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Abstract: The marine algal toxin palytoxin (PLTX) and its analogues are some of the most toxic
marine compounds. Their accumulation in edible marine organisms and entrance into the food
chain represent their main concerns for human health. Indeed, several fatal human poisonings
attributed to these compounds have been recorded in tropical and subtropical areas. Due to the
increasing occurrence of PLTX in temperate areas such as the Mediterranean Sea, the European
Food Safety Authority (EFSA) has suggested a maximum limit of 30 µg PLTX/kg in shellfish meat,
and has recommended the development of rapid, specific, and sensitive methods for detection
and quantitation of PLTX in seafood. Thus, a novel, sensitive cell-based ELISA was developed
and characterized for PLTX quantitation in mussels. The estimated limits of detection (LOD) and
quantitation (LOQ) were 1.2 × 10−11 M (32.2 pg/mL) and 2.8 × 10−11 M (75.0 pg/mL), respectively,
with good accuracy (bias = 2.5%) and repeatability (15% and 9% interday and intraday relative
standard deviation of repeatability (RSDr), respectively). Minimal interference of 80% aqueous
methanol extract allows PLTX quantitation in mussels at concentrations lower than the maximum
limit suggested by EFSA, with an LOQ of 9.1 µg PLTX equivalent/kg mussel meat. Given its
high sensitivity and specificity, the cell-based ELISA should be considered a suitable method for
PLTX quantitation.

Keywords: Palytoxin; mussels; cell-based ELISA

Key Contribution: A novel cell-based immunoenzymatic assay (cell-based ELISA) for palytoxin
(PLTX) quantitation was set up and characterized for its sensitivity, accuracy, reproducibility, and
specificity to quantify PLTX in mussels.

1. Introduction

Palytoxin (PLTX), a complex marine poly-ol toxin, is one of the most toxic natural compounds.
The discovery of PLTX dates back to the 1960s, when, in a tide pool of Hana Bay (Maui Island, Hawaii),
Prof. Paul Helfrich collected samples of a toxic soft coral, subsequently identified as Palythoa toxica.
Ten years later, the chemical structure of PLTX isolated from this coral was reported [1]. Later, PLTX and
a series of its analogues were also identified in other Zoantharia belonging to the genera Palythoa [2–7]
and Zoanthus [8], in benthic dinoflagellates of the genus Ostreopsis [9–15], and in cyanobacteria of the
genus Trichodesmium [16]. Only a few of these analogues have been studied from a biological and
chemical point of view, including (i) 42-hydroxy-PLTX (42S-OH-50S-PLTX), isolated from P. toxica [2,17],
and its stereoisomer (42S-OH-50R-PLTX), isolated from P. tuberculosa [3]; (ii) ostreocin-D (OST-D) and
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its analogues, produced by Ostreopsis siamensis [11,18–20]; and (iii) ovatoxin-a (OVTX-a), the most
abundant PLTX analogue, produced by Ostreopsis cf. ovata in the Mediterranean Sea [21–23].

The main public health concern associated with these toxins is their presence in marine
organisms and potential entrance into the human food chain. Indeed, PLTXs have been detected
in porifera and polychaete worms as well as in other edible species, including crustaceans, mollusks
(gastropods, bivalves, and cephalopods), and echinoderms (sea urchins, starfishes) [8,24,25]. Moreover,
consumption of PLTX-contaminated fish or crabs has been associated with cases of fatal human
poisoning in tropical and subtropical areas [26–29]. On the other hand, adverse effects in humans
attributed to PLTX along the Mediterranean and Atlantic coasts of Portugal have been associated
with inhalation and/or cutaneous exposure to marine aerosol and/or direct exposure to seawater
during Ostreopsis blooms [30,31]. In particular, signs and symptoms in the respiratory tract,
including dyspnea associated with fever >38 ◦C, as well as conjunctivitis and dermatitis have been
reported [13,14,24,27,30,32,33]. In these areas, Ostreopsis has been recorded since the early 1970s [34],
and in the last decade PLTXs have been detected both in microalgae and in edible marine organisms,
but no foodborne poisonings attributed to these toxins have yet been documented.

Despite their high toxicity, PLTXs are not regulated as seafood or environmental contaminants.
However, the European Food Safety Authority (EFSA) has suggested a maximum limit of 30 µg
PLTX/kg of shellfish meat [35]. Moreover, given the significant concerns for public health due to the
expanding distribution of PLTXs, EFSA has recommended the development of suitable methods to
detect these toxins in seafood. In addition to liquid chromatography–mass spectrometry (LC-MS)
based chemical methods [36,37], both structural and functional assays are currently available for
PLTX. Among these are the hemolytic assay [38–42], the lactate dehydrogenase-based hemolytic
biosensor [43], and methods based on PLTX binding to Na+/K+ ATPase [44,45]. However, these
methods suffer from insufficient sensitivity, significant matrix effects, low toxin recovery, and/or
other limitations for routine use. Among the structural assays, sensitive, inexpensive, and
easy-to-use immunoassays have been set up [46–49]. Recently, antibody-based biosensors have
also been developed as innovative and highly sensitive analytical methods to detect and quantify
PLTXs. In particular, a surface plasmon resonance (SPR) biosensor using a murine monoclonal
anti-PLTX antibody was set up by Yakes et al. [50], while Zamolo et al. developed a sensitive
electrochemiluminescence-based sensor combining the specificity provided by anti-PLTX antibodies
and the electric conductivity of carbon nanotubes [51]. Recently, Fraga et al. set up a cytometry
immunoassay based on the competitive binding of a monoclonal anti-PLTX antibody between PLTX
immobilized on microspheres and PLTX in solution [52]. Another recently developed biosensor
for PLTX detection is an immunoenzymatic assay based on biolayer interferometry coupled with a
competitive binding assay through an enzyme-linked aptamer [53].

