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Abstract: The growing incidence of microorganisms that resist antimicrobials is a constant concern
for the scientific community, while the development of new antimicrobials from new chemical
entities has become more and more expensive, time-consuming, and exacerbated by emerging
drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to
discover possible antimicrobial compounds. The secondary metabolites contained in plants are a
source of chemical entities having pharmacological activities and intended to be used for the treatment
of different diseases. These chemical entities have the potential to be used as an effective antioxidant,
antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active
entities are the alkaloids which are classified into a number of classes, including pyrrolizidines,
pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines.
Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases
through capturing free radicals, or through binding to catalysts involved indifferent oxidation
processes occurring within the human body. Furthermore, these entities are capable of inhibiting the
activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites
are the main reason for their utilization by the pharmaceutical companies for the treatment of different
diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the
most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a
source for thousands of bioactive marine natural products. In this review, we cover the medical use of
natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral,
antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline
alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety
of microorganisms.

Keywords: alkaloids; natural sources; anticancer; antibacterial; antiviral; antifungal

Key Contribution: Alkaloids are secondary plant metabolites that have been shown to possess potent
pharmacological activities. These activities are mainly beneficial, except for pyrrolizidine alkaloids,
which are known to be toxic.
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1. Introduction

Ample research has been conducted on natural products in order to obtain new antimicrobial
agents to compensate for the increasingly microbial resistance. In fact, the problem with the currently
used antiviral drugs is the development of resistance by the microorganism.

Many traditionally used plants for viral infections have been studied. Extracted compounds,
including terpenes (e.g., mono-, di- and tri-), flavonoids, phenols and polyphenols have been found to
be active against HSV virus [1,2]. Flavonoids extracted from plants are utilized by people for their
health benefits, and have been shown to have viral activity against HCMV [3]. Fourteen new alkaloids
were isolated from Cladosporium species (spp.) PJX-41 fungi and showed inhibitory activity against
influenza virus A (H1N1) [4].

The Biological Activities of Alkaloids

Alkaloids are grouped into several classes. This classification is based on their heterocyclic ring
system and biosynthetic precursor. They include tropanes, pyrrolidines, isoquinoline purines, imidazoles,
quinolizidines, indoles, piperidines and pyrrolizidines. There is a great interest in the chemical nature of
these alkaloids and their biosynthetic precursors. Alkaloids have been extensively researched because of
their biological activity and medicinal uses. Serotonin and other related compounds are belonging to
the commonly used insole alkaloids. It is estimated that about 2000 compounds are classified as indole
alkaloids. They include vinblastine, strychnine, ajmaline, vincamine, vincristine and ajmalicine, which are
among the most researched members, due to their pharmacological activities. For example, vincristine and
vinblastine, named spindle poison, are generally utilized as anticancer agents [5]. Convolvulaceae,
Erythroxylaceae and Solanaceae families include the pharmacologically active tropane alkaloids which
have an 8-azabicyclo octane moiety derived from ornithine [5,6]. Hyoscyamine, cocaine, scopolamine and
atropine alkaloids are the most known members of this group and possess a variety of pharmacological
effects. Quinoline and isoquinoline known as benzopyridines are heterocyclic entities containing
fused benzene, and pyridine rings have many medical uses [6]. Quinine, a quinoline alkaloid isolated
from Cinchona ledgeriana (Howard) and Calendula officinalis L. was proved to be poisonous to Plasmodium
vivax and organisms with single cell or Protozoans that cause malaria. Other members of the quinine
alkaloids include cinchonidin, folipdine, camptothecin, chinidin, dihydroquinine, echinopsine and
homocamptothecin [5,7]. These chemical entities have demonstrated significant pharmacological effects,
such as anticonvulsant, analgesic, antifungal, anthelmintic, anti-inflammatory, antimalarial, anti-bacterial
andcardiotonic [7]. Other important alkaloids are those derived from isoquinoline, a quinoline isomer,
which are classified into various classes, based on the addition of certain groups: Phthalide isoquinolines,
simple isoquinolines and benzylisoquinolines. Among the well-known alkaloids belong to this category
are morphine (analgesic and narcotic drug), codeine (cough suppressant), narcotines, protopines,
and thebaine [8]. In addition, this class of alkaloids has demonstrated various pharmacological activities,
such as antitumor, antihyperglycemic and antibacterial [6]. Among the most important alkaloids
from the purine class (xanthenes) are theophylline, aminophyline and caffeine. This class of alkaloids
possesses a variety of pharmacological activities, including anti-inflammatory, antioxidant, antidiabetic,
anti-obesity and anti-hyperlipidemic [9]. On the other hand, the alkaloids derived from piperidine
are generally obtained from Piper nigrum L. and Conium maculatum L. plants. It is estimated that
700 members of this class have been researched. These alkaloids possess a saturated heterocyclic ring
(piperidine nucleus) and are familiar with their toxicity. They have many pharmacological activities
which include anticancer, antibacterial, antidepressant, herbicidal, anti-histaminic, central nervous
system stimulant, insecticidal and fungicidal [10,11]. The famous poison of hemlock known as Conium
maculatum presents in the piperidine alkaloids. Members of the piperidine alkaloids include lobeline,
coniine and cynapine. The pyridine alkaloids have a quite similar chemical structure to that of piperidine
alkaloids except the unsaturated bonds exist in their heterocyclic nucleus. Anatabin, anatabine, anabasin,
epibatidine and nicotine are some members of the pyridine alkaloids [12]. Imidazole alkaloids are
compounds containing an imidazole ring in their chemical structure and are derived from L-histidine.
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The most known member of this class is pilocarpine which is obtained from Pilocarpus cearensis
Rizziniand is used as a drug in ophthalmic preparations to treat glaucoma [13]. The pyrrolizidine
alkaloids, containing a necine base, are present only in plants, such as Leguminosae, Convolvulaceae,
Boraginaceae, Compositae, Poaceae and Orchidaceae. Among the most known members of this
class are heliotrine, echinatine, senecionine and clivorine which are biosynthesized by the plants for
protection from herbivores. These are hepatotoxic causing several diseases, such as liver cancer. Due to
their glycosidase inhibition activity, they are used to treat diabetes and cancer [14]. Pyrrolidine alkaloids
are compounds composed of aza five membered rings that are derived from ornithine and lysine.
Hygrine, cuscohygrine and putrescine are some members of this class. Biological studies conducted on
this class have revealed significant antifungal, antitubercular and antibacterial activities among a large
number of these compounds [15].

