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Abstract: To better understand the kinetics of protein-bound uremic toxins (PBUTs) during
hemodialysis (HD), we investigated the distribution of hippuric acid (HA), indole-3-acetic acid
(IAA), indoxyl sulfate (IS), and p-cresyl sulfate (pCS) in erythrocytes of HD patients. Their transport
across the erythrocyte membrane was explored in the absence of plasma proteins in vitro in a
series of loading and unloading experiments of erythrocytes from healthy subjects and HD patients,
respectively. Furthermore, the impact of three inhibitors of active transport proteins in erythrocytes
was studied. The four PBUTs accumulated in erythrocytes from HD patients. From loading and
unloading experiments, it was found that (i) the rate of transport was dependent on the studied
PBUT and increased in the following sequence: HA < IS < pCS < IAA and (ii) the solute partition of
intra- to extra-cellular concentrations was uneven at equilibrium. Finally, inhibiting especially Band 3
proteins affected the transport of HA (both in loading and unloading), and of IS and pCS (loading).
By exploring erythrocyte transmembrane transport of PBUTS, their kinetics can be better understood,
and new strategies to improve their dialytic removal can be developed.

Keywords: protein-bound uremic toxins; hippuric acid; indole-3-acetic acid; indoxyl sulfate; p-cresyl
sulfate; erythrocyte; DIDS; MK571; KO143; hemodialysis; chronic kidney disease

Key Contribution: Erythrocytes contain protein-bound uremic toxins and Band 3 proteins are, at least
in part, involved in transmembrane transport for some of these toxins.

1. Introduction

The group of protein-bound uremic toxins (PBUTs) include all uremic retention solutes binding to
plasma proteins with most of them having a molecular weight <500 Da [1,2]. The percentage that is
bound to proteins (% protein binding, % PB) is dependent on the solute itself rather than on binding
competition or protein saturation [3] and may reach more than 99% [4,5]. In normal conditions, the free
(i.e., unbound) fraction of the toxins is passively cleared by glomerular filtration, whereas organic
anion and cation transporters expressed on renal proximal tubule cells are responsible for the active
secretion of the protein-bound fraction into the urine [6,7].

In patients with end-stage kidney disease treated with hemodialysis (HD), only the fraction that
is not bound to proteins can pass the pores of the hemodialyzer membrane. Consequently, the dialyzer
clearance of these solutes is much lower than that for comparable small non-protein-bound solutes,
especially when the % PB is high [8-10]. During the past decade, studies have been performed aiming
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to improve the removal of these PBUTs during hemodialysis. Amongst others, the removal of PBUTs
was shown to be enhanced when using extended HD and hemodiafiltration [11,12], by changing the
local ionic strength at the blood inlet of the dialyzer increasing the free fraction [13], and by combining
dialysis with adsorption [14-17]. Beside the studies on extended HD, most of these papers focused only
on the removal of PBUTs from the plasma compartment, ignoring the role of erythrocytes constituting
almost 30—40% of the blood volume passing the dialyzer [10,18].

Small water-soluble solutes are known to distribute in plasma and erythrocytes [19] and the
transport through the erythrocyte membrane has been studied before for urea, uric acid, and
creatinine [20-24]. For PBUTs, the distribution in erythrocytes as well as the transport through
the erythrocyte membrane is unknown, but may help to explain their kinetics in the patient [5,9] as
well as in the hemodialyzer [5].

To address this question, the present study investigated the distribution of four different
anionic PBUTs (hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS), and p-cresyl
sulfate (pCS)) in erythrocytes as well as their transport across the erythrocyte membrane.
Furthermore, to better understand the transport mechanism across the erythrocyte membrane,
the impact of different transporter protein inhibitors was studied: i.e., the inhibitor DIDS (4,4’
diisothiocyanato-2,2’-stilbenedisulfonic acid) of band 3 anion transporters, MK571 (L66071 sodium
salt) of MRP1 (multidrug resistance-associated protein 1), and KO143 of BCRP (breast cancer resistance
protein; also known as ATP-binding cassette transporter G2 - ABCG2) [25-30].

2. Results

2.1. Presence of Protein-Bound Uremic Toxins (PBUTs) in Erythrocytes

In predialysis blood from HD patients, it appeared that HA, IAA, IS, and pCS are present in
erythrocytes, as determined by their concentration in the cell pellets viz. 88.1 (22.0; 239.1), 2.4 (1.8; 2.9),
29.7 (15.9; 33.9), and 25.8 (18.4; 30.6) umol/L, respectively.

2.2. Experimental Data for Loading and Unloading Experiments

For each series of experiments, PBUT concentrations were determined in the buffer (phosphate
buffered saline (PBS) or Hank’s Balanced Salt Solution (HBSS)/ hydroxyethyl piperazineethanesulfonic
acid (HEPES) for loading and unloading, respectively) supernatant, calculated immediately after
spiking (Cpurrer(0),¢) (loading) or being zero (unloading), and measured at equilibrium (CpuprgReq),m)
in the absence and presence of transporter protein inhibitors (Table 1). In addition, hematocrit in a
native whole-blood sample (Hyp,) and hematocrit in erythrocyte suspension (Hsusp) are provided in
Table 1.