Recently, we demonstrated the ability of specific anti-PLTX antibodies to measure and characterize
the binding of PLTX to cultured cells [54]. Using ouabain as a well-known antagonist of PLTX effects
in vitro, this binding seems to occur on Na+/K+ ATPase expressed on the cell surface. Given the
high-affinity binding of PLTX to cells and the ability of a monoclonal anti-PLTX antibody to efficiently
and simply quantify bound PLTX, a novel cell-based immunoenzymatic assay (cell-based ELISA)
for PLTX quantitation was set up and characterized for its sensitivity, accuracy, reproducibility, and
specificity. This novel method was further characterized for its suitability to quantify the toxin
in mussels.

2. Results

2.1. Development and Optimization of the Cell-Based ELISA

The cell-based ELISA was developed starting from the protocol for the characterization of PLTX
binding to cultured cells reported by Pelin et al. [54]. The assay was then optimized through the
following steps: (i) choosing the most sensitive cell line for PLTX binding, (ii) choosing the fixative
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solutions and temperature of cell incubation with the antibodies, (iii) choosing the sequence of
cell fixation and exposure to PLTX, (iv) choosing the blocking agent, and (v) choosing the primary
antibody dilution.

2.1.1. PLTX Binding on Different Cultured Cells

PLTX binding on cultured cells was evaluated using a panel of different cell lines. Cells were
exposed to PLTX for 10 min at 37 ◦C and the toxin binding was subsequently evaluated as described
in the Materials and Methods section. The obtained results for each cell model were normalized on
the protein content of each sample. Figure 1 shows the saturation curves of PLTX binding for each
cell model (panel A). From these curves, Kd values and maximal binding were calculated, and their
distribution was analyzed in the box plot of Figure 1 (panels B and C). A median Kd of 8.1 × 10−10 M
(interquartile range = 2.2 × 10−10 to 2.4 × 10−9 M) and a median maximal binding of 0.015 (interquartile
range = 0.0095 to 0.02738) were calculated. Binding parameters varied between the different cell lines,
and HaCaT cells were the most sensitive cell line, as confirmed by the Kd values and maximal binding
(1.4 × 10−10 M and 0.043, respectively). On the contrary, the less sensitive cell models for PLTX binding
were HepG2 cells (Kd = 6.5 × 10−9 M; maximal binding = 0.009) and MCF-7 cells (Kd = not detectable;
maximal binding = 0.003). For these reasons, the HaCaT cell line was chosen as the most sensitive
model to set up the cell-based ELISA.
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increased signal (optical density, OD) was observed with increased incubation temperature up to 50 
°C, which subsequently decreased at higher temperatures (Figure 2). This trend was recorded also 
varying the following cell fixing agents: 4% paraformaldehyde (PFA), 4% PFA and 1% 
glutaraldehyde, neutral-buffered formalin (NBF) (Figure 2). 

At the optimal temperature of 50 °C, the highest colorimetric reaction signal was recorded using 
4% PFA as fixing agent, followed by NBF (significant differences starting from 1.1 × 10−9 M PLTX as 
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Figure 1. Palytoxin (PLTX) binding evaluated on a panel of different cell lines, detected by a
monoclonal mouse anti-PLTX antibody targeted by horseradish peroxidase (HRP)-conjugated anti-mouse
immunoglobulin G. (A) Saturation curves of PLTX binding. Box plots showing (B) distribution of Kd
values and (C) maximal bindings obtained by the binding assay for PLTX. Results are expressed as mean
± SE of three experiments performed in triplicate.