Quinolizidine alkaloids contain two fused 6-membered rings that share nitrogen and derived from
the genus Lupinus and are known as lupine alkaloids. Among the members of this class are lupinine
and lupanine cytisine and sparteine. The last two members are the most distributed quinolizidine
alkaloids and are characterized by their antimicrobial activities [16].

Bacterial infections are considered as a major health problem worldwide. Moreover, they are
increasing, due to multidrug resistance, which subsequently causes mortality and morbidity. Therefore,
new antibacterial remedies are needed, and the plants represent a wide source for novel natural
compounds [17]. Three alkaloids solanine, solasodine and B-solamarine have been extracted from
Solanum dulcamara L. (Solanaceae), commonly known as bittersweet plant, and have demonstrated
significant antibacterial activity against Staphycoccus aureus [17]. Bis-indole alkaloids were obtained
from marine invertebrates and showed antibacterial activity against S. aureus, including MRSA
(methicillin resistance Staphycoccusaureus) [18]. Berberine and hydrastine alkaloids were extracted
from Goldenseal (Hydrastis canadensis L., Ranunculaceae) and have demonstrated a potent antibacterial
activity mostly against Streptococcus pyogenes and Staphycoccus aureus [19]. Cocsoline alkaloid was
isolated from Epinetrumvillosum (Exell), it has a wide antibacterial activity; inhibits Shigella strains,
Campylobacter jejuni and Campylobacter coli [20].

Antifungal agents to treat fungal infections have serious side effects and developed fungal resistance,
hence, there is a pressing need to look for new and novel antifungal agents. Alkaloids extracted from the
leaves of Ruta graveolens L. were shown to possess fungitoxic activity [21]. Tomadini Glycoalkaloids
have been extracted from tomato and proved to have antifungal activity [22]. Quinoline alkaloids and
flavonoids extracted from WaltheriaIndica L. Roots were approved to have antifungal activity against
Candida albicans [23].

Cancer is second in the list of diseases causing death worldwide. Phytochemicals represent a
source for anticancer agents, due to their low toxicity and high effectiveness. Hersutin alkaloid is
a major alkaloid found in Uncaria genus; hersutin was found to cause apoptosis in HER2-positive
and the p53-mutated breast cancer cells [24]. Oxymatrine, a natural alkaloid extracted from Sophora
chrysophylla (Salisb.) roots, was found to have anticancer activity in human cervical cancer Hela cells,
due to its cytotoxic effects and apoptosis [25].

Herein, we report a comprehensive review on the medical use of some natural alkaloids, such as
antibacterial, antiviral, antifungal and anticancer agents.

2. Natural Alkaloid Used to Control Agricultural Pests (Herbivores)

Glycoalkaloids extracted from Potato leaves were demonstrated to exert negative effects on the
hatching success of Spodoptera exigua eggs, and on the heart contractile activity of three beetle species
Zophobas atratus, Tenebrio molitor, and Leptinotarsa decemlineata [26].

Similar effects were shown on Zophobas atratus F. and Tenebrio molitor L. by commercial
glycoalkaloids (solamargine, solasonine, α-chaconine, α-solanine, α-tomatine) and by aqueous extracts
from Solanum etuberosum L., Lycopersicon esculentum Mill., and Solanum nigrum L. [27]. Furthermore,
Potato leaf extracts and commercial α-solanine were proved to influence the life history parameters and
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antioxidative enzyme activities in the midgut and fat body of Galleria mellonella L. [28]. Additionally,
Solanum tuberosum L, Lycopersicon esculentum Mill.,and Solanum nigrum L. Leaf extracts and single
pure glycoalkaloids have been demonstrated to affect the development and reproduction of Drosophila
melanogaster [29,30].

3. Natural Alkaloid Used as Anticancer Agents

Alkaloids are the most biologically active compounds found in natural herbs and the source of
some important drugs currently marketed. These include some anticancer agents, such as camptothecin
(CPT) and vinblastine. The cytotoxicity and mechanisms of action for the following derived alkaloids,
berberine, evodiamine, matrine, piperine, piplartine, sanguinarine, tetrandrine, aporphine, harmine,
harmaline, harmalacidine and vasicinone, (1–12, respectively, in Figure 1), is our main focus in this
section, since they are believed to have fewer side effects and lower resistance compared to other
chemotherapeutic agents.

Berberine (1 in Figure 1) is an isoquinoline derivative extract from Coptis chinensis Franch,
Berberidaceae.This secondary metabolite possesses a variety of pharmacological effects, which include
antibacterial, antidiabetes, anti-inflammatory and antiulcer ones. In addition, Also, it had been found to
be beneficial for the cardiovascular system [19,20,22,23]. It has been demonstrated that Coptis chinensis
Franch, the plant in which berberine present, has an inhibitory effect on proliferation of breast and
liver cancer cells. The anticarcinogenic activity of berberine was studied in FaDu cells, which are
human pharyngeal squamous carcinoma cells; berberine was found to have a cytotoxic effect and
has decreased the viability of these cells in a concentration-dependent manner [31]. In vitro and
in vivo experiments on berberine have demonstrated anticancer activity by causing cell cycle arrest at
the G1 or G2/M phases and tumor cell apoptosis [24,32]. In addition, berberine was found to cause
endoplasmic reticulum stress and autophagy, which had resulted in inhibition of tumor cell metastasis
and invasion [2,33–36].

Besides its apoptotic effects, berberine was found to reduce angiogenesis by reducing VEGF
expression. Also, it resulted in decreased cancer cell migration [31]. The anticancer activity of berberine
was studied in the human promonocytic U937 and murine melanoma B16 cell line; cytotoxic activity
was found to be concentration-dependent. Intraperitoneal administration of berberine in mice had
caused a reduction of 5 to 10 kg of tumor weight after a treatment of 16 days. This reduction in tumor
weight was found to be time and concentration-dependent [33].

