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Abstract: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess lipids in hepatocytes,
due to excessive fatty acid influx from adipose tissue, de novo hepatic lipogenesis, in addition to
excessive dietary fat and carbohydrate intake. Chronic hepatic lipid overload induces mitochondrial
oxidative stress and cellular damage leading the development of NAFLD into a more severe liver
disease condition, non-alcoholic steato-hepatitis (NASH). In turn, this can progress to cirrhosis and
hepatocellular carcinoma (HCC). Among others, copper is one of the main bio-metals required for
the preponderance of the enzymes involved in physiological redox reactions, which primarily occurs
during mitochondrial respiration. Thus, copper homeostasis could be considered a target point for
counteracting the progression of NAFLD. Accordingly, many diseases are correlated to unbalanced
copper levels and, actually, some clinical trials are examining the use of copper chelating agents.
Currently, no pharmacological interventions are approved for NAFLD, but nutritional and lifestyle
modifications are always recommended. Fittingly, antioxidant food agents recognized to improve
NAFLD and its complications have been described in the literature to bind copper. Therefore, this
review describes the role of nutrition in the development and progression of NAFLD with a particular
focus on copper and copper-binding antioxidant compounds against NAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) consists of fat accumulation in the liver (hepatic
steatosis) and affects about 1.8 billion people [1]. NAFLD can progress towards non-alcoholic
steato-hepatitis (NASH), which is a more severe condition characterized by necro-inflammation with or
without fibrosis. This can ultimately lead to cirrhosis and hepatocellular carcinoma (HCC). In addition,
the related cardiovascular risk cannot be underestimated [2]. To note, NAFLD is considered the hepatic
manifestation of the metabolic syndrome, which is mainly characterized by obesity, dyslipidemia,
insulin resistance, hypertension, and type 2 diabetes. In particular, in asymptomatic morbidly obese
patients, there is a very high prevalence of approximately 90% of NAFLD. Of these morbidly obese
patients with NAFLD, more than one-third fit the histological criteria for NASH [3,4]. Taken together,
all these conditions have resulted in NAFLD being considered an important problem for the health
burden nationwide.

The excess of lipids in hepatic steatosis primarily constitutes triglycerides (TGs) and cholesterol
esters, which are stored in dynamic organelles called lipid droplets (LDs) [5].

Steatosis has been pathologically classified as macrovesicular steatosis, characterized by the
formation into the hepatocytes of large droplets which displaces the nucleus, and microvesicular
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steatosis, the accumulation of small fat droplets with preserved cellular architecture, but corresponding
to a more severe condition significantly associated to cellular injury. In particular, microvesicular
steatosis displays “megamitochondria” with severe impairment of the mitochondrial (3-oxidation,
which is the main catabolic process by which fatty acids are broken down to produce energy [6].
The consequently increased generation of reactive oxygen species (ROS) induces lipid peroxidation,
which leads to liver inflammation and fibrogenesis. Therefore, oxidative stress plays a major role in the
progression of NAFLD, which seems to be the most important mechanism leading to hepatic injury.
Bio-metals play a key role in controlling ROS formation and amongst the others, copper is one of the
most important bio-metals, especially for the enzymes involved in mitochondrial respiration.

Hence, the aim of this review is to discuss the pathogenesis and worsening of NAFLD in relation
to nutrition, with a special regard to copper and to copper-binding natural antioxidant compounds
against NAFLD.

2. Pathophysiology of NAFLD and Nutritional Implications

The pathophysiology of NAFLD is complex as many factors contribute to fat deposition within
the liver. These include endogenous factors, such as excessive fatty acid influx from fat depots (mainly
white adipose tissue) or de novo hepatic lipogenesis from non-lipid precursors, and exogenous factors,
such as excessive dietary fat and carbohydrate intake. Thus, beyond the metabolic intrinsic disorders, it
is of critical importance to understand how diet and nutrient composition impacts on the development
of NAFLD. Western diet contributes to NAFLD pathogenesis since it is excessively rich in fats and
carbohydrates. Here, we will describe the main features of dietary nutrients involved in the onset of
hepatic steatosis.

2.1. Dietary Fats

Dietary fats are essentially TGs, which are hydrolyzed by lipases to diacylglycerols (DG),
monoacylglycerols (MG), and fatty acids (FAs) in the intestinal lumen, and taken up by the enterocytes.
In the enterocytes, the FAs are again packaged as TGs or cholesterol esters in chylomicrons for the
delivery through the bloodstream to peripheral tissues. Finally, the remaining chylomicron remnants
are delivered to the liver. Their uptake into hepatocytes is mediated by the low density lipoprotein
(LDL) receptor and LDL receptor-related protein (LRP) [5]. In the hepatocytes, FAs can be esterified or
oxidized, and accumulated or secreted [7].

FAs can be present as saturated and mono- (MUFAs) or poly-unsaturated fatty acids (PUFAs):
MUPFAs are fatty acids that have one double bond in the fatty acid chain with the remaining carbon
atoms being single-bonded, while PUFAs contain more than one double bond in their backbone.
Their relative proportions determine different net biological effects.