2.1.2. Incubation Temperature and Fixing Agents

To improve sensitivity, the assay was carried out exposing HaCaT cells to PLTX, varying the
fixing agents and incubation temperature (37–60 ◦C) with the primary and secondary antibodies.
An increased signal (optical density, OD) was observed with increased incubation temperature up to
50 ◦C, which subsequently decreased at higher temperatures (Figure 2). This trend was recorded also
varying the following cell fixing agents: 4% paraformaldehyde (PFA), 4% PFA and 1% glutaraldehyde,
neutral-buffered formalin (NBF) (Figure 2).
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At the optimal temperature of 50 ◦C, the highest colorimetric reaction signal was recorded using
4% PFA as fixing agent, followed by NBF (significant differences starting from 1.1 × 10−9 M PLTX as
compared to the data recorded using 4% PFA, p < 0.05) and 4% PFA + 1% glutaraldehyde (significant
differences starting from 1.2 × 10−10 M PLTX as compared to the data recorded using 4% PFA,
p < 0.01) (Figure 2D). Thus, 4% PFA and 50 ◦C were chosen as the optimal fixing agent and incubation
temperature with antibodies.
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Figure 2. Optimization of the cell-based ELISA. Influence of temperature during cell incubation
with the antibodies on the assay signal, using (A) 4% paraformaldehyde (PFA), (B) 4% PFA + 1%
glutaraldehyde, or (C) neutral-buffered formalin (NBF) as fixative solutions. (D) Influence of the three
fixative solutions on the assay signal with antibody incubation at 50 ◦C. Each point represents mean ±
SE of three experiments. Statistical differences: * p < 0.05; ** p < 0.01; *** p < 0.001 (two-way ANOVA
and Bonferroni post test).

2.1.3. Sequence of Cell Fixation and Exposure to PLTX

The possibility of changing the sequence of cell fixation and exposure to PLTX was also evaluated:
the cell-based ELISA was carried out fixing HaCaT cells with 4% PFA for 30 min before exposure to
PLTX or exposing the cells to the toxin before fixation, as described in the Materials and Methods
section. Figure 3A shows the concentration-dependent curve for PLTX detection recorded in the two
conditions; the optimal condition consists in cell exposure to PLTX before fixation, since the inverted
sequence dramatically decreased the OD values, as expected.

2.1.4. Blocking Agent

The influence of different blocking agents on the assay signal was also evaluated. Figure 3B shows
a PLTX calibration curve obtained using three blocking agents. The highest signal was recorded using
a Tris-borate buffer (TBB) solution containing 10% horse serum (HS) as a blocking agent. A significant
decrease in signal was recorded starting from 1.2 × 10−10 M PLTX using a Tris-buffer saline (TBS)
solution containing 0.2% Tween 20 and 1% or 2% dried milk powder.
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2.1.5. Primary Antibody Dilution

To further increase the signal/background ratio, the influence of different dilutions of the primary
antibody on the assay signal was evaluated. As shown in Figure 3C, no significant differences
were observed among three primary antibody dilutions tested (1:750, 1:1500, and 1:3000). Thus, the
cell-based ELISA was subsequently carried out using the highest dilution (1:3000; 0.5 µg/mL final
concentration) of the primary antibody.
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Figure 3. Optimization of the cell-based ELISA. (A) Temporal change between the fixation phase
(4% PFA) and cell treatment with PLTX (4.1 × 10−11–1.0 × 10−8 M); (B) influence of three blocking
agents on the assay signal; (C) influence of primary antibody dilution on the assay signal. Each point
represents mean ± SE of three experiments. Statistical differences: ** p < 0.01; *** p < 0.001 (two-way
ANOVA and Bonferroni post test).

2.1.6. Optimized Cell-Based ELISA

The optimized protocol of the cell-based ELISA consisted of: (i) exposing HaCaT cells
(1.5 × 104 cells/well) to PLTX (5.1 × 10−13–1.0 × 10−8 M) for 10 min at 37 ◦C, followed by two washes
with PBS; (ii) fixation with 4% PFA (50 µL/well) for 30 min, followed by washing with PBS; (iii) blocking
with TBB buffer containing 10% HS (200 µL/well) for 30 min, followed by two washes with PBS;
(iv) cell incubation with 0.5 µg/mL mouse anti-PLTX monoclonal antibody (mAb) (primary antibody;
100 µL/well) for 1 h at 50 ◦C under gentle agitation; (v) after three washes with PBS containing
0.1% Tween 20 followed by three washes with PBS, cell incubation with 1:6000 HRP-conjugated
anti-mouse IgG (secondary antibody; 100 µL/well) for 1 h at 50 ◦C under gentle agitation; (vi) after
three washes with PBS containing 0.1% Tween 20 and three washes with PBS, cell incubation with
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tetramethylbenzidine (TMB; 60 µL/well) for 20 min at room temperature; (vii) stopping the colorimetric
reaction by 1 M H2SO4 (30 µL/well); and (viii) measuring the optical density at 450 nm.

2.2. Characterization of the Cell-Based ELISA

The cell-based ELISA was subsequently characterized by evaluating the limit of detection (LOD)
and quantitation (LOQ) of PLTX, as well as the accuracy, repeatability, and specificity of the assay.
The calibration curve of PLTX is shown in Figure 4A: the working range is 1.4 × 10−11 to 1.1 × 10−9 M,
whereas the estimated LOD and LOQ of PLTX were 1.2 × 10−11 M (32.2 pg/mL) and 2.8 × 10−11 M
(75.0 pg/mL), respectively. The working range was analyzed by linear regression, plotting the
theoretical PLTX concentrations used in the assay against the measured toxin concentrations, and the
obtained results revealed a good correlation coefficient (r2 = 0.9894; n = 10) (Figure 4B). A mean bias
value of 2.5% (range: −5.1 to 9.8%) was obtained (Table 1).