Table 1. Experimental data for loading and unloading experiments.

Type of CBUFFER(0)/€ CBUFFER(eq)/M Hyp Hsusp
Experiment (umol/L) (umol/L) (%) (%)
Loading (n = 8) 47 £5 46 +5
HA 8029 £72.3 504.3 £ 33.1
IAA 192 +1.7 92+05
IS 227.6 £ 20.5 925+7.0
pCS 209.6 + 189 1229 +13.1
Loading + inhibitor (n = 8) 47 +5 46 5
HA 804.3 £ 76.4 518.6 +42.4
IAA 19.2+1.8 83+05*
IS 228.0 + 21.7 1465+ 14.5*

pCS 210.0 +£20.0 131.8 £12.5
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Table 1. Cont.

Type of CBUFFER(0)/€ CBUFFER(eq)/M Hyp Hsusp
Experiment (umol/L) (umol/L) (%) (%)

Unloading (n = 6) 36+3 32+3

HA 0 48.6 (32.6;52.4)

IAA 0 1.08 (0.66;1.91)

IS 0 10.5 (6.76;12.5)

pCS 0 40.4 (25.8;82.5)
Unloading + inhibitor (n = 6) 36+3 33+3

HA 0 40.2 (28.8;43.9) *

IAA 0 0.84 (0.47,1.37) *

IS 0 5.55 (4.05;7.71) *

pCS 0 33.8(16.7;61.3) *

HA: hippuric acid; IAA: indole-3-acetic acid; IS: indoxyl sulfate; pCS: p-cresyl sulfate; Cpyprgr(), ¢: calculated
PBUT concentration in the buffer at t = 0 min; Cpyppgr(eq),m: measured PBUT concentration in the buffer at
equilibrium; Hyp: hematocrit in native whole-blood sample; Hsusp: hematocrit in erythrocyte suspension. Values
are mean + standard deviation or median (25th percentile (pct); 75th pct). *p < 0.05 between experiments with and
without an inhibitor; p < 0.05 for all solutes between start and equilibrium concentration.

2.3. Transport across the Erythrocyte Membrane—Influx

The decrease in mean HA, IAA, IS, and pCS concentration in the PBS fraction over time, as obtained
in loading experiments of erythrocytes from healthy subjects in absence of an anion transporter protein
inhibitor (DIDS), is illustrated in Figure 1 (black dots and full line). After 6 min, this decrease was
significant, as compared to the theoretical start concentration for all four PBUTs, and the concentrations
further decreased to reach an equilibrium at 38 min for HA and 10 min for IAA and IS. For pCS,

the concentration decreased almost immediately after spiking and an equilibrium was already reached
at the first experimental time point.
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Figure 1. Mean concentration over time for hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl
sulfate (IS), and p-cresyl sulfate (pCS), as measured in the PBS fraction during loading experiments in
the absence (black dots and full line) and presence (white dots and dotted line) of the inhibitor DIDS
(4,4’ diisothiocyanato-2,2’-stilbenedisulfonic acid), respectively. Within each condition, the decrease in
supernatant PBUT concentration was significant up to 38 min (HA), up to 10 min (IAA and IS in the
absence of the inhibitor), or 38 min (IAA, IS, and pCS in the presence of the inhibitor) respectively, but
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is not indicated on the figures for clarity. * p < 0.05 versus absence of the inhibitor at the same time
points; ** p < 0.05 versus absence of the inhibitor during the complete time course; *** p < 0.05 versus
absence of the inhibitor up to 38 min. Alln = 8.

In the presence of the transporter protein inhibitor, DIDS, the toxin influx was affected by the
change in mean HA, IAA, IS, and pCS concentration in the PBS fraction over time, as illustrated in
Figure 1 (white dots and dotted line). Here again, concentrations of the four PBUTs decreased over
time and reached an equilibrium at 38 min for HA. For IAA, IS, and pCS however, no equilibrium
was formed within the time course of the experiment, indicating a slower transport in the presence of
the inhibitor.

The impact of DIDS is visible in the PBUT concentrations remaining lower (i.e., for IAA) and
higher (i.e., for IS) in the PBS during the complete experimental time course, and for pCS at least up to
38 min (Figure 1). Overall, HA transport was only slightly influenced by the presence of DIDS with
concentrations significantly different at 25 and 40 min.