Berberine binds to DNA or RNA to form the corresponding complexes [37,38]. Berberine also
inhibits a number of enzymes, including cyclooxygenase-2 (COX-2), N-acetyltransferase (NAT)
and tolemerase [24]. It has many effects on tumor cells, which include cyclin-dependent kinase
(CDK) regulation [24,37] and expression regulation of B-cell lymphoma 2 (Bcl2) proteins (Bax, Bcl-2,
Bcl-xL) [24,33,37] and caspases [33,37]. Further, berberine has an inhibition activity on nuclear factor
κ-light-chain enhancer of activated B cells (NF-κB) and activation on the synthesis of intracellular
ROS [24,33]. It is worth noting that berberine activity is selective for cancer cells [24]. Studies have
shown that berberine affects tumor cell progression by the inhibition of focal adhesion kinase (FAK),
urokinase, matrix metalloproteinase 9 (MMP-9), NFκB and matrix metalloproteinase2 (MMP-2) [2,39].
In addition, it reduced Rho kinase-mediated Ezrin phosphorylation [36], inhibited COX-2 synthesis,
prostaglandin receptors and prostaglandin E [40]. Other activities of berberine include inhibition of the
synthesis of hypoxia-inducible factor 1 (HIF-1), proinflammatory mediators and vascular endothelial
growth factor (VEGF) [41,42]. Berberine also activates P53 gene, which results in apoptosis and cell
cycle arrest. It has been demonstrated that berberine also caused apoptosis by mitochondrial-dependent
pathway and interactions with DNA, as shown in Figure 2 [32].
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Figure 2. Anticancer mechanism of action.

Evodiamine (2 in Figure 1), a quinolone alkaloid, isolated from the Chinese plant Evodia rutaecarpa
has a variety of pharmacological activities against obesity, allergy, inflammation, anxiety, nociception,
cancer, thermoregulation. In addition, it is a vessel-relaxing activator and an excellent protector of
myocardial ischemia-reperfusion injury [43–46]. It causes cell cycle arrest, apoptosis, inhibits the
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angiogenesis, invasion, and metastasis in different cancer cells at G2/M phase in most cancer cell
lines [47–51]. In vitro studies have shown evodiamine to be quite active against cancer cell progression
at micromolar-nanomolar concentrations [52,53]. Additionally, evodiamine stimulates autophagy,
which prolongs survival [54]. Evodiamine is selective for tumor cells and less toxic to normal human
cells, such as human peripheral blood mononuclear cells. Studies have shown that it inhibits the
proliferation of Adriamycin resistant human breast cancer NCI/ADR-RES cells, both in vitro and
in vivo, and was found to be active when administered orally [49]. Moreover, it was found that the
administration of 10 mg/kg evodiamine from the 6th day after tumor injection into mice reduced
lung metastasis without affecting the mice weight [47]. Studies showed that evodiamine inhibits TopI
enzyme, forms a DNA covalent complex with a close concentration, 2.4 µM and 4.8 µM, to that of
CPT, and induces DNA damage [55–57]. It exhibited G2/M phase arrest [47,49,58] and not S phase
arrest, which is not consistent with the mechanism of TopI inhibitors, such as CPT, which indicates
that evodiamine has targeted other than TopI, such as tubulin polymerization [58]. Evodiamine
was found to induce intracellular ROS production and cause mitochondrial depolarization [59].
Mitochondria apoptosis is caused by the generation of ROS and nitric oxide [54]. Evodiamine was
also found to trigger caspases dependent and caspase-independent apoptosis, downregulates Bcl-2
expression, and upregulates Bax expression in some cancer cells [50,52]. The phosphatidylinositol
3kinase/Akt/caspase and Fas ligand (Fas-L)/NF-κB and ubiquitin-proteasome pathway are considered
the route in which evodiamine causes induction to cells death [53].

Matrine (3 in Figure 1) is an alkaloid isolated from Sophora flavescens Aitonplants [60]. It possesses a
variety of pharmacological activities which include diuretic, choleretic, hepatoprotective, nephroprotective,
antibacterial, antiviral, anti-inflammatory, antiasthmatic, antiarrhythmic, antiobesity, cardioprotective
and anticancer [61–67]. In the treatment of cancer matrine is used in high doses, but it has not shown
any major effects on normal cells viability [61–71]. G1 cell cycle arrests mediation and apoptosis is
the mechanism, by which matrine exerts its inhibition effects on the proliferation of different cancer
cells [68,69,71–73]. Matrine triggers apoptosis and autophagy in cancer cells, such as hepatoma
G2 cells and SGC7901 cells. Matrine also induces the differentiation of K562 tumor cells and has
antiangiogenesis activity [74]. The in vivo anticancer effects of matrine has been tested in H22 cells,
MNNG/HOS cells, 4T1 cells and BxPC-3 cells in BALB/c mice [70,71,74,75]. It was found that matrine
at 50 mg/kg or 100 mg/kg inhibits MNNG/HOS Xenograft growth, and reduces the pancreatic tumor
size compared to controls at similar doses [71]. Targets of matrine are still under study until now, but it
was found that it affects many proteins involved in cell proliferation and apoptosis, such as E2F-1, Bax,
Bcl-2, Fas, and Fas-L [68,70–73,76]. It also inhibits cancer cell progression by the inhibition of MMP-2
and MMP-9 expression and modulation of the NF-κB signaling pathway [77–79].

Piperine (4 in Figure 1) is a piperidine alkaloid found in Piper nigrum and Piper longum [80]. It exhibits
antioxidant, antidiarrheal, anti-inflammatory, anticonvulsant, anticancer and antihyperlipidemic
properties in addition to being a trigger for bile secretion production [65,81] and suppressant to
the CNS system [82,83]. An administration of 50 mg/kg or 100 mg/kg of piperine daily for a week
significantly reduced the size of solid tumor in mice transplanted with sarcoma 180 cells. Recently,
a study has revealed that piperine has managed to inhibit the progression of breast cancer in a
selective manner [84]. It has been shown that this secondary metabolite triggered cell cycle arrest
in G2/M phase and apoptosis in 4T1 cells [85,86]. Piperine in a concentration of 200 µM/kg is
also active against lung cancer metastasis induced by B16F-10 melanoma cells in mice [87] and
causes suppression of phorbol-12-myristate-13acetate (PMA), which induce tumor cell invasion [88].
Piperine inhibits NF-κB, c-Fos, cAMP response element-binding (CREB) and activated transcription
factor 2 (ATF-2) [89]. It suppresses PMA-induced MMP-9 expression through the inhibition of
PKCα/extracellular signal-regulated kinase (ERK) 1

2 and reduction of NF-κB/AP-1activation [88].
Piperine also inhibits P-glycoprotein (P-gp) and CYP3A4 activity, which affects drug metabolism
and also re-sensitizes multidrug resistant (MDR) cancer cells [90,91]. Piperine increases the effect of
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docetaxel without inducing more side effects on the treated mice by inhibiting CYP3A4 which is the
main metabolizing enzymes of docetaxel [92].