Puri et al. [8] performed a lipidomic profile of total plasma and hepatic lipids of NAFLD and
NASH patients showing that the concentration of saturated and MUFA were higher in individuals
with fatty liver compared to healthy controls. Consistent with these results, Toshimitsu et al. [9]
highlighted that patients with steatosis and NASH present a lower dietary ratio of PUFA /saturated
fatty acids compared to that of healthy subjects. This association between the fatty acid ratio and the
severity of fatty liver disease may be due to various molecular mechanisms, among which oxidative
stress plays a predominant role. Specifically, a correlation between the intake of saturated fatty acids
and impaired glutathione metabolism was found, suggesting the deleterious pro-oxidant effects of
saturated fatty acids [10]. Accordingly, it has been shown that a diet enriched in #-3 PUFA reduces
the accumulation of hepatic TGs, restores insulin sensitivity, and ameliorates liver steatosis and
the level of hepatic biomarkers (ALT, AST, and GGT) [11,12]. Specifically, n-3 PUFA, which are
the so-called omega-3 fatty acids mainly present in fish oil, are the natural ligands of peroxisome
proliferator-activated receptor o« (PPARwx), which is a master regulator that promotes fatty acid
-oxidation in mitochondria. Mitochondrial 3 oxidation not only provides energy for hepatocytes,
but also generates ketone bodies providing metabolic fuels for extrahepatic tissues during fasting.
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Low levels of circulating n-3 PUFA with a consequent increase of the n-6/1-3 FA ratio impairs PPAR«
activity in the liver. This phenomenon is associated with a higher hepatic uptake of circulating FAs, a
decrease in mitochondrial lipid 3-oxidation, and an up-regulation of lipogenic transcription factors, as
well as, first, the sterol regulatory element binding protein-1 (SREBP-1) [13].

2.2. Dietary Carbohydrates

During the fed state, the liver has a crucial role in storing excess carbohydrates as lipids via de
novo lipogenesis. A high-carbohydrate diet can prime de novo lipogenesis since the abundance of
acetyl-coenzyme A (acetyl-CoA) derived from glycolysis can be used as the substrate for synthesizing
long-chain FAs. High glucose intake and the consequent insulin secretion regulates several factors,
such as carbohydrate response element binding protein (ChREBP) and SREBP1, enables the expression
of lipogenic genes, such as fatty acid synthase (FASn). FAs derived from de novo lipogenesis are
esterified by a series of enzymatic reactions, culminating in formation of TGs that will be stored in
lipid droplets [14]. In the case of hyperinsulinemia, insulin continues to drive lipogenesis via the
SREBP1 pathway in addition to failing to suppress gluconeogenesis, contributing to exacerbating
hepatic steatosis [15].

During the last decade, dietary habits have evolved to favor unhealthy high fatty food and
sweetened foods, such as many beverages. It is known that the increased intake of carbohydrates
increases the risk for fatty liver, metabolic syndrome, type 2 diabetes, obesity, and cardiovascular
diseases, which is likely due to an excessive caloric intake [16]. In this regard, it is important to
underline that the presence of a high quantity of fructose together with the alteration in the ratio
between saturated and unsaturated fatty acids is crucial in the onset and progression of NAFLD,
which is associated with increased oxidative stress and insulin resistance. Many experimental
studies on animal models and epidemiological studies in human subjects linked the excessive
consumption of fructose to NAFLD to its progression and severity of fibrosis [17]. Dissimilar to
glucose, hepatic metabolism of dietary fructose is independent of energy status which results in
unregulated hepatic fructose uptake that finally leads to an uncontrolled increase of lipogenesis [14].
Specifically, fructose stimulates PPARy-coactivator-13 (PGC-1p), which acts as a co-activator of
SREBP1c. Moreover, fructose inhibits hepatic FA B-oxidation, which mainly occurs by inhibiting the
transcriptional activities of PPARw. Thus, the shift towards lipogenesis over FA oxidation contribute
to hepatic steatosis and, hence, in a vicious circle, to insulin resistance [18,19].

3. NAFLD-Related Oxidative Stress

Chronic lipid and carbohydrate overload in the liver in individuals with NAFLD induces
mitochondrial oxidation, which results in oxidative stress and eventual damage to cellular components,
including mitochondria. This can cause cell death and inflammation, which signals the progression
from benign steatosis to NASH [20]. Sunny et al. found a positive correlation between intrahepatic
TGs levels and mitochondrial oxidative metabolism, which was approximately two-fold greater
in NAFLD patients [21]. The constitutive over-activation of oxidative metabolism during NAFLD
causes mitochondrial damage: the oxidative stress associated with elevated hydride production in the
tricarboxylic acid (TCA) cycle may be sufficient to damage the electron transport chain with impaired
adenosine triphosphate (ATP) synthesis. Accordingly, patients with NASH have decreased expression
of mitochondrial DNA (mtDNA)-encoded polypeptides and low activity of complexes I, III, IV, and
V [22]. The consequently increased generation of ROS and reactive aldehydic derivatives causes
oxidative stress and cell death via ATP, nicotinamide adenine dinucleotide (NAD), and glutathione
depletion, in addition to the consequent damage to DNA, lipids, and proteins. Furthermore, many
studies on animal models have confirmed the effect of impaired mitochondrial activity on the onset of
NAFLD and insulin resistance, which has prompted the scientific community to consider NAFLD as
being mainly a mitochondrial disease [23-25].
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3.1. Special Focus on Copper

Copper may be in an oxidized (Cull) or reduced (Cul) state, which allows it to accept or donate
individual electrons. This property allows it to be a cofactor in many physiological redox reactions.
Copper has essential roles in the mitochondrial electron transport chain (e.g., for cytochrome c oxidase);
in the detoxification of ROS (e.g., for superoxide dismutase SOD); in neurotransmitter synthesis;
as well as in the modulation of cellular energy metabolism and epigenetic modifications [26,27].
However, an excess of copper results in oxidative stress related health disorders: excess copper, in
fact, it assists oxidative tissue injury through a free radical-mediated pathway. On the other hand,
copper deficiency affects the antioxidant defense system resulting in increased ROS levels and the
related oxidative damage of lipid, DNA, and proteins [28]. Thus, a highly-orchestrated regulation of
copper pools is required to prevent oxidative stress and free radical damage events. Imbalances in
physiological copper levels or tissue pathogenic compartmentalization, arising from genetic and/or
dietary factors, are correlated with metabolic disorders, neurodegenerative diseases, and cancer [28,29].