2.4. Transport Across the Erythrocyte Membrane—Efflux

Figure 2 shows the median HA, IAA, IS, and pCS concentrations (and 25th and 75th percentiles)
measured in the HBSS/HEPES, as obtained during the unloading experiments of erythrocytes from
HD patients (black dots and full line). Despite the large inter-patient variability, a trend in increasing
HA concentration was observed. HA concentrations measured in the HBSS/HEPES were found to
be significantly increased already after 10 min, as compared to the concentration at t = 0 min, and
remained unchanged from 38 min onward (Figure 2). For IAA, IS, and pCS however, this transport
was very fast and corresponding concentrations were already in equilibrium at the first experimental
time point.
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Figure 2. Median concentrations over time (with 25th and 75th percentile as error bars) for hippuric
acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS), and p-cresyl sulfate (pCS), as measured in
the HBSS/HEPES during unloading experiments in the absence (black dots and full line) and presence
(white dots and dotted line) of the inhibitors DIDS, MK571, and KO143. * p < 0.05 versus absence of the
inhibitor at the same time points. All n = 6.
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In the presence of the inhibitors of protein transporters, DIDS, MK571, and KO143, toxin efflux
was affected for HA and in a lesser degree for IS (Figure 2). While equilibrium was formed very fast
for IS, pCS, and IAA, no equilibrium was formed within the time course of the experiment for HA.

2.5. Kinetic Analysis

Experimental data from all loading and unloading experiments were used to fit the following
kinetic parameters for HA, IAA, IS, and pCS: the equilibration time constant (a), specific rate constant
(ks), intercompartment clearance (Kc) and, for the loading experiment without DIDS, also the solute
partition coefficient (y) (Table 2).

Table 2. Kinetic data for loading and unloading experiments.

Type of a ks Kc
Experiment (1/min) (1/min) (mL/min) Y
Loading (n = 8)
HA 0.06 + 0.02 0.03 + 0.01 0.16 + 0.04 1.24 +0.20
IAA 1.46 + 0.022 0.82 + 0.10% 4.66 + 0.23? 1.54 +0.13?
IS 0.27 + 0.07° 0.19 + 0.05° 1.10 + 0.27° 2.72 + 0.39%P
pCS 0.85 + 0.562P< 0.40 + 0.23%bc 2.38 + 1.463P¢ 1.30 + 0.24bc
Loading + inhibitor (n = 8)
HA 0.04 +0.014 0.02 + 0.014 0.12 + 0.044 1.24 + 0.20!
IAA 1.47 +0.0012 0.83 + 0.102 4.68 +0.19? 1.54 +0.1312
IS 0.03 + 0.004*4 0.02 + 0.003P4 0.10 + 0.01>4 2.72 +0.391.20
pCS 0.05 + 0.007b<d 0.02 + 0.004>4 0.13 + 0.02>4 1.30 + 0.241b<
Unloading (n = 6)
HA 0.10 (0.08;0.13)® 0.06 (0.05;0.08)° 0.38 (0.33;0.52)¢ 1.242
IAA 0.51 (0.39;3.29)2 0.35 (0.28;2.39)2 2.36 (1.58;15.0) 1.542
IS 0.39 (0.35;1.30)2¢ 0.38 (0.34;1.33)2¢ 2.53 (1.98;8.40)2¢ 2.722
pCS 0.48 (0.40,2.28)*¢ .29 (0.25;1.46)>P° 200 (1.42;9.31)2be 1.302
Unloading + inhibitor (n = 6)
HA 0.07 (0.05;0.09)¢ 0.04 (0.03;0.06)° 0.25 (0.21;0.36)° 1.242
IAA 2.19 (0.71;3.66) 1.52 (0.50;2.61) 8.79 (3.21;16.5)% 1.542
IS 0.77 (0.43;3.35)2¢ 0.73 (0.43;3.49)>¢ 4.93 (2.74;19.7)2 2.722
pCS 2.08 (0.45;4.18)2%¢ 135 (0.28;2.62)%° 8.03 (1.83;15.0)2¢ 1.302

HA: hippuric acid; IAA: indole-3-acetic acid; IS: indoxyl sulfate; pCS: p-cresyl sulfate; a: equilibration time constant;
ks: specific rate constant; Kc: intercompartment clearance; y: solute partition coefficient. Values are mean =+
standard deviation or median (25th pct; 75th pct).& P °'¢ p < 0.05 versus HA, IAA, or IS respectively, as obtained
within the same series of experiments.4 p < 0.05 versus corresponding experiments without the inhibitor.¢ p < 0.05
versus corresponding loading experiment.! or ? Individual respectively, mean values for v, as obtained in loading
experiments without the inhibitor, were used to fit parameters.

In loading experiments without the inhibitor, parameters a, ks, and K¢ were found to be the
lowest for HA, followed by those for IS (trend only), pCS, and IAA.

In loading experiments in the presence of an inhibitor, the transport parameters a, ks, and K¢
reached comparable low values for HA, IS, and pCS, whereas those for IAA were not affected (Table 2).

In unloading experiments, both without and with inhibitors, kinetic parameters a, ks, and K¢
were significantly higher for IAA, IS, and pCS, as compared to those for HA. No differences were found
for the kinetic parameters in the experiments without versus with inhibitors.