Piplartine, the less common name for piperlongumine, (5 in Figure 1) is an amide-alkaloid obtained
from Piper longum L.It has resulted in tumor growth inhibition in Sarcoma180 cells transplanted in mice.
This antitumor activity was due to its antiproliferative effect [93].

Sanguinarine (6 in Figure 1) is a benzophenanthridine obtained from Sanguinaria canadensis L.
and Chelidoniummajus L. [94,95]. It is active against bacterial, fungal and schistosomal infections,
antiplatelet, and anti-inflammatory properties [96–98], it is also utilized for schistosomiasis control and
cancer treatment. In vitro studies showed that it presents anticancer effects at concentrations less than
ten micromoles. Sanguinarine triggers cell cycle arrest at different phases of apoptosis in many tumor
cells [99–104]. It also is active against angiogenesis [105–107]. The administration of COX-2 inhibitors
and sanguinarine has been recommended for prostate cancer treatment. Sanguinarine can also be used
for the treatment of conditions caused by ultraviolet exposure, such as skin cancer [108]. The mechanism
of its anticancer activity could be its interactions with glutathione (GSH). These interactions decrease
cellular GSH and increase ROS generation [102,109]. Sanguinarine-induced ROS production and
cytotoxicity can be blocked by pretreatment with N-acetyl cysteine or catalase. This mode of action is
similar to that of TopII inhibitor salvicine [110,111]. Sanguinarine is considered a potent inhibitor of
MKP-1 (mitogen-activated protein kinase phosphatase 1) [112]. It also interferes with microtubule
assembling [113] and the nucleocytoplasmic trafficking of cyclin D1and TopII, and causes DNA damage
leading to anticancer activity. Sanguinarine suppresses NF-κB activation triggered by TNF, interleukin-1,
okadaic acid, and phorbol ester, but not that induced by hydrogen peroxide or ceramide [114]. It also
inhibits the signal transducer and activator of transcription 3 activation (STAT-3) [115]; downrgulates
CDKs, cyclins, MMP-9 and MMP-2 [106,109]; upregulates p21, p27 [104,107] and the phosphorylation
of p53 [99]; alters the members of the Bcl-2 family, including Bax, Bid, Bak Bcl-2, and Bcl-xL; activates
caspases [101–103]; and upregulates death receptor 5 (DR-5) [101].

Tetrandrine (7 in Figure 1) is a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra
S.MooreIt is used as an immune modulator, antihepatofibrogenetic, antiarrhythmic, anti-inflammatory,
antiportal hypertension, anticancer and neuroprotective agent [116]. It is a potent anticancer agent.
Tetrandrine triggers different phases of cell cycle arrest depending on the cancer cell type, and also induces
apoptosis in many human cancer cells, including leukemia, colon, bladder, lung and hepatoma [117,118].
In vivo experiments demonstrated that the survival of mice subcutaneously injected with CT-26 cells
was prolonged after daily treatment with tetrandrine [119]. Tetrandrine suppresses the expression
of VEGF in glioma cells, has an anticancer effect on ECV304 human umbilical vein endothelial
cells, and aniangiogenesis effects [120]. Tetrandrine had no acute toxicity were noticed [121]. Hence,
tetrandrine has a great promise as an MDR modulator for the treatment of P-gp-mediated MDR cancers.
Tetrandrine could be used in combination with 5-fluorouracil and cisplatin drugs [122,123]. If combined
with tamoxifen it increases the efficacy by inhibiting phosphoinositide-dependent kinase 1 [124]. It also
increases the radio-sensitivity of many cancer cells by affecting the radiation-induced cell cycle arrest
and interfering with the cell cycle. So tetrandrine can be used in combination with cancer chemotherapy
or radiotherapy. Activation of glycogen synthase kinase 3β (GSK-3β), generation of ROS, activation of
p38 mitogen-activated protein kinase (p38 MAPK), and inhibition of Wnt/betacaten in signaling might
cause the anticancer activity of tetrandrine [119,125]. Tetrandrine up-regulates p53, p21, p27, and Fas;
down-regulates Akt phosphorylation, cyclins, and CDKs and activates caspases [120,125–127].

Aporphine alkaloids (8 in Figure 1) are extracted from the aerial part of Pseuduvariasetosa.
These alkaloids demonstrated moderate antitumor activity against lung and breast cancer cells,
in addition to their high antitumor activity against epidermoid carcinoma (KB) and breast cancer [36].
Mohamed et al. have studied Magnolia grandiflora L., characterized the isolated aporphine alkaloids
and researched their cytotoxic activity. They found that the magnoflorine and lanuginosine alkaloids
have cytotoxic activity against liver carcinoma cell lines [2].
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Apomorphine alkaloids were isolated from Nelumbo nucifera Gaertn leaves and were demonstrated
to have antioxidant and antipoliferative activities [41].

Peganum. Harmala has been used traditionally for cancer therapy, harmine (9 in Figure 1) and
harmaline (10 in Figure 1) are the major alkaloids found in this plant in ratios of 4.3% and 5.6%,
respectively [128]. Four alkaloids; harmine, (9 in Figure 1), harmaline (10 in Figure 1), harmalacidine
(11 in Figure 1) and vasicinone (12 in Figure 1) were isolated from plant seeds and have shown a
significant cytotoxic activity [128]. The mechanism of action of P. harmala seeds has been investigated
by Sobhani et al.; it was found that these alkaloids inhibit topoisomerase 1, resulting in antiproliferation
of cancer cells [129].

A concise summary of the anticancer activities of alkaloids 1–12 is depicted in Table 1.

Table 1. The anticancer compounds discussed in this section and their activities.

