein NDKG1	330	5	ClassII	6	1	473	72
005(00		50	C		1 001551(0	0.90087827	-4.023962	0.0618286
035623	BEII nomolog	50	5	ClassI	-1.03155168	8	258	4

Q8K0H1	Multidrug and toxin extrusion protein 1	18	S	ClassI	0.953298026	0.90434831	3.9038572 49	0.0699729 7
P26231	Catenin alpha-1	641	S	ClassI	0.857570987	0.91703734 4	4.0169168 43	0.0618286
Q5Y5T1	Probable palmitoyltransferase ZDHHC20	343	S	ClassII	-0.86634076	0.91733917 8	-11.89306 365	0.0001505
P18653	Ribosomal protein S6 kinase alpha-1	373	Т	ClassII	0.831109336	0.92122497 4	-5.714702 657	0.0176594 11
O70472	Transmembrane protein 131	1153	S	ClassI	0.767365419	0.93096483 1	-4.865986 751	0.0249944 05
Q69ZA1	Cyclin-dependent kinase 13	318	S	ClassI	0.755169748	0.93180753 1	-3.652618 723	0.0823380 31
Q922J3	CAP-Gly domain-containing linker protein 1	199	S	ClassI	-0.67840811 6	0.93735344 5	-4.125208 303	0.0531960 91
Q9QZW0	Phospholipid-transporting ATPase 11C	1107	S	ClassI	-0.67441010 1	0.93786087 5	-3.760551 833	0.0810520 99
P70460	Vasodilator-stimulated	235	S	ClassI	0.600316075	0.94483493 9	3.7878386 6	0.0787175 59
Q6ZQH8	Nucleoporin NUP188 homolog	1718	S	ClassII	0.574299295	0.94886216 6	-6.732854 378	0.0237185 06
Q61469	Lipid phosphate phosphohydrolase 1	273	S	ClassII	0.561059382	0.94886216	-3.819070 613	0.0787175 59
P48024	Eukaryotic translation initiation factor 1	17	S	ClassII	-0.51399380 6	0.95702985 4	-5.069176 293	0.0697381 48
P20152	Vimentin	419	S	ClassI	-0.41288558 5	0.96527466	-3.853956 429	0.0810520 99
Q58A65	C-Jun-amino-terminal kinase- interacting protein 4	203	S	ClassI	-0.42748799	0.96527466	-3.994386 768	0.0810520 99
Q4VA53	Sister chromatid cohesion protein PDS5 homolog B	1359	Т	ClassII	0.4563077	0.96527466	-6.803008 444	0.0823380 31
Q8QZR5	Alanine aminotransferase 1	366	Т	ClassII	-0.42690397 1	0.96527466	-4.715653 121	0.0939089 17
P97360	Transcription factor ETV6	22	S	ClassI	0.334452941	0.96759020 6	-3.920559 433	0.0810520 99

Q80XU3	Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1	79	S	ClassI	0.188935232	0.97609729 7	-4.147958 263	0.0699729 7
Q63ZW7	InaD-like protein	455	S	ClassII	-0.11666925 9	0.97779601 7	-9.607922 028	0.0147738 48
Q9Z0R4	Intersectin-1	315	S	ClassII	0.089161269	0.97867671 1	-15.20728 177	0.0046930 39
Q9ERU9	E3 SUMO-protein ligase RanBP2	2087	S	ClassII	-0.07440205 6	0.97867671 1	-6.541475 964	0.0697381 48
Q80T79	CUB and sushi domain- containing protein 3	1314	S	ClassII	0.002195801	0.98210798 2	-8.325525 003	0.0349256 86