3. Discussion

In this work, the intracellular concentration of PBUTs in erythrocytes of HD patients was measured
and the transport of these solutes across the erythrocyte membrane was studied in vitro in blood (influx)
from healthy controls as well as in blood from HD patients (efflux). Furthermore, a first attempt was
undertaken to determine the transport mechanism of these PBUTs across the erythrocyte membrane
by using different transporter protein inhibitors, i.e., DIDS, MK571, and KO143. The main findings
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were: (i) HA, IAA, IS, and pCS are distributed in erythrocytes; (ii) the rate of transport (i.e., both influx
and efflux) is dependent on the studied PBUT and increases in the following sequence: HA < IS <
pCS < IAA; (iii) the presence of DIDS, which inhibits anion transport via Band 3 protein across the
erythrocyte membrane, slows down the uptake of HA, IS, and pCS in the erythrocyte, and (iv) the
presence of DIDS, MK571, and KO143 seems to impact HA and, although less expressed, IS efflux, but
has no substantial impact on the efflux of IAA and PCS.

The PBUTs studied distribute within the erythrocytes, which was confirmed by spiking an
erythrocyte suspension with a high uremic concentration of PBUTs and measuring their uptake over
time. After PBUT addition to the extracellular (PBS) compartment, concentrations in PBS decreased
either slowly (i.e., for HA), at intermediate speed (i.e., for IS), or very fast (i.e., for pCS and IAA) so
that an apparent equilibrium between the PBS and erythrocyte compartments was established after
respectively, 38 min, 10 min, or almost immediately.

Obtained transport parameters (i.e., equilibration time constant (a), specific rate constant (ks), and
intercompartment clearance (K¢)) demonstrated that HA is more slowly transported into erythrocytes
as compared to IS (trend), pCS, and IAA. When unloading erythrocytes from HD patients suspended in
HBSS/HEPES, and based on the obtained kinetic parameters, it was found that the rate of solute efflux
was comparable to the rate of solute influx for IAA, but higher for HA and IS while lower for pCS.

It appeared that the influx and efflux of IAA across the erythrocyte cell membrane is much
faster than for HA and IS, which is reflected by the high values for a, ks, and K¢. Concentrations of
indole, the in vivo precursor of IAA, were determined in some of the loading experiment samples to
check whether the fast decrease in IAA concentrations was due to a fast back transformation of IAA
into indole. However, indole concentrations were negligible in PBS (data not shown). Alternatively,
(part of) IAA could bind to the erythrocyte membrane surface or to proteins present in the cell
membrane immediately after addition of the PBUT mix, resulting in an apparent fast removal from
the PBS compartment. However, to the best of our knowledge, no data of IAA binding to erythrocyte
membranes is available in the literature to support this hypothesis.

We also studied the impact of an inhibitor (i.e., DIDS) for anion transport. This compound is
known to reversibly bind to Band 3 proteins, anion exchangers located on erythrocyte membranes,
mediating transmembrane transport [25-28]. Because these Band 3 proteins can only influence solute
transport, the distribution of PBUTs will not be changed. Hence, in the kinetic model of the loading
experiments with DIDS, solute partition coefficients can be taken as equal to those found in the loading
experiments without DIDS. By doing this, we observed that the transport parameters a, ks, and K¢
decreased to comparable low values for HA, IS, and pCS. For this reason, the transport of HA, IS, and
pCS is at least in part facilitated by Band 3 proteins (i.e., carrier-mediated facilitated diffusion).

Notwithstanding the similar equilibration time constants for HA, i.e., 0.06-0.10 1/min, as found in
the present work and those for creatinine, i.e., 0.05 + 0.01 1/min, as previously reported by Schneditz
et al. [23], the transport mechanism of both compounds (and partly for IS and pCS as well) might
not be comparable. This is mainly because of the different net charge of these compounds at pH
7.4 (i.e., positive for creatinine and negative for HA, IS, and pCS), although similarities between
their renal handling, also affecting their plasma levels, has been reported [31]. Apart from the anion
exchanger Band 3, other anion transporter proteins may also be involved in the transport of the studied
PBUTs. It has been shown that the multidrug resistance protein 1 (MRP 1) is expressed by erythrocyte
membranes [32,33]. This transporter is known to efflux several sulfate conjugates of endogenous as
well as of xenobiotic compounds from diverse tissues [34,35] and might potentially be involved in the
transmembrane transport of IS and pCS as well. More recently, a database (http://rbcc.hegelab.org/)
was created containing information on other different transport proteins present in the erythrocyte
membrane [36]. These include the ATP Binding Cassette efflux pumps MRP4 and BCRP, in addition
to MRP1. Since a combination of blockers was used in the unloading experiments with overlapping
potencies, we expect, however, efficient inhibition of these transporters in our experimental settings [37].
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The distribution of solutes within erythrocytes and the slow transport from erythrocytes to
plasma has important consequences for their removal during hemodialysis. For example, for solutes
slowly equilibrating across the erythrocyte membrane, the true concentration in plasma leaving the
hemodialyzer is much lower than what is measured when solutes are primarily removed from plasma,
and intracellular solutes remain sequestered in erythrocytes. The concentration measured in a plasma
sample, however, depends on the time the blood sample is allowed to equilibrate (i.e., the time
erythrocytes are allowed to “unload” their solutes) and on the rate of solute equilibration between
plasma and erythrocytes before the blood components are separated by centrifugation. If blood is
collected at the dialyzer outlet line, there is a disequilibrium between the intra- and extra-cellular
concentrations. For solutes fast equilibrating across the erythrocyte membrane, the determined solute
plasma concentration could be higher, as it really was at the moment of collection, which would
falsely underestimate extracorporeal solute clearance, as previously demonstrated for creatinine [38].
For the present PBUTs, we also found that the time between blood sampling and centrifugation affects
the serum/plasma concentration in samples collected at the dialyzer outlet line (data provided in
Appendix A).