Alkaloids Anticancer Activity

Berberine

Matrine

Inhibits the proliferation of breast, lung, colon and liver cancer cell lines
Inducing the cell cycle arrest or apoptosis in cancer cell
Inhibits the proliferation of cancer cell by G1 cell cycle arrest or apoptosis

Piplartine Antitumor related to its antiproliferative effect

Piperine
Sanguinarine
Tetrandrine

Antitumor and immunomodulatory
Induces cell cycle arrest at different phases or apoptosis in a variety of cancer cell
Induces different phases of cell cycle arrest depends on cancer cell types

Aporphine Antitumor activity against small cell, lung cancer and breast cancer cells, in
addition to a high antitumor activity against epidermoid carcinoma

Apomorphine Antioxidant and antipoliferative activities

Harmine, harmaline
harmalacidine, vasicinone Inhibit topoisomerase 1 resulting in antiproliferation of cancer cells

Evodiamine
Sanguinarine

Induce cell cycle arrest or apoptosis, inhibiting the angiogenesis, invasion, and
metastasis in a variety of cancer cell lines

Matrine Inhibits the proliferation of various types of cancer cells mainly through the
mediation of G1 cell cycle arrest or apoptosis

Tetrandrine Induces apoptosis in many human cancer cells, including leukemia, bladder,
colon, hepatoma, and lung

4. Antibacterial Activities

Anti-bacterial agent is a chemical entity that has the potential to kill or inhibit the production
of bacteria. Since antiquity several nations have been using different plants for healing and treating
several kinds of diseases, like using, Ayurveda, in providing many medicines from the Neem tree,
Azadirachta indica A.Juss.in India, and Valerian (Valeriana officinalis), the medicinal plant endogenous
to Europe and Asia and widely introduced in North America [37,39,130]. However, at the beginning
of the 1980s this trend has declined, and the sights of researchers were turned into synthesizing
new compounds. More recently the interest in using natural products has been renewed, due to the
huge increase in antibiotics resistance, the limited availability of new synthetic antibacterials [37],
and the discovery of many new natural products [38]. Finding new anti-infective agents is a necessity.
Even with the careful use of antibiotics, each antibiotic has a limited life span [37]. Nothing can rule
out the need for antibiotics, although biologics can sometimes be used in several cases, but they are
usually accompanied by many limitations [39,40].

Several studies have demonstrated that much plant extracts containingalkaloids, flavonoids,
phenolics and other compounds have significant antibacterial activity. However, in this section, we are
specifically concerned with alkaloids as antibacterial agents.

Alkaloids have a reputation of being a natural curse and blessing [131]. They are a wide-range and
diverse group of natural compounds that exist in plants, animals, bacteria, and fungi. The only thing
they have in common is the occurrence of a basic nitrogen [132], which can bea primary, secondary or
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tertiary amine. Currently, there are more than 18,000 discovered alkaloids [133]. The unique bioactivity
of alkaloids is attributed to the presence of nitrogen, that capable of accepting a proton, and one
or more amine donating hydrogen atoms, which is usually accompanied by proton-accepting and
-donating functional [127].

Alkaloids have played a very important role in developing new antibacterial agents.
Many interesting examples include the synthesis of quinolones from quinine, derivatization of
azomycin to afford metronidazole, and alteration of the quinoline scaffold to furnish bedaquiline.
In other antibacterial agents, alkaloids are utilized as scaffold substructures as seen with linezolid and
trimethoprim [134–136].

4.1. Antibacterial Indole Alkaloids

Clausenine (13 in Figure 3) extracted from the stem bark of Clausena anisate (Willd.) were shown to
have antibacterial and antifungal activities [137]. I-Mahanine indole alkaloid (14 in Figure 3) obtained
from Micromelum minutum Wight and Arn. has demonstrated antimicrobial activity against Bacillus
cereus (MIC100 values of 6.25 µg/mL) and Staphylococcus aureus (MIC100 values of 12.5 µg/mL) [138].

Hapalindole alkaloids, hapalindole X (15 in Figure 3), deschlorohapalindole I (16 in Figure 3),
and 13-hydroxy dechlorofontonamide (17 in Figure 3) and hapalindoles A, C, G, H, I, J, and U,
hapalonamide H, anhydrohapaloxindole A, and fischerindole L were obtained from cyanobacteria
sp. Results demonstrated that 15 and 18 possess a very strong activity against both Mycobacterium
tuberculosis and Candida albicans with MIC values in the range of 0.6 to 2.5 µM [139].

The indolizdine alkaloid 2, 3-dihydro-1H-indolizinium chloride (19 in Figure 3) isolated from
Prosopisglandulosa Torr. var. glandulosa was found to be a strong antifungal and antibacterial agent
against Cryptococcus neoformans, Aspergillus fumigatus with IC50 values of 0.4 and 3.0µg/mL, respectively,
and antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium with
IC50 values of 0.35 and 0.9 µg/mL respectively [140].Toxins 2019, 11, x FOR PEER REVIEW 10 of 27 
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Figure 3. Chemical structures of natural antibacterial alkaloids: Clausenine (13), (R)-Mahanine (14),
hapalindole X (15), deschlorohapalindole I (16), 13-hydroxy dechlorofontonamide (17), hapalonamide
H (18) and 2,3-dihydro-1 H-indolizinium chloride (19).

The antimicrobial, antimalarial, cytotoxic, and anti-HIV activities of 26 isoquinolines were studied.
The results showed that compound 20 (Figure 4) has antimicrobial effects, compounds 21, 22 and 23
(Figure 4) have antimalarial effects, compounds 20 and 21 have cytotoxic effects and compounds 24
and 25 (Figure 4) have anti-HIV effects. It is expected that these compounds have the potential to be
used as lead compounds for further research and investigation [141].



Toxins 2019, 11, 656 10 of 28

Berberine alkaloid (1 in Figure 1) was tested against the oral pathogens Fusobacterium nucleatum,
Enterococcus faecalis, and Prevotella intermedia. The MIC values of berberine against these pathogens
were 31.25 µg/mL, 3.8 µg/mL and 500 µg/mL, respectively [142].
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Figure 4. Chemical structures of isoquinolines alkaloids (antimicrobial, antimalarial, cytotoxic,
and anti-HIV agents, 20–25), 2-benzyl-6,7-bis(benzyloxy)-1-propyl-3,4-dihydroisoquinolin-2-ium
(20), 6,7-bis(benzyloxy)-1,2-dimethylisoquinolin-2-ium (21), 6,7-bis(benzyloxy)-1-ethyl-2-methy-
lisoquinolin-2-ium (22), 1-(1-(3,4-dimethoxyphenyl)ethyl)-6,7-dimethoxy-2-methylisoquinolin-2-ium
(23), 1-ethyl-6,7-dihydroxy-2-methylisoquinolin-2-ium (24), 6,7-dimethoxy-3,4-dihydro- isoquinolin-2-ium
(25), dehydrocavidine (26), coptisine (27), dehydroapocavidine (28) and tetradehydroscoulerine (29).