The intraassay repeatability was estimated over six replicates carried out in one day, while
the interassay repeatability was evaluated over 10 replicates carried out over a six-month period.
Good correlation coefficients were calculated, with r2 = 0.9770 for intraassay and r2 = 0.9985 for
interassay (Figure 5). Moreover, the intraday and interday repeatability coefficients (relative standard
deviation of repeatability, RSDr) were 12% and 15%, respectively (Table 1).
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Table 1. Bias values (%) for PLTX analysis by the cell-based ELISA, intraday (n = 6, 1 day) and interday
(n = 10, 6 months) repeatability (relative standard deviation of repeatability, RSDr %), and mean of
PLTX concentrations measured by the assay.

Theoretical PLTX
Concentration (M) Bias (%)

Intraday Repeatability Interday Repeatability

Mean of Measured PLTX
Concentration (M) RSDr (%) Mean (M) RSDr (%)

1.37 × 10−11 6.9 1.83 × 10−11 8 1.42 × 10−11 14
4.12 × 10−11 −5.1 3.22 × 10−11 10 3.94 × 10−11 6
1.24 × 10−10 −1.6 1.15 × 10−10 12 1.21 × 10−10 15
3.70 × 10−10 2.6 5.01 × 10−10 21 3.80 × 10−10 21
1.11 × 10−9 9.8 1.11 × 10−9 10 1.22 × 10−9 16

Mean 2.5 12 15



Toxins 2018, 10, 329 7 of 16

Toxins 2018, 10, x FOR PEER REVIEW  6 of 15 

 

The calibration curve of PLTX is shown in Figure 4A: the working range is 1.4 × 10−11 to 1.1 × 10−9 M, 
whereas the estimated LOD and LOQ of PLTX were 1.2 × 10−11 M (32.2 pg/mL) and 2.8 × 10−11 M (75.0 
pg/mL), respectively. The working range was analyzed by linear regression, plotting the theoretical 
PLTX concentrations used in the assay against the measured toxin concentrations, and the obtained 
results revealed a good correlation coefficient (r2 = 0.9894; n =10) (Figure 4B). A mean bias value of 
2.5% (range: −5.1 to 9.8%) was obtained (Table 1). 

The intraassay repeatability was estimated over six replicates carried out in one day, while the 
interassay repeatability was evaluated over 10 replicates carried out over a six-month period. Good 
correlation coefficients were calculated, with r2 = 0.9770 for intraassay and r2 = 0.9985 for interassay 
(Figure 5). Moreover, the intraday and interday repeatability coefficients (relative standard deviation 
of repeatability, RSDr) were 12% and 15%, respectively (Table 1). 

 

Figure 4. (A) Calibration curve of cell-based ELISA for PLTX quantitation. Each point represents mean 
± SE of 10 different experiments. (B) Linear regression analysis performed within the working range 
of the cell-based ELISA (1.4 × 10−11 to 1.1 × 10−9 M) by plotting theoretical PLTX concentrations against 
toxin concentrations measured by the cell-based ELISA (n = 10). 

Table 1. Bias values (%) for PLTX analysis by the cell-based ELISA, intraday (n = 6, 1 day) and interday 
(n = 10, 6 months) repeatability (relative standard deviation of repeatability, RSDr %), and mean of 
PLTX concentrations measured by the assay. 

Theoretical PLTX 
Concentration (M) 

Bias (%) 
Intraday Repeatability Interday Repeatability 

Mean of Measured PLTX Concentration (M) RSDr (%) Mean (M) RSDr (%) 
1.37 × 10−11 6.9 1.83 × 10−11 8 1.42 × 10−11 14 
4.12 × 10−11 −5.1 3.22 × 10−11 10 3.94 × 10−11 6 
1.24 × 10−10 −1.6 1.15 × 10−10 12 1.21 × 10−10 15 
3.70 × 10−10 2.6 5.01 × 10−10 21 3.80 × 10−10 21 
1.11 × 10−9 9.8 1.11 × 10−9 10 1.22 × 10−9 16 

Mean 2.5  12  15 

 
Figure 5. Repeatability of the cell-based ELISA. Linear regression analysis performed within the 
working range of the assay (1.4 × 10−11 to 1.1 × 10−9 M) by plotting theoretical PLTX concentrations 
Figure 5. Repeatability of the cell-based ELISA. Linear regression analysis performed within the
working range of the assay (1.4 × 10−11 to 1.1 × 10−9 M) by plotting theoretical PLTX concentrations
against toxin concentrations measured by the cell-based ELISA. (A) Intraday repeatability (one day,
n = 6); (B) interday repeatability (6 months, n = 10).

