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Abstract: Indoxyl sulfate (IS) is an accumulative protein-bound uremic toxin found in patients with
kidney disease. It is reported that IS impairs the vascular endothelium, but a comprehensive overview
of all mechanisms active in IS-injury currently remains lacking. Here we performed RNA sequencing in
human umbilical vein endothelial cells (HUVECs) after IS or control medium treatment and identified
1293 genes that were affected in a IS-induced response. Gene enrichment analysis highlighted pathways
involved in altered vascular formation and cell metabolism. We confirmed these transcriptome profiles
at the functional level by demonstrating decreased viability and increased cell senescence in response to
IS treatment. In line with the additional pathways highlighted by the transcriptome analysis, we further
could demonstrate that IS exposure of HUVECs promoted tubule formation as shown by the increase
in total tubule length in a 3D HUVECs/pericytes co-culture assay. Notably, the pro-angiogenic response
of IS and increased ROS production were abolished when CYP1B1, one of the main target genes that
was highly upregulated by IS, was silenced. This observation indicates IS-induced ROS in endothelial
cells is CYP1B1-dependent. Taken together, our findings demonstrate that IS promotes angiogenesis
and CYP1B1 is an important factor in IS-activated angiogenic response.

Keywords: indoxyl sulfate; chronic kidney disease; reactive oxygen species; CYP1B1; angiogenesis

Key Contribution: In this study we present the transcriptome profile of endothelial adaptation to
indoxyl sulfate (IS). CYP1B1 was identified as a key regulator in IS enhanced reactive oxygen species
production and pro-angiogenic response.
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1. Introduction

Indoxyl sulfate (IS) is a uremic retention solute that accumulates in the systemic circulation due to
renal impairment [1]. Unlike other uremic retention solutes that are water-soluble or non-protein-bound,
IS binds to albumin (66.5 kDA) and cannot be cleared effectively via dialysis, which is the main method
to remove uremic toxins in end-stage chronic kidney disease (CKD) patients [1]. Compared to healthy
individuals, serum IS levels are nearly 50 times higher in patients with acute kidney injury (AKI)
and reach the highest level in patients with end-stage CKD [2]. Circulating IS has been shown to
play an important role in the progression of CKD and the development of cardiac disease, such as
left ventricular hypertrophy [3]. Although treatment with the carbonaceous adsorbent AST-120 to
lower serum IS level showed improvement on renal and cardiac function in both animal models
and a phase II study, it failed to demonstrate promising results in the subsequent phase III trail [4,5].
More studies based on a genome wide analysis approach could shed new light on the working
mechanism of IS associated cardiorenal disease and provide new targets for the development of new
therapeutic approaches.

Studies have implied that IS first impairs endothelial function, which subsequently contributes to
the worsening of kidney function and the development of cardiovascular disease [6]. Flow-mediated
endothelial dilation (FMD), which is a clinical parameter for endothelial function, is significantly
lower in CKD patients when compared to healthy individuals and hypertensive patients [7]. Notably,
by lowering IS level, FMD increases in CKD patients and correlates inversely with IS levels. In vitro
studies have revealed that IS inhibits nitric oxide (NO) production, which is a critical regulator
of vascular tone, while it promotes reactive oxygen species (ROS) release, resulting in oxidative
stress [7–9]. Furthermore, IS inhibits the proliferation ability of endothelial cells (ECs) by activating aryl
hydrocarbon receptor-mediated cell senescence [10]. Besides the direct deleterious effect of IS on ECs,
IS also interferes with the immune system and actives inflammatory cytokines, such as IL-1β, E-selectin
and TNF-α, which contribute to EC apoptosis and result in endothelial dysfunction [11,12]. Thus IS
appears to have a broad and complex effect on endothelial function. A genome-wide transcriptome
study would aid in mapping the key driving signalling factor(s) underlying this important IS-induced
disease mechanism.

In the present study, we conducted a genome-wide transcriptome analysis using RNA sequencing
(RNA-seq) to reveal the transcriptome profile of IS-treated human umbilical vein endothelial cells
(HUVECs). Based on the set of IS influenced genes, we performed gene enrichment analyses and
obtained indications on altered pathways involved in cell migration, angiogenesis, apoptosis and cell
metabolism. We studied these enriched biological processes at the functional level using an established
3D collagen-based in vitro model for angiogenesis [13,14]. An activated angiogenic response was
observed under IS stimulation. Furthermore, cytochrome P450 1B1 (CYP1B1) was identified as one of
the strongest up-regulated genes in IS-treated HUVECs. Silencing of CYP1B1 decreased IS-induced
ROS and attenuated angiogenic response under IS stimulation, implying a role for CYP1B1-dependent
ROS production in the IS-induced angiogenic response.