3.1.1. Copper Homeostasis and Metabolism

Mammals acquire copper from dietary sources, with drinking water and food typically high in
copper, including meats, shellfish, seeds, beans, and cereals. Poor diet quality or malabsorption can
have health consequences related to copper insufficiency [30].

Copper is absorbed mainly in the duodenum, although it is thought that some absorption takes
place in the stomach and in the distal part of the small intestine. Copper uptake into enterocytes is
mainly managed by the human copper transporter protein-1 (h\CTR1). Dietary copper is in the Cu?*
form, but its absorption by hCTR1 occurs as Cu*. Thus, before its uptake, copper needs to be reduced by
metallo-reductases. Studies using epitope-tagged CTR1 have shown that CTR1 undergoes constitutive
recycling, with high copper exposure resulting in rapid endocytosis of this transporter [31-33].
The release of copper from the basolateral membrane of enterocytes to the bloodstream involves the
copper-transporting ATPase ATP7A. Utilizing ATP, this pumps copper within the portal system to reach
the liver, which represents the central regulatory organ of copper homeostasis [34]. In hepatocytes,
copper is distributed to many different enzymes for many different purposes. For example, it is
delivered to the radical-detoxifying enzyme copper-zinc-dependent superoxide dismutase (SOD1)
by the copper chaperone of superoxide dismutase (CCS) to exert ROS detoxification; incorporated
into cytochrome-c oxidase (COX) in mitochondria for mitochondprial respiration; integrated into the
copper-dependent ferroxidase ceruloplasmin (CP), the major copper-carrying protein, to be secreted in
the blood [35]. The latter is a process carried out by the Cu-ATPase ATPB, which is the corresponding
enzyme of ATP7A located in the liver. Following this, copper can be taken up by other tissues,
including brain, kidney, heart, connective tissue, and the pancreas [32]. Instead, the removal of excess
copper from the liver is driven by the re-localization of ATP7B, which pumps copper into the bile [36].
ATP7A and ATP7B are also regulated by a continuous relocation. When copper levels are low, both
ATP7A and ATP7B are situated in the trans-Golgi network (TGN) where they transport copper to
copper-dependent enzymes. However, at elevated copper levels, both transporters re-localize to the
plasma membrane to facilitate copper export [36] (Figure 1).

Copper homeostasis is known to be linked to iron and to zinc homeostasis. The dysregulation in
one of these metals may lead to dysregulation of the others. The link between copper and iron is the
role of copper in ferroxidases of ceruloplasmin and hephaestin, which oxidize iron for mobilization.
This avoids the risk of radical generation in auto-oxidation [37]. The mechanistic interaction of copper
and zinc is less well understood, but it is known that high zinc consumption inhibits copper absorption,
as observed by acquired hypo-cupremia associated with excess zinc consumption [38]. Alterations in
homeostasis of these metals often lower a cell ability to regulate redox conditions resulting in cellular
damage [30].
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Figure 1. Copper absorption, distribution, and metabolism: copper enters the enterocytes through
CTR1 and flows out in the portal circulation by ATP7A. In the liver, Cu has a key role in defense against
ROS (binds SOD) and in mitochondrial respiration. Linked to CP, copper is brought in the bloodstream
to be transported to other tissues and organs. ATP7B ensures copper transport across the membranes
of cellular organelles or allows for excess copper to be excreted into the bile. Cu: copper; CTR1: copper
transporter protein-1; CCS: copper chaperone of superoxide dismutase; COX: cytochrome-C oxidase;
Scol, Sco2: cytochrome c oxidase assembly factors; Cu/Zn SOD: copper-zinc-dependent superoxide
dismutase; ATP7A /B: copper-transporting ATPase A/B.

3.1.2. Copper and Its Role in NAFLD Onset and Progression

Evidence reports that inadequate copper intake may be involved in the pathogenesis of
NAFLD [39]. Subjects with NAFLD present lower, or slightly lower, intrahepatic and serum copper
concentrations with respect to other liver diseases. This is consistent with other literature, as dietary
copper restriction in rats induces a modification in lipid metabolism with the development of hepatic
steatosis and insulin resistance, which suggests that a low copper availability may be involved in the
development of NAFLD [40]. Moreover, Tosco et al. performed a gene-microarray differential analysis
on the intestinal transcriptome of copper- and iron-deficient rats, highlighting that copper deficiency
downregulates the mitochondrial and peroxisomal beta-oxidation of FA [41]. Notably, systemic copper
deficiency in mice causes mitochondrial dysfunction, which is indicative of a defective mitochondrial
function. Similar morphological alterations have also been described in human NAFLD [25,35],
highlighting the important link between copper, mitochondrial function, and NAFLD. Furthermore, it
was observed in rats that a diet rich in fructose, but with a low copper level, triggers liver steatosis and
damage. In fact, fructose also acts as an inhibitor of duodenal copper absorption and, thus, boosts the
impairment of oxidant defense and lipid peroxidation [35].

