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Abstract: Diosmin is a nutrient that is widely contained in citrus and that has been indicated to
improve glucose metabolism in diabetic disorders. Recently, we demonstrated that diosmin induces
β-endorphin to lower hyperglycemia in diabetic rats. However, the mechanisms of diosmin in opioid
secretion were unclear. Therefore, we focused on the secretion of opioids from isolated adrenal
glands induced by diosmin. The changes in the released β-endorphin-like immunoreactivity (BER)
were determined using ELISA. Diosmin increased the BER level in a dose-dependent manner, and
this effect was markedly reduced in the absence of calcium ions. Activation of the imidazoline
I-2 receptor (I-2R) has been introduced to induce opioid secretion. Interestingly, we observed that
diosmin activates CHO cells expressing I-R. Additionally, diosmin-increased BER was inhibited
by the blockade of I-2R in isolated adrenal glands. Additionally, an antagonist of I-2R blocked
diosmin-induced effects, including the reduction in hyperglycemia and the increase in plasma BER
in streptozotocin-induced diabetic rats (STZ-diabetic rats). Repeated treatment of STZ-diabetic rats
with diosmin for one week induced changes in hepatic glycogen, lipid levels, and the expression
of phosphoenolpyruvate carboxykinase (PEPCK). Furthermore, an antagonist of I-2R blocked the
diosmin-induced changes. Additionally, plasma lipids modified by diosmin were also reversed by
the blockade of I-2R in STZ-diabetic rats. Taken together, we suggest that diosmin may activate I-2R
to enhance the secretion of β-endorphin from adrenal glands and to influence metabolic homeostasis,
resulting in alleviation of blood glucose and lipids in STZ-diabetic rats.
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1. Introduction

Diabetes is a major public health problem throughout the world. The classic symptoms of diabetes
include polydipsia, polyuria, polyuria, weight loss, fatigue, irritability, and blurred vision. Currently
available therapies for diabetes include insulin and hypoglycemic agents. Therefore, the search for
more effective and safer hypoglycemic agents is important. Recently, some natural products have
been documented to be useful in the treatment of diabetes. Diosmin, a natural flavone glycoside
(diosmetin 7-rutinoside; PubChem CID 5281613), is contained mainly in citrus [1] and it shows
antihyperglycemic [2] and anticancer effects [3], in addition to anti-inflammatory and antioxidant-like
actions [4]. In type-2 diabetic animals, diosmin attenuated hyperglycemia and increased insulin
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secretion [5]. A new complex, Zndiosmin, has also been developed to improve another model of type-2
diabetic rats [6]. Recently, we demonstrated that diosmin induces β-endorphin secretion from the
adrenal gland to reduce hyperglycemia in streptozotocin-induced diabetic rats (STZ-diabetic rats) [7].
However, the mechanisms of action of diosmin remain unknown.

As described previously [8], β-endorphin, which is involved in the lowering of hyperglycemia,
was induced by herbal products including flavonoids in STZ-diabetic rats, an animal model of type-1
diabetes. The secretion of β-endorphin from the adrenal gland is mainly regulated by imidazoline
receptors [9]. Therefore, we are interested in understanding the role of the imidazoline receptor
(I-R) in the effects of diosmin. The present study focused on this and was designed to confirm our
hypothesis that diosmin activates I-R to induce opioid secretion for the reduction of hyperglycemia in
STZ-diabetic rats.

2. Materials and Methods

2.1. Materials

Diosmin (purity > 94%) and streptozotocin (purity > 98%) were purchased commercially from
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). The commercial kit for β-endorphin-like
immunoreactivity (BER) was purchased from Peninsula Laboratories (Belmont, CA, USA). The
ECL-Western blotting system was purchased from Amersham Biosciences UK, Ltd. (Buckinghamshire,
UK). The stock solution of diosmin was prepared in dimethylsulfoxide (DMSO). A fresh solution
diluted with 9% normal saline to the indicated dose was then employed to treat the animals.