2. Results

2.1. RNA-seq Reveals Differentially Expressed Genes in IS Treated HUVECs

We studied transcriptome changes in HUVECs after 24 h stimulation of 250 µM IS as compared
to the potassium salt (KCl) control using RNA-seq. Heatmap depicts clustering of samples based on
all differentially expressed genes between the two groups (Figure 1A). Volcano plot shows both fold
change and p value of all genes in log 2 scale, and differentially expressed genes were highlighted
in red (Figure 1B). In total, we identified 1293 genes that were differentially expressed between KCl
control and IS groups (p value < 0.05, Table 1, Supplementary Table S1). Of these, 643 genes were
up-regulated by IS as compared to the control group, and gene enrichment analysis showed that they
were mostly involved in cell migration, angiogenesis and programmed cell death processes (Figure 1C);
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650 genes were down-regulated by IS, and these were mainly enriched for biological processes related
to cell metabolism, such as cell cycle process, chromosome segregation, and cell division (Figure 1D).
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Figure 1. Comparison of the transcriptome profile of HUVECs treated with IS to KCl treated control
groups. (A) Heatmap depicting clustering of samples based on all differentially expressed genes
between two groups. (B) Volcano plot presenting fold change (x-axis) and p value (y-axis) of all genes in
log 2 scale. Differentially expressed genes are shown in red. (C) Top five enriched biological processes
(green) and pathways (orange) based on IS upregulated genes. (D) Top five enriched biological
processes (green) and pathways (orange) based on IS downregulated genes.
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Table 1. Top 10 genes that were significantly up- or down-regulated in IS-treated HUVECs when compared to the KCl treated control.

Category Ensembl ID Gene Symbol Gene Name Angiogenic Function †
Fold Change

(log2) p-Value

Up-regulation

ENSG00000138061 CYP1B1 Cytochrome P450 Family 1
Subfamily B Member 1 Promote angiogenesis 1.434 1.390 × 10−38

ENSG00000114812 VIPR1 Vasoactive Intestinal Peptide
Receptor 1 Not known 1.321 1.072 × 10−36

ENSG00000137809 ITGA11 Integrin Subunit Alpha 11 Not known 1.272 4.190 × 10−32

ENSG00000178695 KCTD12 Potassium Channel Tetramerization
Domain Containing 12 Not known 0.883 3.247 × 10−17

ENSG00000063438 AHRR Aryl-Hydrocarbon Receptor
Repressor Not known 0.872 4.144 × 10−15

ENSG00000007908 SELE Selectin E Not known 0.746 1.240 × 10−13

ENSG00000137331 IER3 Immediate Early Response 3 Not known 0.736 5.396 × 10−19

ENSG00000163659 TIPARP TCDD Inducible Poly(ADP-Ribose)
Polymerase Not known 0.734 8.865 × 10−20

ENSG00000144476 ACKR3 Atypical Chemokine Receptor 3 Promote angiogenesis 0.695 1.596 × 10−13

ENSG00000144802 NFKBIZ NFKB Inhibitor Zeta Not known 0.663 3.022 × 10−10

Down-regulation

ENSG00000117724 CENPF Centromere Protein F Not known −0.586 1.114 × 10−14

ENSG00000143476 DTL Denticleless E3 Ubiquitin Protein
Ligase Homolog Not known −0.554 8.619 × 10−8

ENSG00000163808 KIF15 Kinesin Family Member 15 Not known −0.510 1.195 × 10−6

ENSG00000138778 CENPE Centromere Protein E Not known −0.490 1.912 × 10−8

ENSG00000137812 CASC5 Kinetochore Scaffold 1 Not known −0.483 8.198 × 10−8

ENSG00000184661 CDCA2 Cell Division Cycle Associated 2 Not known −0.482 2.314 × 10−6

ENSG00000066279 ASPM Abnormal Spindle Microtubule
Assembly Not known −0.473 7.741 × 10−10

ENSG00000156802 ATAD2 ATPase Family AAA Domain
Containing 2 Inhibit angiogenesis −0.470 9.314 × 10−9

ENSG00000196549 MME Membrane Metalloendopeptidase Not known −0.465 9.572 × 10−8

ENSG00000132646 PCNA Proliferating Cell Nuclear Antigen Not known −0.461 3.809 × 10−9

†: Established biological function of each gene in relation to angiogenesis was collected from NCBI Gene (https://www.ncbi.nlm.nih.gov/gene).

https://www.ncbi.nlm.nih.gov/gene
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2.2. IS Inhibits Cell Viability at High Concentration