Sanguinarine (6 in Figure 1), a benzophenanthridine alkaloid obtained from the root of Sanguinaria
canadensis L., has shown inhibition activity against methicillin-resistant Staphylococcus aureus (MRSA)
bacteria, an organism known for its resistance to almost all antibacterial agents. MRSA is responsible
for a large number of life-threatening infections. MRSA infections that reach the bloodstream are
responsible for numerous complications and fatalities, killing 10–30% of patients. An important
predictor of morbidity and mortality in adults is the blood concentrations of vancomycin, the antibiotic
of choice to treat this condition [18]. Many of them are skin-related conditions: Skin glands, and mucous
membranes. Sanguinarine activity against MRSA strains is in the range of 3.12 to 6.25 µg/mL. Whereas,
its MIC values against the two MRSA strains are 3.12 µg/mL and 1.56 µg/mL. Sanguinarine causes
lysis of the cell by induction the release of autolytic enzymes [143]. Further, sanguinarine has shown to
kill cells and destroy tissues when applied to the skin. The biosynthesis of sanguinarine in plants is via
the action of dihydrobenzophe-anthridineoxidase on dihydrosanguinarine.

Dehydrocavidine, coptisine, dehydroapocavidine and tetradehydroscoulerine (26–29, respectively,
in Figure 4) represent the active compounds of Yanhuanglian that extracted from Corydalis saxicola
Bunting and used in traditional Chinese medicine, and they have shown antibacterial, antiviral and
anticancer activities in in-vivo studies [144].

Five new quinolone alkaloids, euocarpines A–E (30–35 in Figure 5), were isolated from the fruits
of Evodia ruticarpa var. officinalis (Dode) C.C.Huang and were found to exhibit moderate antibacterial
activities MIC values of 4–128 µg/mL Compounds with thirteen carbons on side chain showed the
highest antibacterial activity with favorable low cytotoxicity [145].
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The three quinolone alkaloids kokusaginin, maculine, kolbisine (36–38 in Figure 6) were obtained
from Teclea afzelii Engl.stem bark, and their antimicrobial and antifungal activities were studied. The results
revealed that kokusaginine, 36, was active against Gram-positive and negativebacteria, fungi and
Mycobacterium smegmatis. While the crude extracts maculine, 37, and kolbisine, 38, have resulted in
inhibition of 87.5% of the microbes with an MIC value of 19.53 µg/mL. While maculine, 37, demonstrated
a moderate activity against M. smegmatis with greater MIC value (156.25 µg/mL) [146].

Eight new quinolone alkaloids were extracted from the actinomycete Pseudonocardia sp. CL38489
were found to be potent and selective anti Helicobacter pylori agents [147]. Diterpene alkaloids, such as
agelasines O–U (39–45 in Figure 6), were obtained from Okinawan marine sponge Agelas sp. Studies have
shown that agelasines O–R (39–42 in Figure 6) and T (44 in Figure 6) had antimicrobial activities against
several bacteria and fungi [148].

The polyamine alkaloid squalamine (46 in Figure 6) which was extracted from tissues of the
dogfish shark Squalus acanthiasis is now considered as a broad-spectrum steroidal antibiotic with potent
bactericidal properties against both Gram-negative and Gram-positive bacteria [149].

Aaptamine (47 in Figure 6) extracted from the Indonesian marine sponge of the genus Xestospongia
has shown significant antibacterial activity against gram-negative bacteria [150]. Table 2 illustrates the
antibacterial activity of the compounds discussed in this section.

Table 2. Antibacterial compounds, discussed in this section, and their antibacterial activity.

Alkaloids Antibacterial Activity

Clausenol, Kokusaginine, Maculine, Kolbisine,
squalamine, Aaptamine

Active against Gram-positive and negative bacteria and
fungi

R- Mahanine Antimicrobial activity against Bacillus cereus and
Staphylococcus aureus

hapalindole X, deschlorohapalin-dole I, 13-hydroxy
dechlorofonto-namide, hapalonamide H

Potent activity against both Mycobacterium tuberculosis
and Candida albicans

Indolizdine
Antibacterial activities against Cryptococcus
neoformans, Aspergillus fumigatus, methicillin-resistant
Staphylococcus aureus and Mycobacterium intracellular

Isoquinolines Antimalarial, cytotoxic, and anti-HIV effects.

Sanguinarine, Antibacterial activity against methicillin-resistant
Staphylococcus aureus
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4.2. Antibacterial Mechanism of Action of Alkaloids

Most alkaloids are found to be bactericidal rather than being bacteriostatic. For example,
squalamine, 42, was found to be with potent bactericidal properties killing Gram-positive and
Gram-negative pathogens by ≥99.99% in about 1–2 h [151]. The mechanism of action of squalamine, 42,
is illustrated in Figure 7.

The alkaloids mechanism of action as antibacterial agents has been found to be different between
each class. In the alkaloids pergularinine and tylophorinidine from the indolizine class, the antibacterial
action is due to inhibition of the enzyme dihydrofolate reductase resulting in the inhibition of nucleic
acid synthesis [152].

Within the isoquinolone class two mechanisms of bacterial inhibition were shown to occur;
Ungereminea phenanthridine isoquinoline exerts its effect through the inhibition of nucleic acid
synthesis, while from the studies with benzophenanthridine and protoberberine isoquinolines it was
suggested that those agents act by the perturbation of the Z-ring and cell division inhibition, and this
was further proved by many studies [97,153–155].

On the other hand, synthetic quinolones inhibit the type II topoisomerase enzymes, while the
natural quinolone alkaloids lacking the 3-carboxyl function act as respiratory inhibitors by reducing
oxygen consumption in the treated bacteria [156,157].

Agelasines alkaloids exert their antibacterial activity by the inhibition of the dioxygenase
enzyme BCG 3185c, causing a disturbance in the bacterial hemostasis. This result was revealed
from overexpression and binding affinity experiments on the anti-mycobacterial alkaloid agelasine
D [158]. Saqualamine from the polyamine alkaloid class acts by disturbing bacterial membrane
integrity [158,159].
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5. Antiviral Activity

Plants and animals, host a vast number of viruses, often transmitted by insects, such as aphids
and bugs. Viral infection resistance can be caused either by biochemical mechanisms that prevent the
development and multiplication of the virus or by preventing vectors, such as aphids. The evaluation
of the antiviral activity is relatively difficult. Several researchers have studied the effect of alkaloids on
viral reproduction. The studies revealed that about 40 alkaloids possess antiviral properties.

Leurocristine, periformyline, perivine and vincaleucoblastine (48–51 in Figure 8) are natural
alkaloids obtained from Catharanthus roseus (L.) and lanceusPich (Apocycaceae). Leurocristine, 48,
is an active against mengovirus extracellular virucidal, poliovirus, vaccinia, and influenza viruses [160].
Periformyline, 49, inhibits poliovirus type viruses. Whereas, perivine, 50, exhibits polio extracellular
virucidal activity against vaccinia, and vincaleucoblastine, 51, possesses extracellular virucidal activity
against poliovirus vaccinia and influenza virus.