2.2. Animal Model

Male Sprague–Dawley (SD) rats weighing 250 to 280 g were obtained from the National Laboratory
Animal Center (Taipei, Taiwan). STZ-diabetic rats were induced by intravenous injection (i.v.) of STZ
(65 mg/kg), as described previously [10]. Animals were considered diabetic if they had a plasma
glucose concentration of 310 mg/dL or greater, in addition to polyuria and other diabetic features.
All studies were performed two weeks after the injection of STZ. All experiments were performed
under anesthesia with sodium pentobarbital (35 mg/kg) via intraperitoneal injection (i.p.), and all
efforts were made to minimize animal suffering. All experimental procedures performed in studies
involving animals were approved by the Local Ethics Commission for Animal Experiments of Chi-Mei
Medical Center (No. 105110331) and were in accordance with the 1996 NIH Guide for the Care and
Use of Laboratory Animals.

2.3. Experimental Design

Normal and STZ-diabetic rats were divided into five groups with eight rats in each. Group 1,
normal rats received saline; Group 2, STZ rats received saline; Group 3, STZ rats received diosmin
(160 mg/kg, i.p.); Group 4, STZ rats received a 30-pretreatment with BU224 (0.5 mg/kg, i.p.) and then
administered with diosmin (160 mg/kg, i.p.), Group 5, STZ rats pretreated with BU224 (1 mg/kg, i.p.)
30 min before the administration of diosmin (160 mg/kg, i.p.). In continuous study, all treatments
were performed once daily for 7 days, as described previously [7].

The food intake and bodyweight were measured daily. Blood glucose level was determined using
the overnight fasted animals. Rats were anesthetized with sodium pentobarbital (35 mg/kg, i.p.), and
blood samples were collected from the tail vein. Then, the rats were sacrificed by cervical dislocation,
and the liver was isolated and stored at −80 ◦C for subsequent analysis.

2.4. Determination of Plasma Glucose, Insulin, Lipid, and BER Levels

The concentration of plasma glucose was measured by the glucose oxidase method using an
analyzer (Quik-Lab, Ames, IA, USA; Miles Inc., Elkhart, IN, USA). The insulin level was examined
using a Mercodia insulin ELISA kit (Mercodia AB, Uppsala, Sweden). Total lipids in liver were
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extracted according to the previous method [11]. The levels of lipids were determined using a Fuji
Dri-Chem Slide TCHO for cholesterol and a Slide TG for triglyceride to read in a machine of Fuji
Dri-Chem 400i (Fujifilm, Tokyo, Japan). In addition, the concentration of BER was estimated using a
commercially available ELISA kit (Peninsula Laboratories, Belmont, CA, USA).

2.5. Glycogen Extraction and Assay

For glycogen extraction, frozen liver tissue (10 mg) was homogenized in 200 µL of ice-cold water.
Equal amount (5 µL) of the tissue lysates was used for assay of glycogen content using a Glycogen
Assay Kit (Abcam, Cambridge, MA, USA).

2.6. Isolation of Adrenal Gland

The adrenal glands were obtained from STZ-diabetic rats after sacrificed, and the medullae were
immediately dissected as described previously [9]. Tissues were placed in an incubator for a 15 min
pre-incubation at 37 ◦C and bubbled with air (95% O2 and 5% CO2) under continuous agitation
with 2 mL modified Krebs solution, as in our previous method [9]. Calcium-free Krebs solution was
prepared in the same manner, except for the addition of calcium chloride, meaning that calcium ion
was not included. Then, the tissues were transferred to fresh incubation tubes with or without an
antagonist of imidazoline I-2 receptor (I-2R), incubated for 15 min at 37 ◦C, and further incubated with
diosmin for another 30 min under continuous agitation (40 cycles/min) [9]. Placing the tubes on ice
terminated the incubation. The incubated medium was then collected and frozen at −70 ◦C until the
assay for β-endorphin-like immunoreactivity (BER).

2.7. Cell Cultures

CHO-K1 cells (BCRC No. CCL-61) purchased from the Culture Collection and Research Center of
the Food Industry Institute (Hsin-Chiu City, Taiwan) were maintained in growth medium composed
of F-12K supplemented with 10% fetal bovine serum. Cells were subcultured once every 3 days by
trypsinization (GIBCO-BRL Life Technologies, Gaithersburg, MD, USA), and the medium was changed
every 2–3 days.