As the transcriptome profile indicated that apoptosis was enhanced by IS in HUVECs, we performed
a MTT assay to examine the viability of IS-treated HUVECs. IS at 250 µM decreased cell viability
as compared to the control, although the decrease was not significant (p value = 0.07, Figure 2A).
A significant decrease of cell viability was achieved in 500 µM and 750 µM IS treated HUVECs
(p value < 0.05, Figure 2A).
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Figure 2. Functional examination of the identified IS related processes: Assessment of cell viability,
senescence and migration in response to IS. (A) Cell viability was studied using a MTT assay.
IS diminished viability of HUVECs when compared to the control at three difference concentrations
(n = 4). (B) A representative image of X-gal activity in HUVECs treated with 250 µM IS or KCl control
buffer, at 10×magnification. More X-gal positive cells (blue) were observed in IS group when compared
to the control. (C) RT-qPCR results showed a higher expression level of cell senescence marker CDKN1A
and a lower expression level of cell proliferation marker KI67 in HUVECs after exposing to 250 µM
IS when compared to the KCl control (n ≥ 5). (D) An invasive wound healing assay was performed
to study the influence of IS on cell migration ability. No difference on the migration distances of
HUVECs was shown between two groups at three difference concentrations (n = 3). (E) Examples of
migrated HUVECs after exposure to 250 µM IS or KCl control after 24 h in the wound healing assay,
at 4×magnification. (F) A non-invasive plug assay was also performed to study the influence of IS
on cell migration ability. No difference on the migrated HUVECs into the cell-free area was shown
between two groups at three difference concentrations (n = 6). (G) Examples of migrated HUVECs
after exposure to 250 µM IS or KCl control after 24 h in the plug assay. 2× magnification was used.
All values are presented as mean ± SEM and they are shown in arbitrary units (AU), # p value < 0.1,
* p value < 0.05. White lines indicate migration area in wound healing and plug assay.
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2.3. IS Induces Cell Senescence

The transcriptome data also indicated that cell cycle progression was impeded by IS exposure.
For validation, we examined IS-induced senescence features. HUVECs were incubated with 250 µM IS
or control buffer for 24 h incubation before the X-gal assay for senescent cell detection. We observed
more X-gal positive cells (blue) in IS group when compared to the control (Figure 2B). In line with this
finding, the expression level of cell senescence marker CDKN1A was significantly higher in IS group
when compared to the KCl control, whereas the expression level of cell proliferation marker KI67 was
significantly lower in IS group, as shown by RT-qPCR validation (Figure 2C).

2.4. IS Does Not Influence Cell Migration Ability

Transcriptome data implied that IS enriched transcripts of genes were involved in cell migration.
We used both invasive wound healing assay and non-invasive plug assay to study the influence of IS
on the cell migration capacity. After 24 h incubation with either IS or KCl control buffer, the migration
distances of HUVECs were comparable between two groups at three difference concentrations using
the wound healing assay (Figure 2D,E). Likewise, no difference was detected between the two groups
on the number of migrated HUVECs into the cell-free area using the plug assay (Figure 2F,G).

2.5. IS Promotes Angiogenic Response

The main biological process enriched in upregulated genes of the IS response was blood vessel
morphogenesis. To validate this, we used a 3D collagen-based co-culture model to study the influence
of IS on endothelial reorganization and tubule formation. In this assay, HUVECs-GFP cells and
pericytes-DsRED were cultured together in type I collagen and incubated with IS or control buffer for
3 days. In control conditions, these vascular cells will undergo EC sprouting, tubule formation and
pericytes-induced stabilization of neovascular structures in 3–5 days. Compared to the standard culture
medium, the KCl-adjusted control medium did not affect formation of vascular structures. No difference
on the number of branches, the number of tubules and total tubule length was detected between IS and KCl
control treated co-cultures at day 1 post-stimulation. At day 3 both the number of branches and tubules
in IS groups were higher than the controls (p value = 0.063 and p value = 0.062 respectively). The total
tubule length in IS group was significantly higher compared to control (p value < 0.05, Figure 3A,B).
Combined, these in vitro data, except for the migration assays, confirm the findings from transcriptome
analysis, and demonstrate the complex effects of IS on ECs homeostasis and regenerative capacity.
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HUVECs, a significant lower mRNA expression level of CYP1B1 was observed in CYP1B1 silenced 
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Figure 3. Examination of IS affected angiogenic responses. (A) A 3D co-culture model, in which
HUVECs-GFP cells and pericytes-DsRED were cultured together in type I collagen, was used to study
the influence of IS on angiogenesis at 250 µM. No difference on the number of branches, the number
of tubules, and the total tubule length was detected between the two groups at 24 h after incubation.
After 3 days, IS showed a tendency to promote angiogenesis by increasing all three parameters when
compared to the KCl control (n ≥ 25). (B) Confocal images showing representative examples of vascular
formation at day 3 post 250 µM IS or KCl control stimulation. Images shown in the upper row were
taken at 20× magnification and zoomed-in views are shown in the lower row. In red are shown
DsRED marked pericytes. In green are shown GFP marked HUVECs. All values are mean ± SEM,
# p value < 0.1, * p value < 0.05.