The michellamines D and F (52 and 53 in Figure 8), naphthyl-isoquinoline alkaloids, obtained from
the tropical liana Ancistrocladuskorupensis have demonstrated HIV-inhibitory [161]. A series of isoquinoline
alkaloids as lycorine, lycoricidine (54 in Figure 8), narciclasine, and cis-dihydronarciclasine, obtained from
Narcissus poeticus (Amaryllidaceae), have shown significant in vitro activity against flaviviruses and
bunyaviruses. Poliomyelitis virus inhibition by the above-mentioned compounds occurred at 1 mg/mL [162].

The alkaloids homonojirimycin (55 in Figure 9) and 1-deoxymanojirimycin (56 in Figure 9)
were obtained from Omphaleadiandra (Euphorbiaceae). Homonojirimycin, 55, is an inhibitor of
several a-glucosidases, glucosidase I and glucosidase II. Deoxymanojirimycin, 56, is an inhibitor of
glycoprocessing mannosidase [163]. Castanospermine (57 in Figure 9) and australine (58 in Figure 9)
are alkaloids present in seeds of Castanospermum austral A. Cunn. and C. Fraser (Leguminosae)
and reduce the ability of HIV to infect cultured cells and have the potential for treating AIDS [164].
Sesquiterpene alkaloids obtained from Tripterygium hypoglaucum (H. Lév.) and Tripterygium wilfordii
Hook. f. (Celastraceae) were found to possess anti-HIV activity [165].

The acridone alkaloids, 5-hydroxynoracronycine—same compound of 11-hydroxynorac- ronycine
(59 in Figure 9) and Acrimarine F (60 in Figure 9) were extracted from Citrus alata (Tanaka) plants and
were found to be very effectiveagainst Epstein-Barr virus [166–168]. Columbamine, palmitine(61, 62 in
Figure 9), and berberine are alkaloids with potent activity against HIV-1 and can be found in many
plants, includingAnnonaceae (Coelocline), Berberis vulgaris (Berberidaceae), Menispermaceae and
Papaveraceae [169–171]. A concise summary of the antiviral activities of alkaloids 48–62 is depicted in
Table 3.
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(56), castanospermine (57), australine (58), 5-hydroxynoracronycine (59), acrimarine F (60), columbamine
(61), palmitine (62).

Table 3. Antiviral compounds, discussed in this section, and their antiviral activity.

Alkaloids Antiviral Activity

Leurocristine Active against mengovirus extracellular virucidal, poliovirus,
vaccinia, and influenza viruses

Periformyline Inhibits poliovirus type viruses

Perivine Exhibits polio extracellular virucidal activity against vaccinia

Vincaleucoblastine Possesses extracellular virucidal activity against poliovirus
vaccinia and influenza virus.
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Table 3. Cont.

Michellamines D and F HIV-inhibitory

Homonojirimycin Inhibitor of several a-glucosidases

Deoxymanojirimycin Inhibitor of glycoprocessing mannosidase

Castanospermine, australine Reduce the ability of the human immunodeficiency virus (HIV)
to infect cultured cells, and have potential for treating AIDS

Sesquiterpene Anti-HIV activity

5-hydroxynoracronycine, Acrimarine F Remarkable inhibitory effects on Epstein-Barr virus activation

Columbamine,
Berberine,
Palmitine

Inhibitors alkaloids against HIV-1

6. Antifungal Activity

The spread of resistance to antifungal agents has accelerated in the recent few years. The rate of
morbidity and mortality has enhanced, due to resistance to antifungal agents. Since the molecular
processes in humans and fungi are similar, there is always a risk that the fungal cytotoxic substance
is toxic to the host cells. Consequently, patients with a reduced immune system, such as those with
transplants, cancer and diabetics who do not respond appropriately to the current medications have
ignited the need for new antifungal medicines [93]. The current antifungal drugs suffer from
many side effects as irritation, diarrhea, and vomiting; furthermore, it is less effective, due to
the development of resistance to those drugs by the diverse available fungi. The potency and
effectiveness of the antifungal medicines developed during 1980–1995, such as the imidazoles and
triazoles, which inhibit the fungal cell processes have gradually decreased, due to the development
of resistance by the microorganism [172]. Therefore, researchers are looking for new potent entities to
replace the currently used antifungal agents. A respected number of biologically active compounds
were isolated from medicinal plants and are widely used as mixtures or pure compounds to cure
a variety of diseases. It is estimated that about 250,000 to 500,000 species of plants are growing on
our planet. However, humans are using only 1 to 10% of those plants [173]. This treasure should be
utilized to isolate and develop new antifungal agents by using new methods and techniques [174].
For example, chemical entities isolated from plants, such as the indole derivatives, dimethyl pyrrole
and hydroxydihydrocornin-aglycones have shown promising antifungal activities [174]. However,
pure medicines derived from these chemical entities still to be developed.

It should be emphasized that the annual mortality rate, due to fungi was constant through
several decades, and the resistance to antifungal drugs has emerged only in the recent two to three
decades [175–177]. Thus, a combined effort from chemists, biologists, pharmacologists and etc. is
crucially needed to combat the issue of microorganisms’ resistance to drugs. Consequently, great
emphasis has been placed on developing a more detailed understanding of antimicrobial resistance
mechanisms, improved methods for detecting resistance when they occur, new antimicrobial options
for treating infections caused by resistant organisms, and ways to prevent the emergence and spread
of resistance in the first place [174].

In this section of the review, we attempted to report on some important antifungal compounds
obtained from plants.

Antifungal Activity of Alkaloids

Extraction of the opium poppy Papaver somniferum L. has resulted in the isolation of morphine
which is considered the first member [156]. Recently, a new alkaloid, 2-(3,4-dimethyl-2,5-dihydro-
1H-pyrrol-2-yl)- 1-methylethyl pentanoate (63 in Figure 10) was isolated from the plant Datura metel
var. fastuosa (L.) Saff., and has demonstrated activity against Aspergillus and Candida species when
tested both in vitro and in vivo [178,179].
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Figure 10. Chemical structures of antifungal natural alkaloids: 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-
1-methylethyl pentanoate (63), 6,8-didec-(1Z)-enyl-5,7-dimethyl-2,3-dihydro-1H-indolizinium (64),
N-methyl-N-formyl-4-hydroxy-beta-phenylethylamine (65), Jatrorrhizine (66), (+)-Cocsoline (67), dicentrine
(68), glaucine (69), protopine (70) and alpha-allocryptopin (71).