The studies on copper levels in NASH patients were less uniform with respect to those on NAFLD.
It was reported that low copper levels were also found in NASH patients, both in adults and in
children [42]. Aigner et al. reported that NASH patients had lower intrahepatic copper concentrations
with respect to NAFLD patients, but they did not find relevant differences in serum copper levels
between the two groups [40]. Our recent data indicate that serum copper levels of NASH patients begin
to rise from NAFLD to NASH and from cirrhosis to HCC [43]. Accordingly, Geetha et al. highlighted
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high levels of copper in serum and hepatic tissue of HCC patients correlated with high oxidative
stress [35]. Furthermore, even if it is not clear, some emerging clinical reports indicate that Wilson’s
disease, an autosomal recessive disease characterized by excess copper, is a risk factor for HCC,
pointing out an oncogenic potential of excess copper [44,45]. Nevertheless, understanding a role of
copper in the hepatic carcinogenesis requires more deep investigation. Furthermore, the mechanisms
that lead to a change between low and high copper levels in NAFLD and HCC, respectively, need to
be explored.

Nevertheless, this evidence implies that the deregulation of copper in NAFLD and the consequent
oxidative stress, if not counteracted, could lead to serious damage.

3.1.3. Copper and Nutrients in NAFLD

Good, and especially balanced, nutrition is the basis for good health. Choosing food more or less
rich in copper can be useful during diseases characterized by altered copper homeostasis.

The recommended daily allowance (RDA) of copper for adults is 1-3 mg/day [46]. The soil
Cu concentration has an influence on food products. The use of Cu compounds as bactericides or
fungicides on crops and Cu emissions from smelting and casting industries may affect the Cu content
in the harvest. Moreover, Cu concentration in drinking water has to be considered. Water is known to
contain concentrations of a few micrograms to more than 2 mg/L, which may also vary depending on
groundwater composition and household plumbing systems [47].

Copper is widely distributed in foods. The major contributors of dietary copper are, especially,
meats, seafood, nuts, seeds, and cereals and whole grain products. Specifically, the top ten foods
are beef liver, sunflower seeds, lentils, almonds, dried apricots, dark chocolate, blackstrap molasses,
asparagus, mushrooms, and turnip greens [46].

Given that the oxidative stress has a key role in the pathogenesis of human NAFLD, it is likely
that anti-oxidant molecules are an option for its treatment.

Antioxidant molecules contain mainly a polyphenolic structure and possess the ability to scavenge
and react preferentially with ROS [48]. They can be found in a variety of commonly consumed products,
which are mainly obtained from plant sources. Many anti-oxidant natural compounds are described to
counteract NAFLD, its progression towards NASH and related complications [35,49-51].

Interestingly, many of those compounds are able to bind copper, highlighting a direct action
on copper-related dysfunction. In this present review, we can only list the antioxidants described
to act against NAFLD that have been described having copper-binding activity in separate studies.
These include: curcumin, epigallocatechin-3-gallate (EGCG), Luteolin and Luteolin-7-Glucoside,
Caffeic Acid and Caffeine, oleuropein, quercetin and rutin, resveratrol (3,5,4'-trihydroxy-trans-stilbene).

Curcumin

This is a polyphenol found mostly in rhizomes of Curcuma longa. It exhibits antioxidant and
anti-inflammatory properties. Studies on animals showed that curcumin prevents dietary-induced
hepatic steatosis and attenuates many of the pathophysiological processes involved in the development
and progression of NASH. Furthermore, it counteracts the onset of fibrosis [52,53].

Its keto-enolic moiety enables this compound to bind copper and exerts its antioxidant and
chelating activities [54,55].

Epigallocatechin-3-Gallate (EGCG)

This is a phenolic antioxidant found in a number of plants, mostly in green tea.

Studies on animals highlighted that EGCG was able to prevent obesity by stimulating the
mitochondrial complex chain, thereby contributing to the prevention of hepatic steatosis and improved
insulin sensitivity [56]. It was also described as a potent copper chelator [57].
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Luteolin and Luteolin-7-Glucoside

These are flavones found in aromatic plants, such as oregano, parsley and salvia, but also in
olives, artichokes, carrots, pomegranate, and cacao. Both Luteolin and Luteolin-7-Glucoside (L7G,
the glycosylated form of Luteolin) are described as being useful in the control of NAFLD. They are
able to decrease lipogenesis by downregulating SREBP1 and increase the lipid 3-oxidation capacity
of the liver by activating PPAR«x, which contributes to lower total and LDL cholesterol levels [58,59].
These molecules also share the property of binding copper [60].

Caffeic Acid and Caffeine

Many works have highlighted the beneficial effects of coffee, caffeine, and caffeic acid in
preventing NAFLD [51]. Specifically, studies on animal models and epidemiological studies on
humans reveal that coffee intake can reduce the risk of NAFLD [61]. A systemic review highlighted
that regular coffee or caffeine consumption is significantly associated with reduced hepatic fibrosis in
patients with NAFLD [62]. Moreover, in hepatic cells, caffeic acid was described to reduce lipogenesis
and increase lipid (3-oxidation, which leads to a reduced lipid accumulation [63]. Thesemolecules are
described as being able to bind copper [64].

Oleuropein

This is found in olives and olive leaves, with recognized beneficial properties with respect to
human health [65].