2.6. Depletion of CYP1B1 Inhibits Tubular Formation

CYP1B1 showed the highest fold change among IS up-regulated genes based on the RNA-seq data.
To investigate the role of CYP1B1 in IS-treated HUVECs, we first validated its expression level using
RT-qPCR and obtained a consistent result (Figure 4A). Compared to the siSham transfected HUVECs,
a significant lower mRNA expression level of CYP1B1 was observed in CYP1B1 silenced HUVECs
3 days post transfection (Figure 4B). Next, we investigated the possible involvement of CYP1B1 in
relation to IS-induced angiogenesis in the previously described co-culture assay. After exposure to
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250 µM IS, the number of branches, the number of tubules and total tubule length were significantly
lower in CYP1B1 silenced HUVECs when compared to siSham transfected cells at day 3, and remained
highly suppressed at day 4 after IS stimulation (Figure 4C,D).
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ROS plays an important role in the induction of endothelial dysfunction and has been shown to 
trigger the angiogenic response [15]. Next, we studied the possible involvement of CYP1B1 in IS-
induced ROS production. In line with previous reports, IS-treated HUVECs showed significantly 
higher ROS level when compared to the control at three different concentrations (p value < 0.05, 
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Figure 4. Investigation of increased CYP1B1 expression in IS influenced angiogenic responses. (A)
Bar graphs show results of RT-qPCR evaluation of CYP1B1 expression level in HUVECs treated with
250 µM IS compared to the KCl controls (n = 6). (B) Bar graphs show results of RT-qPCR evaluation of
CYP1B1 expression level in CYP1B1 silenced HUVECs when compared to siSham transfected cells at
day 3 post transfection (n = 4). (C) Bar graphs show the number of branches, the number of tubules, and
the total tubule length in CYP1B1 targeting siRNA transfected HUVECs (siCYP1B1) compared to sham
transfected HUVECs (siSham) 3 days and 4 days after 250 µM IS stimulation (n ≥ 3). (D) Examples of
vascular formation at day 3 post 250 µM IS in siSham and siCYP1B1 treated HUVECs. In red are shown
DsRED marked pericytes. In green are shown GFP marked HUVECs. 20×magnification was used.
All values are presented as mean ± SEM and they are shown in arbitrary units (AU), * p value < 0.05,
** p value < 0.01, *** p value < 0.001.

2.7. CYP1B1 Plays an Important Role in IS-Increased ROS Production

ROS plays an important role in the induction of endothelial dysfunction and has been shown
to trigger the angiogenic response [15]. Next, we studied the possible involvement of CYP1B1 in
IS-induced ROS production. In line with previous reports, IS-treated HUVECs showed significantly
higher ROS level when compared to the control at three different concentrations (p value < 0.05,
Figure 5A,B), indicative of enhanced cellular oxidative stress. However, HUVECs transfected with
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siRNA targeting CYP1B1 transcripts demonstrated a decrease in ROS production compared to control
sisham transfected groups at three difference concentrations (Figure 5C,D). Additionally, we further
investigate this effect in cardiac microvascular endothelial cells (CMECs) to access whether it holds
true in the arterial vascular bed, in particular cardiac microcirculation. Notably, we also observed
a significantly increase of ROS production in IS-treated CMECs, which was attenuated after silencing
CYP1B1 (Figure 5E). Combined, these data indicate a regulatory role of CYP1B1 in endothelial
ROS production.
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Figure 5. Detection of intracellular ROS production and the involvement of CYP1B1 in IS influenced
ROS level. (A) IS or control treated HUVECs were loaded with CM-H2DCFDA, a fluorescent indicator
for ROS. Bargraphs show detected fluorescent signal representing ROS production in IS group when
compared to the KCl control at three difference concentrations (n = 4). (B) Confocal figures showing
representative examples of ROS signals in HUVECs treated with 250 µM IS compared to the KCl
controls. (C) ROS signal measured in HUVECs treated with siRNA targeting CYP1B1 (siCYP1B1)
versus non-targeting siRNA shams (siSham) with different doses of IS or equivalent doses of KCl
control stimulation. (n ≥ 9 for each group). (D) Confocal figures showing typical examples of ROS
signals in siSham or siCYP1B1 treated HUVECs at 24 h after exposure to 250 µM IS or KCl control. 20×
magnification was used. (E) ROS signal measured in CMECs treated with siCYP1B1 versus siSham
(n = 3) with or without 250 µM IS stimulation. All values are mean ± SEM and they are shown in
arbitrary units (AU), * p value < 0.05, ** p value < 0.01.

3. Discussion

In the present study, we demonstrated using whole genome transcriptome analysis that the IS
affected genes in ECs were mostly enriched in biological functions related to vascular formation, cell
apoptosis, and cell cycle. Consistent with previous studies, we validated in in vitro assays that IS indeed
induced an EC phenotype with reduced cell viability and increased activated cellular senescence [9,10].
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Paradoxically, we also observed enhanced angiogenic capacity of vascular cells in our 3D co-culture
system in response to IS stimulation, which was in line with our transcriptome findings. We identified
CYP1B1 as a new downstream target of IS and demonstrated the pro-angiogenic effect of IS was likely
to be regulated via CYP1B1 modulation of endothelial ROS levels.

