Next Article in Journal
Seabuckthorn Leaves Extract and Flavonoid Glycosides Extract from Seabuckthorn Leaves Ameliorates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obesity
Next Article in Special Issue
Effect of n-3 Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers in Type 2 Diabetes Mellitus Patients
Previous Article in Journal
Toxoplasma Gondii Moderates the Association between Multiple Folate-Cycle Factors and Cognitive Function in U.S. Adults
Previous Article in Special Issue
Effects of Ketogenic Diets on Cardiovascular Risk Factors: Evidence from Animal and Human Studies
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Nutrients 2017, 9(6), 565; doi:10.3390/nu9060565

Leucine Supplementation Differently Modulates Branched-Chain Amino Acid Catabolism, Mitochondrial Function and Metabolic Profiles at the Different Stage of Insulin Resistance in Rats on High-Fat Diet

Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
*
Author to whom correspondence should be addressed.
Received: 3 April 2017 / Revised: 25 May 2017 / Accepted: 26 May 2017 / Published: 2 June 2017
(This article belongs to the Special Issue Nutrition and Diet Factors in Type 2 Diabetes)
View Full-Text   |   Download PDF [4726 KB, uploaded 2 June 2017]   |  

Abstract

The available findings concerning the association between branched-chain amino acids (BCAAs)—particularly leucine—and insulin resistance are conflicting. BCAAs have been proposed to elicit different or even opposite effects, depending on the prevalence of catabolic and anabolic states. We tested the hypothesis that leucine supplementation may exert different effects at different stages of insulin resistance, to provide mechanistic insights into the role of leucine in the progression of insulin resistance. Male Sprague-Dawley rats were fed a normal chow diet, high-fat diet (HFD), HFD supplemented with 1.5% leucine, or HFD with a 20% calorie restriction for 24 or 32 weeks. Leucine supplementation led to abnormal catabolism of BCAA and the incompletely oxidized lipid species that contributed to mitochondrial dysfunction in skeletal muscle in HFD-fed rats in the early stage of insulin resistance (24 weeks). However, leucine supplementation induced no remarkable alternations in BCAA catabolism, but did enhance mitochondrial biogenesis with a concomitant improvement in lipid oxidation and mitochondrial function during the hyperglycaemia stage (32 weeks). These findings suggest that leucine trigger different effects on metabolic signatures at different stages of insulin resistance, and the overall metabolic status of the organisms should be carefully considered to potentiate the benefits of leucine. View Full-Text
Keywords: leucine; BCAAs; BCAA catabolism; insulin resistance; metabolomic; mitochondria leucine; BCAAs; BCAA catabolism; insulin resistance; metabolomic; mitochondria
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Liu, R.; Li, H.; Fan, W.; Jin, Q.; Chao, T.; Wu, Y.; Huang, J.; Hao, L.; Yang, X. Leucine Supplementation Differently Modulates Branched-Chain Amino Acid Catabolism, Mitochondrial Function and Metabolic Profiles at the Different Stage of Insulin Resistance in Rats on High-Fat Diet. Nutrients 2017, 9, 565.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top