It has an important role in counteracting hepatic lipid accumulation [65] and the progression of
NASH to fibrosis [66] in mice fed with a high-fat diet.

Notably, it is able to bind copper, which could intervene in its antioxidant ability [67].

Quercetin and Rutin (Quercetin-3-O-Rutinoside)

They are found in many fruits and vegetables, mostly capers and radishes, and from citrus
fruit, respectively. Studies on animal models of NAFLD [68,69] have largely demonstrated the
efficacy of these molecules in reducing triglyceride content and oxidative injuries in fat-enriched
hepatocytes. Both quercetin and rutin are able to reverse the metabolic changes induced by high
fat/high-carbohydrate diet. Notably their copper-binding property have been known for a long
time [60,70].

Resveratrol (3,5,4'-Trihydroxy-Trans-Stilbene)

This is known to have anti-inflammatory and antioxidative properties. Furthermore, resveratrol
is also described as having therapeutic potential for preventing or treating NAFLD and insulin-
resistance-related metabolic disorders. Several studies on animals demonstrate that resveratrol is
useful in the prevention of liver steatosis and in its treatment. Resveratrol showed an anti-lipogenic
effect by decreasing de novo lipogenesis and triacylglycerol synthesis in addition to increasing FA
-oxidation, with an overall reduction of oxidative stress [71]. Moreover the copper-binding properties
of resveratrol are described [57].

Table 1 summarizes this information and Figure 2 resumes the concepts highlighted throughout
this review.
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Table 1. Natural antioxidants described to counteract non-alcoholic fatty liver disease (NAFLD) and
with copper-binding ability.

Ability to Counteract NAFLD and

Natural Antioxidant Food Source Its Progression Copper Binding Ability
Salomone et al., 2016 [51]
Curcumin Rhizomes of Curcuma longa Shapiro and Bruck, 2005 [52] Zzlﬂl i? eetta;i, 2200116 0[[554%
Inzaugarat et al., 2017 [53] & v
Epigallocatechin-3-Gallate (EGCG) Green tea Aline B. Santamarina et al., 2015 [56] Wing et al., 2015 [57]
. . . . Yin et al., 2017 [58]
Luteolin and Luteolin-7-Glucoside Aromatic plants Sa etal,, 2015 [59] Brown et al., 1998 [60]

Yesil et al., 2013 [61]
Caffeic Acid and Caffeine Coffee Shen et al., 2014 [62] Nkhili et al., 2014 [64]
Liao et al., 2014 [63]

Barbaro et al., 2014 [65]

Oleuropein Olive and olive leaves Bendini et al., 2006 [67]

Kim et al., 2014 [66]
. . Vegetables, mostly capers Porras et al., 2016 [68] Brown et al., 1998 [60]
Quercetin and Rutin and radish, citrus fruit Panchal et al., 2011 [69] Bukhari et al., 2009 [70]
Resveratrol Grapes Aguirre Let al., 2014 [71] Wing et al., 2015 [57]
Ir:‘ormal
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Figure 2. Summary of the main information on the onset and progression of NAFLD linked to diet.
This highlights the role of FAs and their saturation rate, as well as fructose, which is typically found in
the Western diet in increasing lipogenesis and reducing FA p-oxidation, which causes oxidative stress
and eventually NAFLD. These conditions are characterized by an imbalance of copper. Some natural
antioxidant compounds, which bind copper, are able to counteract NAFLD. PUFA: poly-unsaturated
fatty acids.

4. Conclusions

NAFLD, with its progression towards NASH and more severe liver diseases, has been recognized
as a pathology related to oxidative stress, with a copper imbalance having a role in its pathogenesis.
Understanding the mechanism that controls the copper homeostasis is of primary importance.
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The mechanism of dietary copper acquisition, the molecular bases of copper delivery to tissues
and the control of copper levels within the cells are topics that require detailed dissection in the
near future. Of note, the Western diet is associated with high intake of fats and carbohydrates.
Furthermore, it is poor in polyphenols, with devastating health consequences, such as promoting
NAFLD. Many antioxidant compounds recognized as being effective against NAFLD and its
progression have been demonstrated to bind copper, signaling the importance of the fine regulation of
this bio-metal.

Since there is a gap between the knowledge of the chemical properties of these compounds and
their therapeutic applications, this review also paves the way to broaden the research on natural
antioxidant compounds against NAFLD, which considers their ability to bind copper.

Acknowledgments: Gilead Fellowship Program, 2014 Edition.

Author Contributions: L.A. retrieved the references and wrote the first draft of the manuscript; C.P. and G.I.
helped in the references retrieving; C.B. revised the text; B.B. designed the manuscript, organized the work and
wrote the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of
Nonalcoholic Fatty Liver Disease—Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes.
Hepatology 2016, 64, 73-84. [CrossRef] [PubMed]

2. Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or
cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330-344. [CrossRef] [PubMed]

3.  Sookoian, S.; Pirola, C.J. Systematic review with meta-analysis: Risk factors for non-alcoholic fatty liver
disease suggest a shared altered metabolic and cardiovascular profile between lean and obese patients.
Aliment. Pharmacol. Ther. 2017, 46, 85-95. [CrossRef] [PubMed]

4. Bedogni, G.; Miglioli, L.; Masutti, F; Tiribelli, C.; Marchesini, G.; Bellentani, S. Prevalence of and risk factors
for nonalcoholic fatty liver disease: The dionysos nutrition and liver study. Hepatology 2005, 42, 44-52.
[CrossRef] [PubMed]