2.3. Cross-Reactivity with Other Marine Toxins

Cross-reactivity was evaluated by analyzing other marine algal toxins structurally unrelated
to PLTX that can contaminate seafood: yessotoxin, okadaic acid, domoic acid, brevetoxin-3,
saxitoxin, azaspiracid-1, and maitotoxin. These toxins were analyzed by the cell-based ELISA at
concentrations ranging from 1 × 10−12 M to 1 × 10−6 M, and no cross-reactivity was observed
(Supplementary Figure S1).

2.4. Inhibition of PLTX Binding by Ouabain

Ouabain (OUA) is a known inhibitor of PLTX in vitro effects due to its binding to the common
molecular target, Na+/K+ ATPase [54–56]. Thus, to confirm the specific detection of PLTX by the
cell-based ELISA, the assay was performed also exposing the cells to 1 mM OUA for 10 min before
their exposure to PLTX (1.4 × 10−11 to 1.1 × 10−9 M). As can be seen in Figure 6, a significant reduction
of the assay signal was recorded when cells were pre-exposed to 1 mM OUA.
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Figure 6. Effect of cell pre-exposure to ouabain on PLTX detection by the cell-based ELISA. Each point
represents mean ± SE of three different experiments. Statistical differences: *** p < 0.001 as compared
to PLTX (two-way ANOVA and Bonferroni post test).

2.5. Mussel Matrix Effect

The suitability of the cell-based ELISA for quantitation of PLTX in mussels was evaluated by
assessing matrix interference on the assay sensitivity. Dilutions (1:2, 1:5, 1:10, 1:50) of the PLTX-free
mussel extract in PBS were spiked with known PLTX amounts. Each extract was then analyzed by the
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cell-based ELISA and the OD values were compared to those obtained by analyzing the same PLTX
concentrations without matrix. The minimum extract dilution that did not interfere with the assay
was 1:10 (Supplementary Figure S2). At the same dilution, the solvent alone did not interfere with
the assay (data not shown). The linear regression analysis between the results obtained by analyzing
the 10-fold diluted mussel extract spiked with PLTX and those obtained by analyzing the same PLTX
concentrations without matrix (Figure 7) revealed a good correlation coefficient (r2 = 0.9734) and an
excellent mean bias value (mean bias = −1.4%; Table 2). In addition, the estimated LOQ for PLTX in
mussels was 3.5 × 10−11 M, equal to 9.3 µg/kg mussel meat.Toxins 2018, 10, x FOR PEER REVIEW  8 of 15 
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Figure 7. Mussel matrix effect in the cell-based ELISA. Linear regression analysis within the working
range of the cell-based ELISA (1.4 × 10−11 to 1.1 × 10−9 M) performed on 80% aqueous methanol
mussel extract diluted 1:10. Linear regression analysis was performed by plotting theoretical PLTX
concentrations against toxin concentrations measured by the cell-based ELISA.

Table 2. Bias values (%) for PLTX detected in 80% aqueous methanol mussel extract spiked with the
toxin after 1:10 dilution compared to theoretical PLTX concentrations (n = 10).

PLTX Concentration (M) Bias (%)

1.37 × 10−11 −0.3
4.12 × 10−11 −0.6
1.23 × 10−10 1.5
3.70 × 10−10 −4.8
1.11 × 10−9 −3.0

Mean −1.4

2.6. Recovery of PLTX from Mussels

Recovery experiments were carried out to determine the efficiency of extraction and quantitation
of PLTX from mussel meat. Aliquots of PLTX-free mussel homogenate were spiked with PLTX
(1.4 × 10−11 to 1.1 × 10−9 M) and subsequently extracted as described above to obtain extracts
containing 0.1 g meat equivalent/mL. Extracts were diluted 1:10 and analyzed by the cell-based
ELISA. Recovery of PLTX from mussels ranged between 94% and 110% (coefficient of variability:
13–17%; Table 3).
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Table 3. Recovery of PLTX from mussels analyzed by the cell-based ELISA.

PLTX Concentration (M) Recovery (%) Coefficient of Variability (%) No. of Replicas

1.37 × 10−11 99.6 15 5
4.12 × 10−11 101.0 13 5
1.23 × 10−10 93.7 17 5
3.70 × 10−10 110.2 14 5
1.11 × 10−9 101.9 13 5

3. Discussion

In recent years, Ostreopsis cf. ovata has bloomed with increasing frequency in temperate areas such
as the Mediterranean Sea and along the Atlantic coast of Portugal [31,34]. Peculiar climate changes and
marine conditions, high availability of nutrients, and hydrographic conditions characterized by low
wave energy may play important roles in this phenomenon [57]. Concomitant with Ostreopsis blooms,
PLTXs have been detected in microalgae, aerosolized seawater, and edible marine organisms [30,58,59].
Despite no foodborne poisonings being attributed to PLTX and analogues in this area to date, these
toxins can represent a significant public health concern. Therefore, there is a need to develop new
detection methods able to quantify PLTXs in seafood at concentrations lower than the maximum limit
suggested by EFSA (30 µg PLTX/kg of shellfish meat) [35]. Over the years, various detection methods
have been developed, some with limited sensitivity or other limitations, such as significant matrix
effects. We developed a cell-based immunoenzymatic assay (cell-based ELISA) that combines the high
binding potency of PLTX with the sensitivity and specificity provided by anti-PLTX antibody detection
and evaluated it for its ability to accurately quantify PLTX in mussels.