Beside the % PB, the magnitude and rate of accumulation of PBUTs in erythrocytes may also have
an impact on the amount of solute removed by the dialyzer. For solutes rapidly equilibrating across
the erythrocyte membrane, solute is not only cleared from the plasma compartment but also from the
erythrocyte compartment, and plasma and erythrocyte concentrations will be close to equilibrium at
the dialyzer inlet as well as at the outlet. On the contrary, for solutes slowly equilibrating across the
erythrocyte membrane, such as creatinine, the transport across the membrane should be taken into
account, as described elsewhere [39]. The exact fraction of extracorporeal blood flow cleared in the
dialyzer can be estimated from dialyzer transit time, hematocrit, and specific rate constant [23], but
should be adjusted by a solute partition coefficient for the studied PBUTs.

4. Conclusions

This is the first study to identify and quantify intracellular distribution of PBUTs in erythrocytes.
The rate of transport (i.e., influx and efflux) across the erythrocyte membrane increased according
to HA < IS < pCS < IAA. In addition, at least part of the HA, IS, and pCS uptake by erythrocytes
is attributed to the anion transporter Band 3 protein. Understanding distribution and transport in
the patient’s body, including transcellular transport in blood, is of importance to be able to optimize
dialysis treatments with eventual newly-developed removal strategies.

5. Materials and Methods

5.1. Sample Collection

Blood samples from 6 HD patients were collected predialysis to determine the presence of PBUTs in
erythrocytes, while blood was sampled from 8 healthy controls and another 6 HD patients (predialysis)
to be used in the loading and unloading experiments, respectively. All blood was sampled in K,EDTA
plasma tubes (Becton Dickinson, Plymouth, UK).

This study was conducted according to the Declarations of Helsinki, was approved by the
Ethics Committee of Ghent University Hospital (2017/0162), and all participants gave their written
informed consent.

5.2. Chemicals

HA, IAA, and IS were purchased from Sigma-Aldrich (St. Louis, MO, USA) and pCS was obtained
from TCI Chemicals (Zwijndrecht, Belgium). Water (HPLC grade) was purchased from Acros Organics
(Thermo Fisher Scientific, Geel, Belgium), the inhibitor DIDS from Sanbio (Cayman Chemical, MI,
USA), and the inhibitors MK571 and KO143 from Sigma-Aldrich (Saint Louis, MO, USA).
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For the loading experiments, a stock solution containing HA, IAA, IS, and pCS (further assigned
as PBUT mix) as well as a DIDS stock solution were both prepared in phosphate buffered saline
(PBS) buffer pH = 7.4 (Invitrogen, Thermo Fischer Scientific, Ghent, Belgium) and stored at —20 °C.
Theoretical final PBUT concentrations were based on the maximum uremic levels as reported by
Duranton et al. [2]. Therefore, stock concentrations (200 times the final concentration) of 80 mmol/L
(HA), 2 mmol/L (IAA), and 20 mmol/L (IS and pCS) were prepared. For DIDS, a stock solution of
1300 pmol/L (13 times the final concentration) was prepared.

For the unloading experiments, additional stock solutions of the inhibitors MK571 and
KO143 were prepared in Hank’s Balanced Salt Solution (HBSS) with 10 mmol/L HEPES
(4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid) (StemCell, Vancouver, Canada) at a concentration
of 1000 pmol/L and 5,000 pmol/L, respectively.

5.3. In Vitro Protocols

In general, to separate erythrocytes and plasma, blood was centrifuged for 10 min at 2095 g,
at room temperature (Beckman Coulter X-15R centrifuge-VWR, Leuven, Belgium).

5.3.1. Proof of Concept—Presence of PBUTs in Erythrocytes?

After centrifugation of blood from HD patients, plasma was removed and PBUT concentrations
were determined in the erythrocyte pellet. This pellet was lysed during the first step of the sample
preparation where HPLC grade water was added, followed by heating up to 95 °C.

5.3.2. Transport of PBUTs across the Erythrocyte Membrane

In loading (i.e., influx) experiments, after centrifugation of blood from healthy controls, plasma
from 13 mL blood samples was replaced by an equal volume of PBS in the absence (PBS) and the
presence of the Band 3 protein blocker DIDS (final concentration: 100 uM, aiming at a complete
inhibition of the influx of PBUTs via the transporter protein Band 3 without exerting cytotoxic effects).
The obtained erythrocyte suspension was gently mixed and pre-incubated in a water bath at 37 °C
for 1 h. Subsequently, a PBUT mix stock solution (final concentrations: 400 uM HA, 10 uM IAA, and
100 uM IS and pCS) was added and the suspension was gently mixed.