2.8. Transfection of Imidazoline Receptor Gene in CHO-K1 Cells

Nischarin (NISCH) is a mouse homolog of human imidazoline receptor antisera-selective (IRAS)
protein, which binds to the cytoplasmic domain of integrin α5/β1 [12] and may serve as a functional
imidazoline receptor [13]. Following our previous method [13], CHO-K1 cells were transiently
transfected with NISCH and an expression vector (NISCH (Myc-DDK-tagged)-Human nischairn,
Origene, Rockville, MD, USA) using the TurboFect transfection reagent (Thermo Fisher Scientific,
Waltham, MA, USA). After 24 h of incubation, the cells were administrated with diosmin at the
determined concentrations. Successful transfection of CHO-K1 cells with the I-R gene (NISCH) was
confirmed with Western blots.

2.9. Measurement of Intracellular Calcium Concentrations

The changes in the intracellular calcium concentration were detected using the fluorescent probe
fura-2 [14]. NISCH-CHO-K1 cells were placed in a buffered physiological saline solution (PSS) as
described previously [13]. Fura 2 (5 mM) was added to 1 mL of the cell suspension (1 × 106 cells)
and incubated for 30 min at 37 ◦C in the dark. The fluorescence was continuously recorded using a
fluorescence spectrofluorometer (Hitachi F-2000, Tokyo, Japan). Values of [Ca2+]i were then determined,
and the background measured in unloaded cells was subtracted from all measurements according to
our previous report [13].
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2.10. Western Blotting Analysis

The expression of NISCH in CHO cells was examined using Western blots, according to our recent
report [15]. The CHO cells (1 × 106 cells) were lysed in 1 mL of the ice-cold lysis buffer. Moreover,
liver tissues were homogenated for assaying of PEPCK expression, as described in our previously
report [7]. Briefly, the protein extraction was performed with ice-cold radio-immuno-precipitation
assay (RIPA) buffer, and the BCA protein assay (Thermo Fisher Scientific Inc., Waltham, MA,
USA) was used to determine the extracted protein concentrations. Then, protein samples (30 µg)
were subjected to SDS-polyacrylamide gel electrophoresis (PAGE) (10% acrylamide gel) and were
transferred to membranes using a Bio-Rad Trans-Blot system. The membranes were blocked with
5% non-fat milk, similar to our previous method [15], and then hybridized with a primary antibody
specific to NISCH (Origene, Rockville, MD, USA) or PEPCK (Santa Cruz Biotechnology, Dallas, TX,
USA) for 16 h. The membranes were then incubated with secondary antibodies for a further 3 h.
Finally, the antigen–antibody complexes were detected using an ECL kit (Amersham Biosciences,
Buckinghamshire, UK). Then, β-actin (Merck Millipore, Darmstadt, Germany) was used as an internal
control. After the presence of the marker was verified for specificity, the immunoblots for NISCH
(37 kDa), PEPCK (62 kDa) and β-actin (43 kDa) were quantified using a laser densitometer.

2.11. Statistical Analysis

The plasma glucose-lowering activity of diosmin is displayed as the percentage of the decrease in
value from the initial glucose level, as described in our previous report [16]. The data are expressed
as the mean ± standard error of the mean (SEM). Statistical analyses among multiple groups were
analyzed via one-way ANOVA. Multiple comparisons were conducted via post hoc Newman–Keuls
tests. The datasets of two sample groups were analyzed with independent Student’s t-tests. The
statistical analysis software used was SPSS 21. A p-value of 0.05 or less was considered significant.

3. Results

3.1. Effect of Diosmin on BER Secretion from Adrenal Glands

In isolated adrenal glands, diosmin induced a marked increase of BER secretion in a
dose-dependent manner (Figure 1A). However, the effectiveness of diosmin was significantly reduced
in calcium-free medium (Figure 1A), indicating that the BER secretion from adrenal glands induced by
diosmin is calcium dependent.

Pretreatment with BU224, an established antagonist of I-2 receptors, inhibited the effects of
diosmin in a dose-dependent manner (Figure 1B). Additionally, the inhibitory effect of BU224
disappeared after washout, and no irreversible attenuation was observed in the adrenal glands.

3.2. Effect of Diosmin on Calcium Concentration in NISCH-CHO-K1 Cells

Following our previous method [13], the exogenous NISCH gene was transfected into CHO-K1
cells. Success of the transfection was confirmed using Western blots, as shown in the upper section of
Figure 2. The expression I-R in NISCH-CHO-K1 cells is functional, as described previously [13].