Dou and colleagues showed that IS decreased cell proliferation ability of HUVECs, but it did not
affect cell viability at tested concentrations (from 100 µM to 1 nM) using the trypan blue exclusion
test, which stains only dead cells [16]. We did not observe an effect on cell viability after 250 µM
IS stimulation, however we showed that 500 µM and 750 µM impaired cell viability using the MTT
assay, which more reflects metabolic activity. Dou et al. also showed that in the presence of 4%
human albumin, IS decreased the wound repaired at the concentration of 125 µg/mL and 250 µg/mL.
This reduction remained but was milder in IS-treated cells without the addition of albumin. On the
contrary, we did not find any effect of IS on cell migration and would healing ability, which might be
explained by differences in assay setups: no albumin was used in our stimulation buffer and the effect
we obtained might resemble more the non-bound IS. However, the exact effect of albumin binding of
IS on endothelial cell response remains to be further evaluated.

Patients with AKI suffer from oxidative stress, during which oxygen radicals could lead to cell injury
and trigger apoptosis and senescence [17,18]. The application of antioxidants in lowering ROS level and to
modulate AKI has been extensively studied and reviewed in previous studies [19]. In CKD patients, ROS
level remains at a high level, especially in patients with end stage kidney disease, and has been proposed
as an important mediator in CKD-associated cardiovascular diseases [20,21]. Consistent with previous
studies showing the ability of IS to induce ROS [6,9], we also showed IS-induced ROS production. IS is
a protein-bound toxin and around 90% of IS bind to plasma proteins [22,23]. Most previous in vitro
studies used a range from 62.5 µM to 1000 µM “free” IS [24–26] or 2 mM to 20 mM protein-bound
IS [27,28]. Additionally, 250 µM IS is comparable to the mean serum level in CKD patients [29,30], and
the maximum IS concentration in the circulation of patients is approximately 236 mg/L (939.1 µM) as
reported by the European Uremic Toxin Work Group [31]. Therefore, we examined IS at a broad range of
concentrations from 250 µM to maximum 750 µM. Furthermore, we observed this effect in both HUVECs
and CMECs, suggesting a potential role of IS-induced ROS in cardiorenal syndrome.

Excessive ROS has been shown to promote angiogenesis by inducing proangiogenic factors in ECs,
such as VEGF, MMPs, ANGPT1, and VEGFRs [32]. ROS also oxidize phospholipids and the resulting
oxidant products could contribute to angiogenesis via TLR signalling [15]. The transcriptome data
indicated that IS exposure significantly increased expression levels of VEGFC, MMP1, MMP24-AS1
and MMP25-AS1 in ECs. Furthermore, in our co-culture assay, we found a significant increase in total
tubule length 3 days after exposing to IS, indicating IS activated a (micro)vascular angiogenic response.

A major source of ROS is cytochrome P450 activity [33]. Cytochrome P450 is a large complex
of enzymes, which are actively involved in more than 70% of all drug metabolism by initiating
monooxygenase or hydroxylation reaction via other substrates (i.e., oxygen and NADPH) [34]. During
the reaction, P450 produces active oxygen species and subsequently contribute to excessive ROS
formation [33].

CYP1B1, the biggest known human P450 protein in terms of size of mRNA and amino acids,
is highly expressed in tumour cells and studies have highlighted its important role in tumour
development [35]. Compared to the general population, the prevalence of cancer is higher in patients
with moderate CKD and patients received dialysis or kidney transplantation [36]. Notably, McFadyen
and colleagues showed a higher CYP1B1 expression in renal cell carcinoma when compared to the
normal kidney [37]. Gondouin et al. further showed that IS increased CYP1B1 expression in HUVECs
using a microarray setup [38]. Consistent with previous studies, we also demonstrated an increased in
CYP1B1 expression levels in response to IS. In fact, our RNAseq based analysis showed that CYP1B1
had the highest fold change increase among all IS-activated genes. So far, only a limited number of
studies have shown the involvement of CYP1B1 in angiogenesis. Dallaglio and colleagues showed that
both the RNA and protein expression levels of CYP1B1 were significantly down-regulated in HUVECs
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after exposing to metformin, which inhibited vascular formation in vitro [39]. Tang and colleagues
showed that the number of retinal blood vessels was decreased in mice that lacked CYP1B1 [40]. They
also confirmed that the lack of CYP1B1 impaired endothelial cell sprouting in vitro, which could be
reversed by restoring CYP1B1 expression. Both studies used only one vascular cell type (ECs) in
a 2D Matrigel-based model. A later study from Palenski and colleagues examined the involvement
of CYP1B1 in both retinal ECs and pericytes that were isolated from mice [41]. They also observed
impaired vascular formation using the Matrigel model, in which ECs that lacked CYP1B1 were
cultured with normal pericytes. Expanding on these previous findings, using our established 3D type I
collagen human-derived EC and pericyte co-culture model that allows complex vascular structure
formation [13,14], we provide evidence that the enhanced angiogenic response under IS stimulation is
partially mediated via CYP1B1 upregulation by IS in endothelial cells.