In the unloading experiments, 13 mL of whole blood from HD patients was pre-incubated for
10 min at 37 °C in the absence (HBSS/HEPES) and the presence of 3 transporter inhibitors (final
concentrations: 50 uM DIDS, 3 uM MK571, and 5 uM KO143). Next, whole blood was centrifuged, and
the plasma was replaced by an equal volume of HBSS/HEPES again in the absence and the presence of
the transporter inhibitors (final concentration: 80 uM DIDS, 5 uM MK571, and 8 uM KO143, aiming at
a complete inhibition of the efflux of PBUTs via the transporter proteins Band 3, MRP1, and BCRP
without exerting cytotoxic effects).

After gently mixing the erythrocyte suspension in each series of experiments, aliquots (1 mL)
were incubated in a water bath at 37 °C while continuously shaken to avoid erythrocyte sedimentation.
At certain specific time points, an aliquot was removed from the water bath, immediately centrifuged
(Beckman Coulter Microfuge 18-Analis, Ghent, Belgium, 2,306 g, 5 min), and the obtained supernatant
and pellet was stored at —80 °C until batch analysis.

5.4. Analyses

Total PBUT concentrations were determined by an ultra-high-performance liquid chromatography
instrument with ultraviolet (for HA) and fluorescence (for IAA, IS, and pCS) detection (UHPLC-UV/FLD).
Both sample preparation and chromatographic methods were previously described in more detail [40].

Hematocrit (H) was determined by transferring blood into capillary tubes before centrifugation
(Hettich centrifuge—Tuttlingen, Germany, 9503 g, 2 min) and was manually read on a calibrated plate
in all loading and unloading experiments, in the non-treated whole blood samples as well as in the
corresponding erythrocyte suspensions.
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5.5. Kinetic Model

The transport characteristics for a solute evenly equilibrating across intra- and extra-cellular
compartments has been described using a two-compartment model [23]. This model, however, needs to
be adapted for solutes with non-uniform equilibration, as schematically shown in Figure 3. Differences
in distribution can be quantified by the solute partition coefficient (y) defined as the ratio of solute
concentrations in both compartments at equilibrium [41]. In this work, those two compartments
included erythrocytes (red blood cells, RBC: Crpc) and BUFFER (Cpyprer):

Crac
— _—KBC 1
CBUFFER M
Buffer Ke | Erythrocytes
Veurrer Caurrer Y Veec Crac

Figure 3. Two-compartment model. Vpyrpgr: Buffer water volume; Cpyrpgr: solute concentration in
buffer water volume; y: solute partition coefficient; Vgpc: erythrocyte water volume; Crpc: solute
concentration in erythrocyte water volume; K¢: intercompartment clearance.

Assuming constant erythrocyte and buffer volumes, the two-compartment model for solute
equilibration in a blood sample between erythrocytes and buffer is given as:

Courrer _ - (CrBC

d
VBUFFER —qr — = Kc ( —CBUFFER)
d

C C
Vrpe = K ( - CBUFFER)

@

where, Vpyuprer and Vgpe (both L) refer to the volumes of buffer water and erythrocyte water (i.e., the
cytoplasm), Cpyprer and Crpc (both mol/L) are PBUT concentrations in buffer and erythrocyte
compartments respectively, v accounts for intracellular partition, and K¢ (L/min) refers to the
intercompartment clearance.

The total mole n (in mol) of solute in the entire erythrocyte suspension is constant:

n = VpurrerCpurrer +VrBCCRBC 3)
so that Equation (2) can be simplified to obtain the following relationship:

dCpurrEr _ Ken _ Kc (¥Vrpc+VBurrer)
dt YVRBC VBUFFER YVRBC VBUFFFER

Crac 4)

The solution of this ordinary differential equation for the interval t =0 to t =t is:

b\ _ b
CBUFFER(t) = (CBUFFER(O) - g)e A 3 ()

where, the macro parameters b (in mol/min/L) and equilibration time constant a (in 1/min) are given as:

K
p—— (6)
YVRrBc VBUFFER
YVRrBC+ VBUFFER

YVrBC VBUFFER

a=Kc (7)
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and therefore:
n

®)

a  YVgec+VBUFFER
which is the equilibrated concentration (Cpuprer (eq))- These equations are comparable to those as
derived previously, with the difference of y [23].