Next, the possible effect of diosmin on I-R was evaluated. After incubation with diosmin, the
calcium concentration was markedly raised in NISCH-CHO-K1 cells in a dose-dependent manner
(Figure 2). However, the increase in intracellular calcium concentration by diosmin was not observed
in the untransfected CHO-K1 cells (Figure 2). Therefore, a direct effect of diosmin on I-R has
been identified.
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Figure 1. Effect of diosmin on β-endorphin secretion in isolated adrenal glands. (A) Dose-dependent 
increases in β-endorphin secretion induced by diosmin at indicated concentrations from adrenal 
glands in normal medium (solid line) is markedly different with that of adrenal glands incubated in 
calcium-free medium (broken line); (B) Basal β-endorphin secretion (1st column) was increased by 
diosmin (160 mg/kg), shown in the 2nd column, and this action was dose-dependently blocked by 
BU224 (columns 3 and 4) in isolated adrenal glands. The values are presented as mean ± SEM (n = 8). 
(A) * p < 0.05 and ** p < 0.01 compared with basal level without treatment. # p < 0.05 compared with the 
value from samples incubated at the same concentration in normal medium; (B) * p < 0.05 and ** p < 
0.01 compared with the basal level in the 1st column. # p < 0.05 and ## p < 0.01 compared with the value 
showing treatment with diosmin (2nd column) only. 

 

Figure 2. Direct effect of diosmin on imidazoline receptors (I-R) in Chinese hamster ovary (CHO-K1) 
cells. Successful transfection of CHO-K1 cells with the I-R gene (NISCH) is confirmed with Western 
blots in the upper figure. There is a dose-dependent elevation in calcium content by diosmin in 
NISCH-transfected CHO-K1 cells (NISCH-CHO-K1 Cells) compared with cells transfected with 
empty vector (CHO-K1 Cells). The values are presented as mean ± SEM (n = 8). * p < 0.05 and ** p < 
0.01 vs. the vehicle-treated group (0 mol/L). # p < 0.05. vs. the values of NISCH-CHO-K1 Cells. 

3.3. Effects of an I-2R Blockade on Diosmin-Induced Changes in Plasma Glucsoe and BER Levels in 
STZ-Diabetic Rats  

As in our previous report [7], diosmin produced a glucose-lowering effect in STZ-diabetic rats. 
Then, a 30 min pretreatment with BU224, an I-2R antagonist, was performed for comparison with 
the vehicle-treated control. As shown in Figure 3A, hyperglycemia attenuated by diosmin was 
reversed by BU224 in a dose-dependent fashion. Otherwise, the plasma insulin level, which 
significantly decreased in STZ-diabetic rats, was not influenced by the acute treatment with diosmin 
[7]. Moreover, plasma BER, which increased with diosmin treatment, was also attenuated by BU224 

Figure 1. Effect of diosmin on β-endorphin secretion in isolated adrenal glands. (A) Dose-dependent
increases in β-endorphin secretion induced by diosmin at indicated concentrations from adrenal
glands in normal medium (solid line) is markedly different with that of adrenal glands incubated in
calcium-free medium (broken line); (B) Basal β-endorphin secretion (1st column) was increased by
diosmin (160 mg/kg), shown in the 2nd column, and this action was dose-dependently blocked by
BU224 (columns 3 and 4) in isolated adrenal glands. The values are presented as mean ± SEM (n = 8).
(A) * p < 0.05 and ** p < 0.01 compared with basal level without treatment. # p < 0.05 compared with
the value from samples incubated at the same concentration in normal medium; (B) * p < 0.05 and
** p < 0.01 compared with the basal level in the 1st column. # p < 0.05 and ## p < 0.01 compared with the
value showing treatment with diosmin (2nd column) only.
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Figure 2. Direct effect of diosmin on imidazoline receptors (I-R) in Chinese hamster ovary (CHO-K1)
cells. Successful transfection of CHO-K1 cells with the I-R gene (NISCH) is confirmed with Western
blots in the upper figure. There is a dose-dependent elevation in calcium content by diosmin in
NISCH-transfected CHO-K1 cells (NISCH-CHO-K1 Cells) compared with cells transfected with empty
vector (CHO-K1 Cells). The values are presented as mean ± SEM (n = 8). * p < 0.05 and ** p < 0.01 vs.
the vehicle-treated group (0 mol/L). # p < 0.05. vs. the values of NISCH-CHO-K1 Cells.