Initially, the sensitivity of different cell lines to PLTX binding was evaluated to select the most
suitable cell line. To this aim, different cell lines derived from colon cancer (LoVo, Caco2, HCT-116),
pancreatic cancer (PANC-1), hepatic cancer (HepG2), and breast cancer (MCF-7, MDA-MB-231) were
considered. In addition, nontumor cell lines were used, such as the HaCaT skin keratinocyte cell
line and the immortalized human hepatic (IHH) cell line. A wide distribution of binding parameters
(Kd and maximal binding) was observed, suggesting a wide sensitivity range among the different
cell lines. Consequently, the HaCaT cell line turned out to be the most sensitive to PLTX binding,
corroborating literature data showing that HaCaT keratinocytes are among the cell models most
sensitive to the toxin [60]. For these reasons, this cell line was chosen as the most suitable model to
develop the cell-based ELISA.

To optimize the method, the influence of the incubation temperature of the antibodies on the
assay signal as well as the effects of different cell fixing agents were evaluated. The highest signal was
obtained using 4% PFA as a fixative solution and incubating the primary and secondary antibodies
at 50 ◦C. The decreased signal recorded after increasing the incubation temperature of the mAb is
probably due to a thermal denaturation of the antibodies [61]. For the fixation phase, we chose
formaldehyde, a commonly used fixative that easily diffuses into cells, allowing optimal fixation [62].

Once the final protocol of the assay was defined, an intralaboratory validation demonstrated
good sensitivity, accuracy, and repeatability. As expected, with the combination of two sensitive
features, PLTX binding to Na+/K+ ATPase of HaCaT cells and its detection by monoclonal antibodies,
the sensitivity of the cell-based ELISA was higher than that of other PLTX immunoassays [46,48].
In addition, this assay was almost 35 time more sensitive than the indirect sandwich ELISA (estimated
LOD = 1.1 ng/mL) developed by our group [47]. With respect to the latter, a significant improvement
was achieved in terms of not only sensitivity but also assay time (less than 3 h compared to about
6 h for the sandwich ELISA). Moreover, the sensitivity of the cell-based ELISA, expressed as LOD
value (estimated at 1.2 × 10−11 M, 32.2 pg/mL) was more than 400 times higher than that of
LC-HRMS [36]. Similarly, the estimated LOD was more than 10-fold more sensitive than an SPR-based
immunoassay [50] and about twofold more sensitive than the carbon nanotube–based biosensor
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(70 pg/mL) developed by Zamolo et al. [51]. On the other hand, the sensitivity of the cell-based ELISA
was lower than that of the immunoassay (0.5 pg/mL) developed by Garet et al. [49], who employed
a single-chain antibody isolated by phage display technology. However, cross-reactivity with other
toxins was not investigated and, as discussed later, the method was affected by variable toxin recovery
from mussels, hindering its use for PLTX quantitation in this matrix.

The specificity of the cell-based ELISA for PLTX was demonstrated by the lack of cross-reactivity
toward other marine algal toxins contaminating seafood [63] and potentially co-occurring with PLTX in
edible marine organisms. Moreover, the interference of mussel extract was minimal, as demonstrated
by the 1:10 extract dilution that did not interfere with the assay. The 80% aqueous methanol was
chosen as an extraction solvent based upon previous studies demonstrating that it is the most suitable
for PLTX extraction as assessed by LC-HRMS [64] and the sandwich ELISA [47]. The estimated LOQ
of the cell-based ELISA for PLTX in mussels was 9.3 µg PLTX/kg mussel meat, about three times lower
than the safety limit suggested by EFSA (30 µg PLTXs/kg of shellfish meat). This result, together with
the excellent toxin recovery from mussels (94–110%), suggests the ability of this novel cell-based ELISA
to quantify PLTX in mussels with good precision. This is further supported by the good recovery
recorded also at very low concentration (1.37 × 10−11 M), even lower than that of the estimated LOQ,
strengthening the ability of the cell-based ELISA to accurately quantify the toxin in mussels at very
low concentrations.