Interestingly, multiple studies show defective angiogenesis in CKD patients. Futrakul and colleagues
showed that CKD patients had nearly 17-fold increase of circulating endothelial cells that reflected vascular
injury when compared to healthy individuals. This was also linked to a decrease in VEGF/endostatin
ratio that indicated a decline in angiogenic capacity [42]. A recent study included a larger population of
both CKD patients and healthy individuals, and showed a decrease in angiopoietin-1/VEGF-A ratio in
CKD patients when compared to the control, indicating impaired angiogenesis and enhanced endothelial
leakage [43]. In AKI, hypoxia impaired angiogenesis has also been identified, which has been proposed
to contribute to the transition from AKI to CKD [44]. However, only a limited number of studies are
focused on the influence of IS on angiogenesis. Hung and colleagues showed that accumulated IS in
nephrectomised mice inhibited the maturation of endothelial progenitor cells (EPCs) and subsequently
suppressed neovascularization [45]. By treating these mice with AST-120 that removes IS precursor
indole in the intestine, they showed a decreased plasma level of IS and an improvement in the EPC-based
neovascularization. Another study showed IS inhibited the chemotactic motility and the colony-forming
ability of human EPCs [46]. In our study, IS activated genes were highly enriched for angiogenesis.
We also showed increased branches and tubule formation at 3 days after IS stimulation in vitro, and the
total tubule length was significantly higher in IS group. Combined, our data suggest enhanced vascular
formation activity in response to IS. It is important to point out that different cell types were used in
previous studies and in our study, namely EPCs and HUVECs respectively [47]. Besides, instead of
vasculogenesis during which vascular formation occurs from in situ differentiating EPCs [48], we used
a well-established model to study angiogenesis of differentiated ECs. Additionally, tubular structures
seem to decline from day 3 post IS stimulation to day 4 in CYP1B1 silenced cells, whereas it remained
stable or slightly increased between day 3 and day 4 in absence of IS stimulation (Supplementary
Figure S1). Further studies are required to examine the long-term effect of IS on angiogenesis. Combined,
they could explain the different findings between previous studies and the present study.

IS has been shown to function as a ligand for aryl hydrocarbon receptor (AhR), and the AhR
signaling is activated upon binding [49]. Notably, the expression level of AhR is relatively high in
kidney [50], and the highest level of accumulated IS has also found in kidney as compared to lung,
heart and liver [51]. A positive correlation between the increased activation of AhR signaling and
CKD has also been shown [52], suggesting the deleterious effect of AhR signaling in kidney disease.
The downstream targets of AhR signaling vary among cell types [53–56]. To investigate the regulation
between IS and AhR signaling in ECs, we collected 266 established AhR targets (systematic name: M9986
and M17378) from Molecular Signature Database v6.2 and performed gene set enrichment analyses
(GSEA) to examine the representation level of AhR targeted genes in differentially expressed genes
from our study. We observed an over-representation of AhR downstream targets in the IS-activated
genes under the default settings (FDR < 25%, Supplementary Report 1 and Supplementary Figure S2),
implying the activation of AhR pathway by IS in HUVECs. Taken together, these data highlight
an important main regulatory pathway through which IS could negatively impact the regenerative
capacity of the renal vasculature in renal disease. More studies are required to investigate the effect of
IS-mediated AhR signaling on angiogenic response in ECs.
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In terms of disease, we previously reported increased capillary networks in heart and kidney of obese
ZSF1 rat with cardiorenal metabolic syndrome when compared to the controls, indicating an activated
angiogenic response [57]. Despite the enriched ECs foci and pericytes foci, the lack of regular vascular
endothelial luminal surface and the decrease of peritubular and glomerular endothelium suggested
non-functional vasculature. Furthermore, they recruited macrophages, which subsequently contributed to
the fibrotic formation. It is important to note that other risk factors, such as hypertension and onset of heart
failure with preserved ejection fraction, were also observed in this obese ZSF1 rat model and could interfere
with the impaired vascular formation. In the light of these findings, the observed IS-activated angiogenic
responses need further investigation, especially in relation to their functional activities, the paracrine
signaling with the immune system and the possible influence from other metabolic risk factors.

In summary, we presented a comprehensive list of IS affected genes in ECs. Gene enrichment
analyses indicated altered angiogenesis and cell metabolism. IS induced enhanced ROS production in ECs,
which was CYP1B1-dependent. Furthermore, IS activated an angiogenic response in HUVECs-pericytes
co-culture. CYP1B1 deficiency in ECs resulted in a suppressed angiogenic response, indicating a critical
role of CYP1B1 in IS-activated angiogenesis. We hypothesize that IS induces ROS level in ECs, which
initiates the activation of the observed angiogenic responses. However, the influence of a chronic status
of high ROS level on the balance between pro- and anti-angiogenic factors in vivo is more complex
and remains to be elucidated. With the transcriptome data generated in our study, we offer a detailed
overview of putative functional chances in EC-behaviour in response to IS, and we identified CYP1B1 as
a key regulator in the process, shedding light into the underlying mechanism of IS-regulated vascular
formation and maturation.