3.3. Effects of an I-2R Blockade on Diosmin-Induced Changes in Plasma Glucsoe and BER Levels in
STZ-Diabetic Rats

As in our previous report [7], diosmin produced a glucose-lowering effect in STZ-diabetic rats.
Then, a 30 min pretreatment with BU224, an I-2R antagonist, was performed for comparison with the
vehicle-treated control. As shown in Figure 3A, hyperglycemia attenuated by diosmin was reversed
by BU224 in a dose-dependent fashion. Otherwise, the plasma insulin level, which significantly
decreased in STZ-diabetic rats, was not influenced by the acute treatment with diosmin [7]. Moreover,
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plasma BER, which increased with diosmin treatment, was also attenuated by BU224 in same manner
(Figure 3B). Therefore, it is reasonable to speculate that the effects of diosmin are associated with I-2R
in STZ-diabetic rats.
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Figure 3. Effects of diosmin on plasma glucose and β-endorphin levels were inhibited by the blockade
of I-2 receptors using an antagonist. (A) Hyperglycemia (1st column) was reduced by diosmin, shown
in the 2nd column, and this effect was dose-dependently inhibited by the blockade of I-2R using
the antagonist BU224 (columns 3 and 4) in diabetic rats; (B) Plasma β-endorphin (1st column) was
increased by diosmin (2nd column), and this effect was dose-dependently inhibited by the blockade
of I-2R using the antagonist BU224 (columns 3 and 4) in diabetic rats. The values are presented as
mean ± SEM (n = 8). * p < 0.05 and ** p < 0.01 compared with the indicated basal level of vehicle-treated
diabetic rats in the 1st column. # p < 0.05 and ## p < 0.01 compared with the value resulting from the
treatment with diosmin (2nd column) only.

3.4. Effect of Diosmin on Plasma Glucose and Insulin Levels, Body Weight, and Food Intake in
STZ-Diabetic Rats

After a 7-day continuous treatment of diosmin in STZ-diabetic rats, the hyperglycemia was
significantly improved as compared to vehicle-treated group (p < 0.05). However, the plasma insulin
level, body weight, and food intake were not changed by diosmin, compared with the vehicle-treated
group Table 1.

Table 1. Effects of diosmin on the changes in blood glucose and insulin levels, body weight, and food
intake in rats.

Group Control
(160/mg/kg/Day) STZ STZ + Diosmin

Blood glucose (mg/dL) 110.24 ± 7.23 339.83 ± 16.72 ** 273.86 ± 16.07 **#

Plasma Insulin (µU/mL) 11.54 ± 2.22 2.32 ± 0.63 ** 2.27 ± 0.78 **
Body weight (g) 358.24 ± 17.01 319.14 ± 12.25 ** 316.78 ± 13.77 **

Values are means ± SD (n = 8). Diosmin (160 mg/kg) was treated once daily for seven days. * p < 0.05 and ** p < 0.01
compared with the values obtained from the normal rats (control). # p < 0.05 compared with the values obtained
from the vehicle-treated STZ-induced diabetic rats (STZ).