On the contrary, despite its higher sensitivity, the immunoassay of Garet and colleagues [49] suffers
from variable toxin recovery from mussels (64–113%), impairing its suitability for PLTX detection
in this matrix. Similarly, significant interference by mussel matrix was observed for other methods,
such as the hemolytic assay (LOQ = 640 µg PLTX equivalent/kg mussel meat) [42] and the lactate
dehydrogenase–based hemolytic biosensor [43], for which a 1:50 dilution of the mussel extract was
necessary. Furthermore, the sensitivity of the cell-based ELISA to quantify PLTX in mussels is higher
than that of other antibody-based assays, such as the flow cytometry–based immunoassay (LOQ
from 374 to 4430 µg/kg), which required at least a 30-fold extract dilution to avoid matrix effect [50].
In addition, the estimated LOQ of the cell-based ELISA for PLTX in mussels was close to that of other
detection methods, such as the sandwich ELISA (11 µg/kg meat) [47], the carbon nanotube–based
biosensor (2.2 µg/kg meat) [51], and LC-HRMS (15 µg/kg meat) [36]. However, it must be considered
that the cell-based ELISA is a simple, fast, and inexpensive method. Moreover, due to its high
sensitivity in buffer solution, it could be further exploited for its suitability to detect and quantify PLTX
in other matrices.

4. Conclusions

In conclusion, the combination of PLTX binding to Na+/K+ ATPase with PLTX detection by
specific antibodies allowed the development of a novel and sensitive cell-based immunoenzymatic
assay for PLTX detection. This combination resulted in higher sensitivity as compared to other very
sensitive methods. Hence, the cell-based ELISA described here is sensitive, repeatable, and accurate,
and is able to quantify PLTX in mussels at concentrations lower than the maximum limit suggested
by EFSA (30 µg PLTX/kg shellfish meat). Thus, the high sensitivity, specificity, and rapidity make
the cell-based ELISA a suitable method for PLTX screening in mussels during monitoring programs.
Further studies are in progress to characterize the ability of the cell-based ELISA to detect and quantify
PLTX in other frequently contaminated matrices, such as other shellfish, fish, crabs, and other seafood.

5. Materials and Methods

5.1. Chemicals

Palytoxin, isolated from Palythoa tuberculosa (purity > 90%), was purchased from Wako Pure
Chemicals Industries Ltd. (Osaka, Japan). Yessotoxin and maitotoxin were kindly provided by
Prof. T. Yasumoto (Japan Food Research Laboratories, Tokyo, Japan). Brevetoxin-3, saxitoxin, and
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azaspiracid-1 were supplied by Dr. M. Poli (U.S. Army Medical Research Institute of Infectious
Diseases, Ft. Detrick, MD, USA), Dr. F. Van Dolah (National Oceanic and Atmospheric Administration,
Charleston, SC, USA), and Dr. J. Kilcoyne (Marine Institute, Rinville, Oranmore, County Galway,
Ireland), respectively. Okadaic and domoic acids were purchased from Sigma-Aldrich (Milan, Italy).
The mouse monoclonal anti-palytoxin antibody 73D3 (mAb-PLTX) was produced and purified from a
hybridoma cell culture at the U.S. Army Medical Research Institute of Infectious Diseases (Ft. Detrick,
MD, USA). The horseradish peroxidase (HRP)-conjugated anti-mouse immunoglobulin G (IgG)
was purchased from Jackson ImmunoResearch (Newmarket, UK). HaCaT cell line was purchased
from Cell Line Service (DKFZ, Eppelheim, Germany), and all cell culture reagents were purchased
from EuroClone (Milan, Italy). All other reagents were of analytical grade and purchased from
Sigma-Aldrich (Milan, Italy).

5.2. Cell Cultures

HaCaT, PANC-1, and HCT-116 cells were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) high glucose, supplemented with 10% fetal bovine serum, L-glutamine (1.0 × 10−2 M),
penicillin (1.0 × 10−4 g/mL), and streptomycin (1.0 × 10−4 g/mL). HepG2 and Caco2 cells were
maintained in Eagle’s Minimal Essential Medium (EMEM) with the addition of 10% fetal bovine serum
(FBS), L-glutamine (1.0 × 10−2 M), penicillin (1.0 × 10−4 g/mL) and streptomycin (1.0 × 10−4 g/mL),
and 1% sodium pyruvate 100 mM. LoVo, MCF-7, and MDA-MB-231 cells were maintained in
RPMI 1640 containing 10% FBS, L-glutamine (1.0 × 10−2 M), penicillin (1.0 × 10−4 g/mL), and
streptomycin (1.0 × 10−4 g/mL). IHH cells were maintained in DMEM medium-high glucose with
the addition of 10% FBS, 1.25% L-glutamine 200 mM, penicillin (1.0 × 10−4 g/mL) and streptomycin
(1.0 × 10−4 g/mL), 1% HEPES buffer 1 M, 0.01% human insulin 10−4 M, and 0.04% dexamethasone
1 mg/mL.

Cell cultures were maintained according to standard procedures in a humidified incubator at
37 ◦C with 5% CO2, and cell passage was performed at confluence once per week.