Intercompartment clearance K¢ is determined by erythrocyte volume (i.e., erythrocyte suspension
volume, Vgysp, times hematocrit, Hsusp) and ks (1/min):

Ke= ks Hsusp Vsusp )

where, ks represents the specific rate constant, which is a more general measure for the diffusion rate
across the erythrocyte membrane. For this parameter, the hematocrit (Hsusp = VrRec/(VRBC + VBUFFER))
and water fractions for BUFFER (fgurrer = VBUFFER, w/VBUFFER) and erythrocyte (frpc = VrBC, w/VRBC))
compartments are introduced because blood is usually measured as bulk volume:

a

ks = (10)

1 Hsusp 1
tpurrer \ 1-Hsusp Y freC

In loading experiments without an inhibitor, the model parameters ks and y were identified
by fitting the function in Equation (5) and the macro parameters a (Equation (7)) and CurrER(eq)
(=b/a, Equation (8)) to experimental data: Cgyrrgr(), Hsusp, mass of the erythrocyte suspension and
concentration as well as volume of the added PBUT mix. In loading experiments in the presence of
an inhibitor, the model parameter ks was identified according to the same procedure, whereas the
individual value for y was assumed to be the same as in loading experiments without an inhibitor and
was therefore fixed for each healthy subject. In unloading experiments, mean values for v, as obtained in
loading experiments without an inhibitor, were used to identify ks and the following experimental data
were used to fit the function in Equation (5) and the macro parameters a (Equation (7)) and CpuppeR(eq)
(= b/a, Equation (8)): Cpurrer(), Hsusp, mass of the erythrocyte suspension and the measured PBUT
concentration after 1 h (i.e., Cpuppgr(eq),m)- In each series of experiments, water fractions in plasma
and erythrocytes were assumed as fgyrrpr = 0.99 and frpc = 0.70 and Berkeley Madonna software
(University of California, Berkeley, CA, USA) was used for parameter identification. The source codes
for loading and unloading experiments are provided in Appendix B. Two Berkeley Madonna model
files including experimental data, for representative loading and unloading experiments, are available
as Appendix B digital materials.

5.6. Statistics

Statistical evaluation was performed with GraphPad Prism 4.00 for Windows (GraphPad Software,
LaJolla, CA, USA) and data were checked for normality (Shapiro-Wilk test). Normally distributed
data are presented as mean + standard deviation, whereas non-normal data are presented as median
(25th, 75th percentile). Either paired t-tests or Wilcoxon signed rank test, Mann—-Whitney tests as well
as repeated measures ANOVA tests, and Friedman tests with Tukey (ANOVA test) or Dunns (Friedman
tests) post hoc analysis were used where appropriate.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/7/385/s1,
Supplementary File 1: HA_Healthy.txt, Supplementary File 2: HA_HDPatient.txt.
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Appendix A

Extra blood samples from 10 stable HD patients were collected at the dialyzer outlet line after
120 min of dialysis (performed according to the Declarations of Helsinki, approved by the Ethics
Committee of Ghent University Hospital (2017/0162) and all participants gave their written informed
consent). Blood was collected in two different K;EDTA plasma tubes and in serum separating tubes
(all Becton Dickinson Company, NJ, USA). Plasma tubes were centrifuged either immediately after
sampling or after a period of 30 min on ice, whereas serum tubes were left at room temperature
for 30 min to allow for clotting. Total serum and plasma PBUT concentrations were determined by
UHPLC-UV/ELD [36]. Statistical analysis was performed with GraphPad Prism 4.00 for Windows
(GraphPad Software, La Jolla, CA, USA) and data were checked for normality (Shapiro-Wilk test).
Repeated measures ANOVA and Friedman tests with, respectively, Tukey and Dunns post hoc analysis,
were used when appropriate, p < 0.05 was considered significant.

Serum concentrations were significantly increased for IAA and pCS (Figure A1), while only a
visual trend was observed for HA and IS in blood samples allowed to clot within 30 min at room
temperature, as compared to plasma samples immediately separated after collection. Placing blood
samples on ice for 30 min attenuated the equilibration process resulting in only a small increase in
extracellular concentration (trend only).

These results indicate that when blood samples are collected the moment there is a disequilibrium
between intra- and extra-cellular concentrations (e.g., in samples taken at the dialyzer outlet line or
in samples taken at a later stage during dialysis), plasma concentrations will depend on the time
between sampling and centrifugation as well as on the solute equilibration rate. Because immediate
centrifugation after collection is not always achievable in clinical practice, this process of solute
equilibration can be attenuated by placing blood samples immediately on ice prior to centrifugation.

300

)
*

N

n

(=]
L

[

S

(=]
L

OPlasma (0 min)

i

n

<>
1

OPlasma (30 min, ice)

ESerum (30 min, RT)

Concentration (umol/L)

100 -
50 - «
0 .
HA TAA IS pCS

Figure Al. Effect of time between sampling and blood centrifugation on the serum and plasma
concentrations of hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS), and p-cresyl sulfate
(pCS) as determined in blood samples collected at the dialyzer outlet. Blood tubes were centrifuged
either immediately (plasma (0 min)), after 30 min on ice (plasma (30 min, ice)), or after 30 min at room
temperature (serum 30 min, RT). * p < 0.05.
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Appendix B

Appendix B.1. Berkeley Madonna Script for Loading Experiments for Hippuric Acid (HA) without Inhibitor

{Identification of model parameters ks and gamma from equilibration in solute loading tests using
HA data from “HA_Healthy.txt” file using the exact analytical solution and Berkeley-Madonna version
8.3 or 9.1 software (https://berkeley-madonna.myshopify.com).

