Next Article in Journal
Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms
Next Article in Special Issue
Accumulation and Biotransformation of Dinophysis Toxins by the Surf Clam Mesodesma donacium
Previous Article in Journal
An Interview with Cesare Montecucco
Previous Article in Special Issue
Effect of Suspended Particulate Matter on the Accumulation of Dissolved Diarrhetic Shellfish Toxins by Mussels (Mytilus galloprovincialis) under Laboratory Conditions
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Toxins 2018, 10(8), 308; https://doi.org/10.3390/toxins10080308

Detoxification- and Immune-Related Transcriptomic Analysis of Gills from Bay Scallops (Argopecten irradians) in Response to Algal Toxin Okadaic Acid

1
Laboratory of Aquatic Nutrition and Ecology, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
2
Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, Korea
*
Author to whom correspondence should be addressed.
Received: 29 May 2018 / Revised: 24 July 2018 / Accepted: 26 July 2018 / Published: 28 July 2018
(This article belongs to the Special Issue Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts)
Full-Text   |   PDF [4761 KB, uploaded 28 July 2018]   |  

Abstract

To reveal the molecular mechanisms triggered by okadaic acid (OA)-exposure in the detoxification and immune system of bay scallops, we studied differentially-expressed genes (DEGs) and the transcriptomic profile in bay scallop gill tissue after 48 h exposure to 500 nM of OA using the Illumina HiSeq 4000 deep-sequencing platform. De novo assembly of paired-end reads yielded 55,876 unigenes, of which 3204 and 2620 genes were found to be significantly up- or down-regulated, respectively. Gene ontology classification and enrichment analysis of the DEGs detected in bay scallops exposed to OA revealed four ontologies with particularly high functional enrichment, which were ‘cellular process’ (cellular component), ‘metabolic process’ (biological process), ‘immune system process’ (biological process), and ‘catalytic process’ (molecular function). The DEGs revealed that cyclic AMP-responsive element-binding proteins, acid phosphatase, toll-like receptors, nuclear erythroid 2-related factor, and the NADPH2 quinone reductase-related gene were upregulated. In contrast, the expression of some genes related to glutathione S-transferase 1, C-type lectin, complement C1q tumor necrosis factor-related protein, Superoxide dismutase 2 and fibrinogen C domain-containing protein, decreased. The outcomes of this study will be a valuable resource for the study of gene expression induced by marine toxins, and will help understanding of the molecular mechanisms underlying the scallops’ response to OA exposure. View Full-Text
Keywords: harmful algal blooms; okadaic acid; Argopecten irradians; transcriptomic response; deep sequencing harmful algal blooms; okadaic acid; Argopecten irradians; transcriptomic response; deep sequencing
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Chi, C.; Giri, S.S.; Jun, J.W.; Kim, S.W.; Kim, H.J.; Kang, J.W.; Park, S.C. Detoxification- and Immune-Related Transcriptomic Analysis of Gills from Bay Scallops (Argopecten irradians) in Response to Algal Toxin Okadaic Acid. Toxins 2018, 10, 308.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top