Next Article in Journal
A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages
Previous Article in Journal
Retraction: Yu et al. Low Iron Diet Increases Susceptibility to Noise-Induced Hearing Loss in Young Rats. Nutrients 2016, 8, 456
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
Nutrients 2017, 9(5), 423; doi:10.3390/nu9050423

Maternal Methyl Donor Supplementation during Gestation Counteracts the Bisphenol A-Induced Impairment of Intestinal Morphology, Disaccharidase Activity, and Nutrient Transporters Gene Expression in Newborn and Weaning Pigs

Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, China
*
Author to whom correspondence should be addressed.
Received: 20 January 2017 / Revised: 17 April 2017 / Accepted: 19 April 2017 / Published: 26 April 2017
View Full-Text   |   Download PDF [2739 KB, uploaded 26 April 2017]   |  

Abstract

This study was conducted to explore whether exposure to bisphenol A (BPA) during pregnancy could change intestinal digestion and absorption function in offspring using pigs as a model, and whether methyl donor (MET) could counteract the BPA-induced impacts. Fifty Landrace × Yorkshire sows were divided into four dietary groups throughout gestation: control diet (CON); control diet supplemented with BPA (50 mg/kg); control diet supplemented with MET (3 g/kg betaine, 400 mg/kg choline, 150 μg/kg vitamin B12, and 15 mg/kg folic acid); and control diet with BPA and MET supplementation (BPA + MET). Intestine samples were collected from pigs’ offspring at birth and weaning. Maternal BPA exposure during pregnancy significantly reduced the ratio of jejunum villus height to crypt depth, decreased the jejunum sucrase activity, down-regulated the mRNA expression of jejunum peptide transporter 1 (Pept1) and DNA methyl transferase 3a (DNMT3a), and decreased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05). Maternal MET supplementation significantly raised the ratio of villus height to crypt depth in jejunum and ileum, improved the jejunum lactase activity, up-regulated the mRNA expression of jejunum Pept1, lactase (LCT), DNMT1, DNMT3a, and methylenetetrahydrofolate reductase (MTHFR), and increased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05). However, the ratio of jejunum villus height to crypt depth was higher in BPA + MET treatment compared with CON and BPA treatment (p < 0.05). Meanwhile, there was no difference in the jejunum sucrase activity, the mRNA expression of jejunum Pept1 and DNMT3a, and the DNA methylation level of jejunum Pept1 between CON and BPA + MET treatment. These results indicated that maternal exposure to BPA during gestation might suppress offspring’s intestinal digestion and absorption function, whereas supplementation of MET could counteract these damages, which might be associated with DNA methylation. View Full-Text
Keywords: bisphenol A; methyl donor; maternal; offspring; intestine bisphenol A; methyl donor; maternal; offspring; intestine
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Liu, H.; Wang, J.; Mou, D.; Che, L.; Fang, Z.; Feng, B.; Lin, Y.; Xu, S.; Li, J.; Wu, D. Maternal Methyl Donor Supplementation during Gestation Counteracts the Bisphenol A-Induced Impairment of Intestinal Morphology, Disaccharidase Activity, and Nutrient Transporters Gene Expression in Newborn and Weaning Pigs. Nutrients 2017, 9, 423.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top