Open a new file from the “File” dropdown menu and delete any default information from the
opening window.

Copy and paste the source code (from the first “{* to the last “}” of this text from the on-line full
text html-document as plain TEXT into that window.

Load the experimental sample data from the “Model” drop-down menu using the
“Datasets” command.

Import the “HA_Healthy.txt” data (Supplementary File 1) as 1D vector.

Run (click the “RUN” icon) this model and plot the data vs time.

Double-click the figure and select the data variable for display.

Then use “Curve fit” in the “Parameter” drop-down menu, select the parameters “a” and “gamma”,
and press “o0.k.”

The model “ct” is fit to experimental data.

The parameters identified from the optimal fit can be read in the “parameter” window or by
clicking the “P” icon in the plot.

The numerical values for “ks” and “Kc” and selected variables can be displayed by switching
from “plot-view” to “table view”}

STARTTIME =0

STOPTIME =70

DT =0.02

Hsusp = 0.425; hematocrit of erythrocyte suspension

Msusp = 13.05; mass of erythrocyte suspension in g

Cs = 82603; concentration of HA in PBUT mix in umol/L

Vs = 0.000065; volume of spiking solution in L

fBUFFER = 0.99; water fraction in BUFFER

fRBC = 0.70; water fraction in erythrocytes

rhosusp = 1050; erythrocyte suspension density in g/L

a = 0.06; exponent, slope of the experimental decrease

gamma = 1; solute partition coefficient

DISPLAY ct, a, ks, Kc, gamma

Ct = (c0-ceq) * exp(-a * TIME) + ceq; BUFFER concentration at time t in umol/L

c0 = ntot/(Vsusp * (1-Hsusp) * fBUFFER + Vs); initial BUFFER concentration in pmol/L

ceq = ntot/(Vsusp * (1-Hsusp) * fBUFFER + Vsusp * Hsusp * fRBC * gamma + Vs)

{BUFFER concentration at equilibrium in pmol/L}

Ks = a/(Hsusp/(1-Hsusp)/fBUFFER + 1/(gamma * fRBC)); specific rate constant in 1/min

Kc = ks * Hsusp * Vsusp * 1000; intercompartment clearance in mL/min

Vsusp = Msusp/rhosusp; volume of erythrocyte sample in L

Ntot = cs * Vs; total mole of solute in erythrocyte suspension in umol {End of script}

Appendix B.2. Berkeley Madonna Script for Unloading Experiments for Hippuric Acid (HA)

{Identification of model parameter “ks” from equilibration in solute unloading tests with
experimental HA data from “HA_HDPatient.txt” data file (Supplementary File 2) using the exact
analytical solution and Berkeley-Madonna version 8.3 to 9.1 software (https://berkeley-madonna.
myshopify.com).


https://berkeley-madonna.myshopify.com
https://berkeley-madonna.myshopify.com
https://berkeley-madonna.myshopify.com
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Open a new file from the “File” drop-down menu and delete any default information from the
opening window.

Copy and paste the source code (from the first “{* to the last “}” of this text from the on-line full
text html-document as plain TEXT into that window.

Load the experimental sample data from the “Model” drop-down menu using the
“Datasets” command.

Import the “THA_HDPatient.txt” data as 1D vector.

Run (click the “RUN” icon) this model and plot the data vs. time.

Double-click the figure and select the data variable for display.

Then use “Curve fit” in the “Parameter” drop-down menu, select parameters “a” and “ceq” and
press “o.k.”.

The model is fit to experimental data.

The parameters identified from the optimal fit can be read in the “Parameter” window or by
clicking the “P” icon in the plot.

The numerical values for “ks” and “Kc” and selected variables can be displayed by switching
from “plot-view” to “table view”}

STARTTIME = 0

STOPTIME =70

DT =0.02

Hsusp = 0.32; hematocrit of erythrocyte suspension

Msusp = 13.27; mass of erythrocyte suspension in g

Ceq = 70.24; measured BUFFER concentration at equilibrium after 1 h in pmol/L

c0 = 0; solute concentration in BUFFER at t = 0 in umol/L

fBUFFER = 0.99; water fraction in BUFFER

fRBC = 0.70; water fraction in erythrocytes

rhosusp = 1050; erythrocyte suspension density in g/L

a = 0.06; exponent, slope of the experimental decrease

gamma = 1.24; solute partition coefficient from loading experiments

DISPLAY ct, ceq, a, ks, Kc, gamma

Ct = (c0-ceq) * exp(-a * TIME) + ceq; BUFFER concentration at time t in pmol/L

Ks = a/(Hsusp/(1-Hsusp)/fBUFFER + 1/(gamma * fRBC)); specific rate constant in 1/min

Kc = ks * Hsusp * Vsusp * 1000; intercompartment clearance in mL/min

Vsusp = Msusp/rhosusp; volume of erythrocyte sample in L {End of script}
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