5. Gluchowski, N.L.; Becuwe, M.; Walther, T.C.; Farese, R.V. Lipid droplets and liver disease: From basic
biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 343-355. [CrossRef] [PubMed]

6. Tandra, S.; Yeh, M.M.; Brunt, EM.; Vuppalanchi, R.; Cummings, O.W.,; Unalp-Arida, A.; Wilson, L.A.;
Chalasani, N. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease.
J. Hepatol. 2011, 55, 654—659. [CrossRef] [PubMed]

7. Tallino, S.; Duffy, M.; Ralle, M.; Cortés, M.P,; Latorre, M.; Burkhead, J.L. Nutrigenomics analysis reveals that
copper deficiency and dietary sucrose upregulate inflammation, fibrosis and lipogenic pathways in a mature
rat model of nonalcoholic fatty liver disease. J. Nutr. Biochem. 2015, 26, 996-1006. [CrossRef] [PubMed]

8.  Puri, P; Baillie, R.A.; Wiest, M.M.; Mirshahi, F.; Choudhury, J.; Cheung, O.; Sargeant, C.; Contos, M.].;
Sanyal, A.]. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 2007, 46, 1081-1090.
[CrossRef] [PubMed]

9. Toshimitsu, K.; Matsuura, B.; Ohkubo, I.; Niiya, T.; Furukawa, S.; Hiasa, Y.; Kawamura, M.; Ebihara, K;
Onji, M. Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition 2007, 23, 46-52.
[CrossRef] [PubMed]

10. Machado, M.V,; Ravasco, P.; Jesus, L.; Marques-Vidal, P; Oliveira, C.R.; Proenga, T.; Baldeiras, I.; Camilo, M.E.;
Cortez-Pinto, H. Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with
diet. Scand. ]. Gastroenterol. 2008, 43, 95-102. [CrossRef] [PubMed]

11.  Asrih, M.; Jornayvaz, ER. Diets and nonalcoholic fatty liver disease: The good and the bad. Clin. Nutr. 2014,
33, 186-190. [CrossRef] [PubMed]

12.  Capanni, M,; Calella, F; Biagini, M.R.; Genise, S.; Raimondi, L.; Bedogni, G.; Svegliati-Baroni, G.; Sofi, E.;
Milani, S.; Abbate, R.; et al. Prolonged 7-3 polyunsaturated fatty acid supplementation ameliorates hepatic
steatosis in patients with non-alcoholic fatty liver disease: A pilot study. Aliment. Pharmacol. Ther. 2006, 23,
1143-1151. [CrossRef] [PubMed]


http://dx.doi.org/10.1002/hep.28431
http://www.ncbi.nlm.nih.gov/pubmed/26707365
http://dx.doi.org/10.1038/nrgastro.2013.41
http://www.ncbi.nlm.nih.gov/pubmed/23507799
http://dx.doi.org/10.1111/apt.14112
http://www.ncbi.nlm.nih.gov/pubmed/28464369
http://dx.doi.org/10.1002/hep.20734
http://www.ncbi.nlm.nih.gov/pubmed/15895401
http://dx.doi.org/10.1038/nrgastro.2017.32
http://www.ncbi.nlm.nih.gov/pubmed/28428634
http://dx.doi.org/10.1016/j.jhep.2010.11.021
http://www.ncbi.nlm.nih.gov/pubmed/21172393
http://dx.doi.org/10.1016/j.jnutbio.2015.04.009
http://www.ncbi.nlm.nih.gov/pubmed/26033743
http://dx.doi.org/10.1002/hep.21763
http://www.ncbi.nlm.nih.gov/pubmed/17654743
http://dx.doi.org/10.1016/j.nut.2006.09.004
http://www.ncbi.nlm.nih.gov/pubmed/17140767
http://dx.doi.org/10.1080/00365520701559003
http://www.ncbi.nlm.nih.gov/pubmed/18938777
http://dx.doi.org/10.1016/j.clnu.2013.11.003
http://www.ncbi.nlm.nih.gov/pubmed/24262589
http://dx.doi.org/10.1111/j.1365-2036.2006.02885.x
http://www.ncbi.nlm.nih.gov/pubmed/16611275

Nutrients 2017, 9, 1137 10 of 12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Zuiga, J.; Cancino, M.; Medina, E; Varela, P.; Vargas, R.; Tapia, G.; Videla, L.A.; Ferndndez, V. N-3
PUFA supplementation triggers PPAR-« activation and PPAR-«/NF-«B interaction: Anti-inflammatory
implications in liver ischemia-reperfusion injury. PLoS ONE 2011, 6, e28502.