3.5. Effects of I-2R Blockade on Diosmin-Induced Changes in Hepatic Glycogen Level in STZ-Diabetic Rats

Repeated treatment of STZ-diabetic rats with diosmin (160 mg/kg) once daily for one week
resulted in a marked reduction of hyperglycemia as described in our previous report [7]. In the
present study, hepatic glycogen level was markedly reduced in STZ-diabetic rats (Figure 4A). Repeated
treatment with diosmin significantly increased hepatic glycogen levels. Moreover, pretreatment of
diabetic rats with BU224 inhibited this effect of diosmin (Figure 4A). Otherwise, PEPCK is a key
enzyme in the regulation of glucose synthesis in the liver [17]. Consistent to a previous report [18],
hepatic PEPCK expression was increased in diabetic animals. Similar to our previous report [7], one
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week treatment with diosmin (160 mg/kg/day) attenuated the increased expression of PEPCK in the
liver of diabetic rats. Additionally, the diosmin-inhibited PEPCK expression was also reversed by
pretreatment with BU224 at the dose (1 mg/kg) sufficient to block I-2R (Figure 4B). Moreover, lipid
levels in the livers (mg/g tissue) were also markedly increased in diabetic rats; the total cholesterol
level was significantly (p < 0.05) raised form 7.02 ± 0.79 mg/g (n = 8) to 14.28 ± 1.24 mg/g (n = 8).
Diosmin treatment (160 mg/kg/day for one week) attenuated it to 7.15 ± 0.85 mg/g (n = 8) that
was also reversed by pretreatment with BU224 (1 mg/kg) to 14.14 ± 1.19 mg/g (n = 8). Similarly,
hepatic triglyceride level was modified by diosmin in the same manner; the increased triglyceride
(6.63 ± 0.75 mg/g) in diabetic rats (n = 8), compared to normal level (3.37 ± 0.69 mg/g; n = 8), was
markedly (p < 0.05) reduced to 3.69 ± 0.69 mg/g (n = 8) by diosmin treatment. However, BU224
pretreatment also reversed the effects of diosmin to 6.11 ± 0.82 mg/g (n = 8) in diabetic rats.
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level was markedly elevated in STZ-diabetic rats (Figure 5A). Similar to the changes in plasma 
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Figure 4. Effects of diosmin on the hepatic glycogen level was reduced by the blockade of I-2 receptors
using an antagonist. (A) Hepatic glycogen (1st column) was reduced in diabetic rats (2nd column),
and was increased by diosmin, shown in the 3rd column. This effect was dose-dependently inhibited
by the blockade of I-2R using the antagonist BU224 (columns 4 and 5). The values are presented as
mean ± SEM (n = 8). * p < 0.05 and ** p < 0.01 compared with the basal value from vehicle-treated
normal rats shown in the 1st column. # p < 0.05 and ## p < 0.01 compared with the value resulting
from the treatment with diosmin (3rd column) only; (B) The expression of PEPCK in livers after same
treatment with diosmin while the representative expression was showed in the upper. * p < 0.05
compared with the basal value from vehicle-treated normal rats shown in the 1st column. # p < 0.05
compared with the value in the vehicle-treated diabetic rats (2nd column).

3.6. Effects of an I-2R Blockade on Diosmin-Induced Changes in Plasma Lipid Level in STZ-Diabetic Rats

We also isolated blood samples from STZ-diabetic rats that received the repeated treatment with
diosmin (160 mg/kg) once daily for one week to assay the plasma lipids. The plasma cholesterol level
was markedly elevated in STZ-diabetic rats (Figure 5A). Similar to the changes in plasma glucose, the
total cholesterol level was significantly attenuated by diosmin, and this effect was reversed by BU224
in a dose-dependent manner (Figure 5A). Additionally, the same changes in plasma triglyceride level
were observed in STZ-diabetic rats (Figure 5B).
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Figure 5. Effects of diosmin on the plasma lipid level was reduced by the blockade of I-2 receptors
using an antagonist. Plasma cholesterol (A) and triglyceride (B) levels shown in the 1st column, which
was elevated in diabetic rats (2nd column), was inhibited by diosmin, as shown in the 3rd column, and
this effect was dose-dependently reversed by the blockade of I-2R using the antagonist BU224 (column
4th and 5th). The values are presented as mean ± SEM (n = 8). * p < 0.05 and ** p < 0.01 compared
with the indicated basal value in vehicle-treated normal rats as shown in the 1st column. # p < 0.05 and
## p < 0.01 compared with the value resulting from the treatment with diosmin (3rd column) only.

4. Discussion

In the present study, we identified the mechanism of I-2R in the effects of diosmin via
intraperitoneal injection in STZ-diabetic rats, an established type-1 diabetes animal model with
insulin-deficiency [19]. Additionally, we demonstrated the direct effect of diosmin on I-R using
the cells that received the transfection to express I-R.

It has been indicated that diosmin induces the reduction of hyperglycemia in STZ-diabetic rats
through β-endorphin secreted from the adrenal gland [7]. Thus, following our previous method [20],
we isolated the adrenal glands to investigate the potential mechanisms of diosmin. A dose-dependent
increase in β-endorphin secretion from the isolated adrenal gland was observed in diosmin-treated
samples, consistent with our previous report [7]. Additionally, β-endorphin secretion by diosmin was
induced in a calcium-dependent manner, which is fully the same as described in a previous review [21].
Moreover, the regulatory role of I-2R in opioid secretion has been implicated in the adrenal gland [9].
Then, we applied the well-known antagonist of I-2R, BU224 [22], to confirm it. Effects of diosmin were
markedly inhibited by the pretreatment with BU224 in a dose-dependent manner. Pharmacologically,
it can be speculated that the mediation of I-2R is one of the effects of diosmin. Also, the I-R gene was
transfected into CHO cells to prepare a functional receptor. The direct effect of diosmin on calcium
influx was identified using the CHO cells expressing I-R. Therefore, for the first time, we demonstrated
that diosmin effectively activates I-R.