4. Materials and Methods

4.1. Cell Culture

Human umbilical vein endothelial cells (HUVECs) were cultured in EGM2 medium (Lonza,
Breda, The Netherlands) with 100 UmL−1 penicillin-streptomycin (PS). Pooled donor HUVEC were
purchased from Lonza and used in all functional assays in this study. For the sequencing purpose,
HUVECs were isolated from three newborns anonymously and obtained from the University of
Utrecht Department of Gynecology (The Netherlands), with the informed consent under the EPD term.
Human brain vascular pericytes (ScienCell, Uden, The Netherlands) were cultured in DMEM (Gibco,
Landsmeer, The Netherlands) supplied with 10% FCS and 100 UmL−1 PS. All cells were cultured in the
gelatin-coated dishes (Greiner Bio-One, Alphen aan den Rijn, The Netherlands) in a 5% CO2 incubator
at 37 ◦C. Cells between passage 3 and 8 were used in this study.

4.2. RNA-seq and Data Analysis

HUVECs were incubated with 250 µM IS for 24 h. Potassium chloride (KCl) was used as a control,
because IS is a potassium salt. Total RNA isolation was isolated using the RNeasy Mini Kit (Qiagen,
Venlo, The Netherlands) according to the manufacturer’s recommendations. Polyadenylated mRNA
was further selected using Poly(A) Beads (NEXTflexTM) and libraries were generated using the
NEXTflexTM Rapid RNA-seq Kit (Bioo Scientific, Uden, The Netherlands). Libraries were sequenced by
the Nextseq500 platform (Illumina, San Diego, CA, USA). Sequencing data were analysed as described
previously [58]. Briefly, reads were aligned to the human reference genome GRCh37 and mapped to
the transcriptome. Reads per kilobase million for each refseq gene were calculated [59] and a list of
differentially expressed genes between IS and control groups was obtained at p value < 0.05 [60].

4.3. Gene Enrichment Analysis

Differentially expressed genes were enriched for their biological functions using ToppGene Suite
tool ToppFun (default setting: FDR correction, p value cut off at 0.05 and gene limit set between and
including 1 and 2000 per pathway) [61].
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4.4. Cell Metabolism Assay

Cells were seeded to a gelatin-coated 96-well plate and incubated overnight for adhesion. Cells
were washed once with PBS and incubated with either IS or control buffer for 24 h. Afterwards,
stimulation buffers were removed and cells were washed once with PBS, followed by 4 h incubation
with 100 µL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) buffer (0.5 mg/mL,
Sigma, Zwijndrecht, The Netherlands). MTT buffer was removed and 200 µl dimethyl sulfoxide
(DMSO) per well was added to dissolve formed formazan crystals. The plate was shaken gently using
a microplate shaker (IKA, Staufen, Germany) for 30 min in the dark. Absorbance was measured
at 570 nm by the microplate reader (Bio-Rad, Veenendaal, The Netherlands). To correct for batch
effects, an additional condition of cells cultured in the standard growth medium was included in each
independent experiment.

4.5. Senescence-Associated Beta Galactosidase Activity

Cellular senescence was examined using the Senescence Detection Kit (Abcam, Cambridge, UK).
Briefly, treated HUVECs were washed once with PBS and fixed using Fixative Solution for 15 min in
the incubator. Afterwards, HUVECs were washed twice with PBS and incubated with staining buffer
containing 25 mg/mL X-gal overnight. TNFα (40 ng/mL) treated HUVECs were used as positive control.
Images of random views were taken at 10×magnification using an inverted fluorescence microscope.

4.6. Wound Healing Assay

Cells were seeded to a gelatin-coated 24-well plate (Greiner Bio-One) and were grown till 95%
confluency in the growth medium. A scratch was made to create a cell-free area. Cells were washed
once with PBS and incubated with IS or control buffer. Images were taken at 0 h and 24 h post
stimulation. Area covered by migrated cells from the leading edge of the scratch was measured.
To avoid batch effect, an additional condition of cells cultured in the standard growth medium was
included in each independent experiment.

4.7. Cell Migration Plug Assay

Cell stoppers (OrisTM) were pre-inserted to a gelatin-coated 96-well plate (Greiner Bio-One) to create
a cell-free area. Cells were seeded to the plate and incubated overnight for adhesion. The following day
cell stoppers were removed and cells were stimulated by IS or control buffer for 24 h. Afterwards, cells
were stained by calcein-AM (BD-Bioscience, San Jose, CA, USA) and images were taken by.