Another alkaloid, 6,8-didec-(1Z)-enyl-5,7-dimethyl-2,3-dihydro-1H-indolizinium (64 in Figure 10)
was isolated from Anibapanurensis and demonstrated excellent activity against the strain of
C. albicans [180].

β-Carboline, a tryptamine and twophenylethylamine-derived alkaloids along with N-methyl-
N-formyl-4-hydroxy-beta-phenylethylamine (65 in Figure 10) from Cyathobasisfruticulosa [20] and
haloxylines A and B, new piperidine from Haloxylon schmittianum Pomel have shown a potential
antifungal activity [181].

Jatrorrhizine (66 in Figure 10) isolated from Mahonia aquifolium (Pursh) Nutt. has shown the most potent
antifungal inhibitory in all studied fungi with MIC between 62.5 to 125 µg/mL, while the crude extract,
berberine, and palmatine showed reduced inhibitory activity with MIC of 500 to >/= 1000 µg/mL [182].

(+)-Cocsoline (67 in Figure 10) is a bisbenzylisoquinoline alkaloid isolated from Epinetrumvillosum
has demonstrated a good antifungal activity [183]. The alkaloids N-methylhydrasteinehydroxylactam
and 1-methoxyberberine chloride isolated from Corydalis longipes D. Don demonstrated great inhibitory
activity [184]. Four alkaloids, dicentrine (68 in Figure 10), glaucine (69 in Figure 10), protopine (70 in
Figure 10), and alpha-allocryptopin (71 in Figure 10) were isolated from Glaucium oxylobum Boiss and
Buhse have exhibited good activity against Microsporumgypseum, Microsporumcanis, T. mentagrophytes
and Epidermophytonfloccosum [185].

Flindersine (72 in Figure 11) and haplopine (73 in Figure 11) obtained from Haplophyllum sieversii
Fisch. were growth-inhibitory compounds against various fungi [186]. Canthin-6-one (74 in Figure 11)
and 5-methoxy-canthin-6-one (75 in Figure 11) of Zanthoxylumchiloperone var. angustifolium exhibited
antifungal activity against C. albicans, A. fumigatus and T. mentagrophytes [187]. Frangulanine (76 in
Figure 11), a cyclic peptide alkaloid and waltherione A (77 in Figure 11), quinolinone alkaloids from
leaves of Melochiaodorata were reported to exhibit antifungal activities against a broad spectrum of
pathogenic fungi [188].
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Figure 11. Chemical structures of antifungal natural alkaloids: Flindersine (72), haplopine (73),
canthin-6-one (74), 5-methoxy-canthin-6-one (75), frangulanine (76), waltherione A (77) and
3-methoxisampangin (78).

Furthermore, anodic alkali aninolinate has demonstrated inhibitory activity against all 10 fungi
tested and demonstrated a particularly high sensitivity to this compound, showing germination levels
of less than 10% [189]. From the root of Dictamnusdasycarpus two antifungal fructoxin alkaloids were
isolated. 3-Methoxisampangin (78 in Figure 11) of cleistopholispatens showed vast inhibitory activity
against each of C. albicans, A. fumigatus, and C. neoformans [190]. Table 4 lists the antifungal activity of
the compounds discussed in this section.

Table 4. Antifungal compounds, discussed in this section, and their antifungal activity.

Alkaloids Antifungal Activity

2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl
pentanoate Activity against Aspergillus and Candida species

6,8-didec-(1Z)-enyl-5,7-dimethyl-2,3-dihydro-1H-indolizinium Good activity against a drug-resistant strain of C. albicans

β-carboline, Cocsoline Effective against all fungal species and marginal activity

Dicentrine, glaucine,
Protopine, alpha-allocryptopin

Good activity against Microsporumgypseum,
Microsporumcanis, T. mentagrophytes and
Epidermophytonfloccosum

Canthin-6-one,
5-methoxy-canthin-6-one

Antifungal activity against C. albicans, A. fumigatus and T.
mentagrophytes

Frangulanine,
Waltherione,
quinolinone alkaloids

Exhibit antifungal activities against a broad spectrum of
pathogenic fungi

3-methoxisampangin Significant antifungal activity against C. albicans, A.
fumigatus, and C. neoformans

7. Toxicity of Plant Secondary Metabolites

Through hundreds of years, people have been used plant extracts for the treatment of a variety
of diseases, such as snakebite, fever and insanity. However, a number of plants containing alkaloids
are classified as main plant toxins because of their vast structural diversity and different mechanism
of actions. Inhalation or swallowing toxic alkaloids by humans or animals might result in a certain
mechanism involving transporters, enzymes and receptors at certain cells and tissues, and therefore,
causing musculoskeletal deformities and hepatotoxic effects. These toxic alkaloids include tropane,
piperidine, pyrrolizidine and indolizidine. The most adverse effects of these entities are vomiting,
mild gastrointestinal perturbation, teratogenicity, arrhythmias, itching, nausea, psychosis, paralysis,
and death [188].
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8. Conclusions

Secondary metabolites isolated from different plants have proven to be useful for humans and
animals alike. Studies on a number of these alkaloids have demonstrated that a vast number of them
possess many pharmacological activities. These activities include anticancer, antibacterial, antiviral,
antioxidant and antifungal. However, when high doses of the secondary metabolites are consumed,
toxic effects may be observed and in sometimes fatalities are imminent. For instance, some alkaloids
have proven to lead to paralysis, asphyxia, and in sometimes to death. During the past few years
researches have been conducted to make new derivatives of the isolated secondary metabolites aiming
to obtain medicines with more potency, less toxicity, and more resistant to different microorganisms.
It is hoped that the state-of-the-art methods and sophisticated techniques along with computational
methods, will make the path for generating novel potent drugs, based on natural products, be shorter
and beneficial.

Several plants contain secondary metabolites which are toxic and may cause danger to humans
when administered. However, the cases in which fatal plant poisonings occur are negligible. The most
common incidents of toxicity are those involving the abuse of plants for hallucinogenic purposes.
Utilizing toxicological analysis of such secondary metabolites may help in the diagnosis of poisoning
or abuse cases. Among the toxic secondary metabolites are harmaline, ibogaine, kawain, cytisine,
dimethyltryptamine, harmine, aconitine, atropine, coniine, colchicine, taxine, mescaline, and scopolamine,
which are often involved in fatal poisonings [190].
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