Sanders, EW.B.; Griffin, ].L. De novo lipogenesis in the liver in health and disease: More than just a shunting
yard for glucose. Biol. Rev. 2016, 91, 452—468. [CrossRef] [PubMed]

Farese, R.V,, Jr.; Zechner, R.; Newgard, C.B.; Walther, T.C. The Problem of Establishing Relationships between
Hepatic Steatosis and Hepatic Insulin Resistance. Cell Metab. 2012, 15, 570-573. [CrossRef] [PubMed]
Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, ].-P.; Hu, EB. Sugar Sweetend Beverages, Obesity, Type 2
Diabetes and Cardiovascular Disease risk. Circulation 2010, 121, 1356-1364. [CrossRef] [PubMed]
Basaranoglu, M.; Basaranoglu, G.; Bugianesi, E. Carbohydrate intake and nonalcoholic fatty liver disease:
Fructose as a weapon of mass destruction. Hepatobiliary Surg. Nutr. 2015, 4, 109-116. [PubMed]

Dekker, M.]; Su, Q.; Baker, C.; Rutledge, A.C.; Adeli, K. Fructose: A highly lipogenic nutrient implicated in
insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2010, 299,
E685-E694. [CrossRef] [PubMed]

Lim, J.S.; Mietus-Snyder, M.; Valente, A.; Schwarz, J.-M.; Lustig, R.H. The role of fructose in the pathogenesis
of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 251-264. [CrossRef]
[PubMed]

Gambino, R.; Bugianesi, E.; Rosso, C.; Mezzabotta, L.; Pinach, S.; Alemanno, N.; Saba, F.; Cassader, M.
Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. Int. J.
Mol. Sci. 2016, 17, 479. [CrossRef] [PubMed]

Sunny, N.E.; Parks, E.J.; Browning, J.D.; Burgess, S.C. Excessive hepatic mitochondrial TCA cycle and
gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011, 14, 804-810. [CrossRef]
[PubMed]

Pérez-Carreras, M.; del Hoyo, P; Martin, M.A.; Rubio, J.C.; Martin, A.; Castellano, G.; Colina, F;
Arenas, J.; Solis-Herruzo, ].A. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic
steatohepatitis. Hepatology 2003, 38, 999-1007. [CrossRef] [PubMed]

Rector, R.S.; Thyfault, ]J.P.; Uptergrove, G.M.; Morris, EM.; Naples, S.P.; Borengasser, S.J.; Mikus, C.R.;
Laye, M.].; Laughlin, M.H.; Booth, EW.; et al. Mitochondrial dysfunction precedes insulin resistance and
hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent
model. |. Hepatol. 2010, 52, 727-736. [CrossRef] [PubMed]

Sanyal, A.].; Campbell-Sargent, C.; Mirshahi, F.; Rizzo, W.B.; Contos, M.].; Sterling, R K.; Luketic, V.A;
Shiffman, M.L.; Clore, ].N. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial
abnormalities. Gastroenterology 2001, 120, 1183-1192. [CrossRef] [PubMed]

Ibdah, J.A.; Perlegas, P.; Zhao, Y.; Angdisen, J.; Borgerink, H.; Shadoan, M.K.; Wagner, ].D.; Matern, D.;
Rinaldo, P; Cline, ].M. Mice heterozygous for a defect in mitochondrial trifunctional protein develop hepatic
steatosis and insulin resistance. Gastroenterology 2005, 128, 1381-1390. [CrossRef] [PubMed]

Opazo, C.M.; Greenough, M.A; Bush, A.I. Copper: From neurotransmission to neuroproteostasis. Front.
Aging Neurosci. 2014, 6, 143. [CrossRef] [PubMed]

Dorts, J.; Falisse, E.; Schoofs, E.; Flamion, E.; Kestemont, P.; Silvestre, F. DNA methyltransferases and
stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming
of DNA methylation. Sci. Rep. 2016, 6, 34254. [CrossRef] [PubMed]

Hordyjewska, A.; Popiotek, L.; Kocot, . The many ‘faces’ of copper in medicine and treatment. BioMetals
2014, 27, 611-621. [CrossRef] [PubMed]

Heffern, M.C.; Park, H.M.; Au-Yeung, H.Y.; Van de Bittner, G.C.; Ackerman, C.M.; Stahl, A.; Chang, C.J.
In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver
disease. Proc. Natl. Acad. Sci. USA 2016, 113, 14219-14224. [CrossRef] [PubMed]

Morrell, A.; Tallino, S.; Yu, L.; Burkhead, ].L. The role of insufficient copper in lipid synthesis and fatty-liver
disease. IUBMB Life 2017, 69, 263-270. [CrossRef] [PubMed]

Kaplan, ].H.; Maryon, E.B. How Mammalian Cells Acquire Copper: An Essential but Potentially Toxic Metal.
Biophys. |. 2016, 110, 7-13. [CrossRef] [PubMed]

Ramos, D.; Mar, D.; Ishida, M.; Vargas, R.; Gaite, M.; Montgomery, A.; Linder, M.C. Mechanism of copper
uptake from blood plasma ceruloplasmin by mammalian cells. PLoS ONE 2016, 9, 815-826.