Imidazoline receptors (I-R), also known as imidazoline/guanidinium receptive sites, are known
as G-protein-coupled receptors (GPCRs) associated with glucose metabolism in peripheral tissues [23].
Three subtypes of I-R have been characterized: I-1 receptor (I-1R) activation regulates blood
pressure [24], I-3 receptor (I-3R) mediates insulin release [25], and I-2 receptor (I-2R) activation
increases glucose uptake into muscle cells [26,27]. However, the receptor protein of I-R is still not
cloned, and most researchers used Nischarin (NISCH), a mouse homologue of human imidazoline
receptor antisera-selective (IRAS) protein, instead, as described previously [13]. In the present study,
we identified diosmin as an agonist of I-2R in diabetic rats. An antagonist of I-2R blocked the reduction
of hyperglycemia and increase in plasma opioids induced by diosmin in a dose-dependent manner.
Furthermore, diosmin alleviated the decrease in hepatic glycogen and attenuated the increased hepatic
expressions of PEPCK, as described in our previous report [7], in diabetic rats that were also reversed
by the blockade of I-2R. Similar changes were observed in hepatic lipids, and diosmin-induced
inhibitions were reversed by antagonist of I-2R in STZ-diabetic rats. Therefore, it is reasonable to
conclude that diosmin induces opioid secretion from adrenal gland via activation of I-2R to inhibit
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hepatic gluconeogenesis, resulting in the recovery of hepatic glycogen, which was decreased in diabetic
rats. Similarly, plasma lipids, which were increased in diabetic rats, were also reduced by diosmin,
and this effect was also pharmacologically inhibited by the I-2R blockade. Taken together, diosmin
improves metabolic disorders mainly through an activation of I-2R in diabetic rats, particularly in the
insulin-deficient state [28].

Similar to our results, oral treatment with diosmin (100 mg/kg/day) for 45 days showed
a marked amelioration of STZ-induced diabetes in rats [5]. In the clinic [29], diosmin is used
to treat hemorrhoids under the generic name daflon (Lab. Servier, Orléans, France). After oral
administration of 10 mg/kg diosmin to healthy volunteers for 1 h, the concentration of diosmin in
human plasma was 417 ± 94.1 ng/mL, which was slowly decreased after 2 h [30]. In addition to
anti-inflammatory effects [31], diosmin reinforces venous tone by prolonging the activity of parietal
norepinephrine [32]. Basically, diosmin belongs to a safety profile in animal studies [33] and is included
in the European Pharmacopoeia. Diosmin has been clinically introduced for the treatment of venous
insufficiency [34]. Diosmin has also been found to improve venous tone [35] and protect capillary bed
microcirculation [36]. Additionally, oral administration of diosmin for 7 days (50 or 100 mg/kg/day)
improved the cardiac functions in an ischemia–reperfusion-related cardiac dysfunction model [37].
Cardiovascular dysfunction is a common complication in diabetes [38], and diosmin seems not
only to be useful for reducing hyperglycemia, but also to be advantageous for the improvement of
cardiovascular disorders. Although diosmin alleviates diabetes in the present study, the effective dose
of diosmin in diabetic patients is still unclear. Therefore, the useful dose of diosmin in diabetes shall
be evaluated in future work. Moreover, whether the clinical merit of diosmin is associated with I-R
should be investigated in the future.

5. Conclusions

The data obtained suggest that diosmin may enhance the secretion of endogenous β-endorphin
from adrenal glands via activation of I-2R in STZ-diabetic rats. The reduction of hyperglycemia by
diosmin is produced mainly through the released β-endorphin, which can activate opioid receptors
to attenuate gluconeogenesis in the liver. Therefore, the low hepatic glycogen was raised by diosmin
via I-2R activation in STZ-diabetic rats. Additionally, plasma lipids were also alleviated by diosmin
through I-2R activation in same manner. Taken together, diosmin is suitable for development as an
adjuvant to reduce hyperglycemia and plasma lipids in diabetes and/or other disorders.
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