5.3. Experimental Design

• Development of the cell-based ELISA. The cell-based ELISA was developed starting from the protocol
used to characterize PLTX binding to cultured cells reported by Pelin et al. [54]. Cells were seeded
in 96-well plates (1.5 × 104 cells/well) and cultured for 3 days. The assay procedure consisted
of the following steps: (i) cell exposure to PLTX (5.1 × 10−13 to 1.0 × 10−8 M) for 10 min at
37 ◦C, followed by washing away unbound toxin with PBS; (ii) cell fixation with 4% PFA for
30 min; (iii) blocking with TBB buffer (50 mM Tris-HCl, 0.15 M NaCl, 2% bovine serum albumin
(BSA), and 0.2% Tween 20, pH 7.5) containing 10% HS for 30 min, followed by washing with
PBS; (iv) incubation with mouse monoclonal anti-PLTX antibody (2 µg/mL; primary antibody)
for 1 h at room temperature (RT) followed by washing with PBS containing 0.1% Tween 20 and
PBS; (v) incubation with 1:6000 HRP-conjugated anti-mouse IgG (secondary antibody) for 1 h at
37 ◦C, followed by washing with PBS containing 0.1% Tween 20 and PBS; (vi) incubation with
60 µL/well of tetramethylbenzidine (TMB) chromogen and hydrogen peroxide substrate for
20 min; (vii) stopping the colorimetric reaction by 1 M H2SO4 (30 µL/well); and (viii) measuring
the optical density at 450 nm (Spectra® photometer, Tecan Italia, Milan, Italy).

• Assay optimization. The assay was optimized by varying the following parameters: (i) type of cell
line, (ii) fixative agents and temperature of incubation with primary and secondary antibodies,
(iii) sequence of cell fixation and cell exposure to PLTX, (iv) blocking agents, and (v) dilution of
the primary antibody.

• Assay characterization. The optimized assay was characterized following the Eurachem Guide [64]
as described in the Statistical Analysis section.
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5.4. Evaluation of Mussel Matrix Effect

The suitability of the cell-based ELISA for PLTX quantitation in mussels was assessed using
different extracts from edible parts of Mytilus galloprovincialis collected in the Gulf of Trieste
(Trieste, Italy). Shucked mussel meat (200 g) was homogenized using an Ultra-Turrax (Ika-Werk;
Staufen, Germany) at 14,000 rpm and room temperature, until a homogeneous pulp was obtained
(about 5 min). Mussel homogenate (1 g) was extracted 3 times with 3 mL 80% aqueous MeOH by
Ultra-Turrax homogenization (14,000 rpm, 3 min) followed by centrifugation at 5500 rpm for 30 min.
The supernatants were then pooled and the volume adjusted to 10 mL with 80% aqueous methanol to
obtain 0.1 g mussel meat equivalent/mL. The extract was analyzed by LC-MS/MS (Thermo-Fisher,
San Josè, CA, USA) to confirm the absence of PLTX before the matrix effect evaluation. Then, dilutions
(1:2, 1:5, 1:10, and 1:50 in PBS, v/v) of the PLTX-free mussel extract were spiked with known PLTX
concentrations to prepare a series of matrix matched samples at PLTX concentrations ranging from
1.4 × 10−11 M to 1.1 × 10−9 M. These samples were then analyzed by the cell-based ELISA and
compared to the same PLTX concentrations in solutions free of mussel matrix.

5.5. Evaluation of PLTX Recovery from Mussels

To evaluate the recovery of PLTX from mussels, samples of the PLTX-free mussel homogenate
were spiked with known amounts of PLTX and then extracted as described above to obtain extracts
containing different theoretic concentrations of PLTX (1.4 × 10−11 to 1.1 × 10−9 M). Each extract was
then analyzed by the cell-based ELISA, as previously described.

5.6. Statistical Analysis

PLTX concentrations are reported as mean ± SE of at least 3 independent experiments performed
in triplicate, unless otherwise specified. For binding experiments, dissociation constant (Kd) was
calculated by a 1-site binding hyperbola nonlinear regression analysis using GraphPad Prism software
version 6.0 (GraphPad, Inc., San Diego, CA, USA). Maximal binding was evaluated as the maximal
optical density (OD) normalized for the µg of proteins of each sample. Linearity (r2) of the calibration
curve was estimated by linear regression analysis, also using GraphPad Prism version 6.0. Data were
compared by 2-way ANOVA followed by Bonferroni post test, and significant differences were
considered at p values < 0.05.

The optimized assay was characterized according to the international principles defined by the
Eurachem Guide [65]: limits of detection (LOD) and quantitation (LOQ) were estimated as PLTX
concentration corresponding to the average of the optical density of 10 blank values plus 3 or 10 times
the standard deviation, respectively. Repeatability was expressed as relative standard deviation of
repeatability (RSDr), measured as % ratio between the standard deviation of independent results and
their mean value. Independent results obtained by the same operator in 1 day (intraassay RSDr; n = 6)
and by different operators within a 6-month period (interassay RSDr; n = 10) were evaluated. Accuracy
was measured as % bias (n = 10), calculated as % difference between PLTX concentration measured by
the assay and the theoretical concentration in the sample divided for theoretical PLTX concentrations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/10/8/329/s1.
Figure S1: Cross-reactivity of cell-based ELISA with other marine toxins, Figure S2: Evaluation of mussel matrix
effect on cell-based ELISA.
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