4.8. 3D Collagen Co-Culture Assay

Lentivirus green fluorescent protein transduced HUVECs (HUVECs-GFP) and lentivirus discosoma
sp. Red fluorescent protein transduced pericytes (pericytes-DsRED) were mixed at 5:1 ratio in co-culture
medium, which is basal EBM medium supplied with 2% FCS, rhFGF-B, ascorbic acid and 100 UmL-1 PS.
Cell mixture supplied with growth factors, including IL-3, SCF-1 and CXCL12 (BD Bioscience), at the
volume of 300 µL was added to 200 µL bovine collagen type I (Gibco). NaOH was used to adjust pH to
7.5. Cell-collagen mixture was added to 96-well plate (50 µL per well). After 1 h incubation, 100 µL EGM2
was added per well and the plate was incubated overnight. The following day IS or control buffer was
added to the cells. Images were taken from day 1 till day 3 after stimulation using inverted fluorescence
microscope and analysed by AngioSys 2.0. To correct for batch effects, an additional condition of cells
cultured in the standard co-culture medium was included in each independent experiment.

4.9. Detection of Intracellular ROS Levels in HUVECs

Cells were seeded to a gelatin-coated 96-well plate and incubated overnight for adhesion. Next day,
IS or control buffer was added to the cells. After 24 h, stimulation buffer was removed and cells
were exposed to 10 µM CM-H2DCFDA (Life Technologies, Landsmeer, The Netherlands) for 30 min
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in the dark. Excessive CM-H2DCFDA was washed twice with PBS, followed by the addition of
100 µL PBS supplied with 0.2% Bovine Serum Albumin. Images were taken using a SP8X confocal
microscope (Leica, Amsterdam, The Netherlands) at 20×magnification, and the fluorescence intensity
was measured at the wavelength of 485 nm (excitation) and 538 nm (emission) using a fluorescence
plate reader (FluoroskanTM).

4.10. Detection of Intracellular ROS Levels in Cardiac Microvascular Endothelial Cells (CMECs)

Besides HUVECs, we also examined the impact of IS on ROS production in cardiac microvascular
endothelial cells (CMECs). The culture of CMECs (Lonza, CC-7030) and cytoplasmic reactive oxygen
species measurement were performed as previously described [62]. Briefly, 6 h after exposure to
250 µm IS, CEMCs were washed once and incubated with 5 µM CM-H2DCFDA (C6827, ThermoFisher,
Landsmeer, The Netherlands) for 30 min in phosphate buffer saline (220/12257974/1110, Braun,
Landsmeer, The Netherlands). Excess CM-H2DCFDA was washed off. Images were taken using a Zeiss
Axiovert 200M Marianas inverted fluorescence microscope (Intelligent Imaging Innovations, Denver,
CO, USA) with a 63× oil-immersion objective at 37 ◦C and 5% CO2 environment. All fluorescent
images were corrected for background and negative controls. Quantification of all fluorescent images
was performed using digital cell masking software (Slidebook 6, Intelligent Imaging Innovations).

4.11. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis

RNA was isolated from HUVECs treated by 250 µM IS for 24 h or control buffer. The quality
and quantity of RNA was measured by a spectrophotometer (DeNoVIX, Waddinxveen, Landsmeer,
The Netherlands). Complementary DNA was transcribed using iScript Synthesis Kit (Bio-Rad) according
to the manufacturer’s instructions. RT-qPCR was performed to measure mRNA level of targeted genes
using SYBR-GREEN-Cycler IQ5 detection system (Bio-Rad). β-actin was used as the housekeeping
gene. Primer sequences were as follows: CYP1B1 (forward: 3′-TGATGGACGCCTTTATCCTC-5′;
reverse: 5′-ACGACCTGATCCAATTCTGC-3′), CDKN1A (forward: 3′-GACACCACTGGAGGGT
GACT-5′; reverse: 5′-ACAGGTCCACATGGTCTTCC-3′), KI67 (forward: 3′-AAGCCCTCCAGCTC
CTAGTC-5′; reverse: 5′-TCCGAAGCACCACTTCTTCT-3′), and beta-actin (forward: 3′-TCCCTG
GAGAAGAGCTACGA-5′; reverse: 5′-AGCACTGTGTTGGCGTACAG-3′).

4.12. Short Interference RNA

HUVECs were grown to 60% confluence and transfected with 200 nM CYP1B1-siRNA or
non-targeting Sham-siRNA (DharmaconTM, Athens, Greece) using lipofectamine according to the
manufacturer’s instructions. The silencing effect of CYP1B1 expression in HUVECs was validated
using RT-qPCR at 24 h and 72 h post transfection. Successfully transfected cells were further used for
comparing the intracellular ROS production and angiogenic response between IS and control groups
as explained above.

4.13. Statistical Analyses

Statistical analyses were performed using GraphPad Prism 7.02 (GraphPad Software Inc.,
San Diego, CA, USA). Unpaired t-test was used to evaluate the difference between treatment and
control groups. One-way ANOVA was used to evaluate the difference when three groups were
included. All means are reported with SEM. p-values < 0.05 were considered statistically significant.

4.14. Data Availability

RNA-seq data have been deposited in the National Center for Biotechnology Information Gene
Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE132410.
Differentially expressed genes in HUVECs with or without IS stimulation is presented in the
Supplementary Table S1.
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