http://dx.doi.org/10.1111/brv.12178
http://www.ncbi.nlm.nih.gov/pubmed/25740151
http://dx.doi.org/10.1016/j.cmet.2012.03.004
http://www.ncbi.nlm.nih.gov/pubmed/22560209
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.876185
http://www.ncbi.nlm.nih.gov/pubmed/20308626
http://www.ncbi.nlm.nih.gov/pubmed/26005677
http://dx.doi.org/10.1152/ajpendo.00283.2010
http://www.ncbi.nlm.nih.gov/pubmed/20823452
http://dx.doi.org/10.1038/nrgastro.2010.41
http://www.ncbi.nlm.nih.gov/pubmed/20368739
http://dx.doi.org/10.3390/ijms17040479
http://www.ncbi.nlm.nih.gov/pubmed/27043543
http://dx.doi.org/10.1016/j.cmet.2011.11.004
http://www.ncbi.nlm.nih.gov/pubmed/22152305
http://dx.doi.org/10.1002/hep.1840380426
http://www.ncbi.nlm.nih.gov/pubmed/14512887
http://dx.doi.org/10.1016/j.jhep.2009.11.030
http://www.ncbi.nlm.nih.gov/pubmed/20347174
http://dx.doi.org/10.1053/gast.2001.23256
http://www.ncbi.nlm.nih.gov/pubmed/11266382
http://dx.doi.org/10.1053/j.gastro.2005.02.001
http://www.ncbi.nlm.nih.gov/pubmed/15887119
http://dx.doi.org/10.3389/fnagi.2014.00143
http://www.ncbi.nlm.nih.gov/pubmed/25071552
http://dx.doi.org/10.1038/srep34254
http://www.ncbi.nlm.nih.gov/pubmed/27731414
http://dx.doi.org/10.1007/s10534-014-9736-5
http://www.ncbi.nlm.nih.gov/pubmed/24748564
http://dx.doi.org/10.1073/pnas.1613628113
http://www.ncbi.nlm.nih.gov/pubmed/27911810
http://dx.doi.org/10.1002/iub.1613
http://www.ncbi.nlm.nih.gov/pubmed/28271632
http://dx.doi.org/10.1016/j.bpj.2015.11.025
http://www.ncbi.nlm.nih.gov/pubmed/26745404

Nutrients 2017, 9, 1137 11 of 12

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Nose, Y.; Kim, B.E.; Thiele, D.]. Ctrl drives intestinal copper absorption and is essential for growth, iron
metabolism, and neonatal cardiac function. Cell Metab. 2006, 4, 235-244. [CrossRef] [PubMed]

Bissig, K.D.; Honer, M.; Zimmermann, K.; Summer, K.H.; Solioz, M. Whole animal copper flux assessed by
positron emission tomography in the Long-Evans cinnamon rat—A feasibility study. BioMetals 2005, 18,
83-88. [CrossRef] [PubMed]

Dongiovanni, P,; Lanti, C.; Riso, P.; Valenti, L. Nutritional therapy for nonalcoholic fatty liver disease.
J. Nutr. Biochem. 2016, 29, 1-11. [CrossRef] [PubMed]

Tadini-Buoninsegni, F.; Smeazzetto, S. Mechanisms of charge transfer in human copper ATPases ATP7A and
ATP7B. IUBMB Life 2017, 69, 218-225. [CrossRef] [PubMed]

Collins, J.F; Knutson, M.D. Metabolic crossroads of iron and copper. Nutr. Rev. 2010, 68, 133-147. [CrossRef]
[PubMed]

Zhao, X.; Peng, J.; Wu, Q.; Ren, Z; Pan, L.; Tang, Z; Jiang, Z.; Wang, G.; Liu, L. Imbalanced cholesterol
metabolism in Alzheimer’s disease. Clin. Chim. Acta 2016, 456, 107-114.

Burkhead, J.L.; Lutsenko, S. The Role of Copper as a Modifier of Lipid Metabolism. In Lipid Metabolism;
Valenzuela Baez, R., Ed.; InTech: Rijeka, Croatia, 2013.

Aigner, E.; Strasser, M.; Haufe, H.; Sonnweber, T.; Hohla, E; Stadlmayr, A.; Solioz, M.; Tilg, H.; Patsch, W.; et al.
A role for low hepatic copper concentrations in nonalcoholic Fatty liver disease. Am. J. Gastroenterol. 2010,
105, 1978-1985. [CrossRef] [PubMed]

Tosco, A.; Fontanella, B.; Danise, R.; Cicatiello, L.; Grober, OM.; Ravo, M.; Weisz, A.; Marzullo, L. Molecular
bases of copper and iron deficiency-associated dyslipidemia: A microarray analysis of the rat intestinal
transcriptome. Genes Nutr. 2010, 5, 1-8. [CrossRef] [PubMed]

Nobili, V; Siotto, M.; Bedogni, G.; Rava, L.; Pietrobattista, A.; Panera, N.; Alisi, A.; Squitti, R. Levels of serum
ceruloplasmin associate with pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 2013,
56, 370-375. [CrossRef] [PubMed]

Porcu, C.; Antonucci, L.; Barbaro, B.; Illi, B.; Nasi, S.; Licata, A.; Miele, L.; Grieco, A.; Balsano, C.
The copper/MYC interplay: A dangerous relationship promoting hepatocellular carcinoma. Oncotarget 2017.
Submitted.

Xu, R.; Hajdu, C.H. Wilson disease and hepatocellular carcinoma. Gastroenterol. Hepatol. 2008, 4, 438—439.
Iwadate, H.; Ohira, H.; Suzuki, T.; Abe, K.; Yokokawa, J.; Takiguchi, J.; Rai, T.; Orikasa, H.; Irisawa, A.; et al.
Hepatocellular Carcinoma Associated with Wilson’s Disease. Intern. Med. 2004, 43, 1042-1045. [CrossRef]
[PubMed]

Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper,
Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; The National Academies Press:
Washington, DC, USA, 2001.

World Health Organization. Copper in Drinking-Water; 2004 WHO/SDE/WSH /03.04/88; WHO: Geneva,
Switzerland, 2004.

Noguchi, N.; Watanabe, A.; Shi, H. Diverse functions of antioxidants. Free Radic. Res. 2000, 33, 809-817.
[CrossRef] [PubMed]

Del Ben, M.; Polimeni, L.; Baratta, F,; Pastori, D.; Angelico, F. The role of nutraceuticals for the treatment of
non-alcoholic fatty liver disease. Br. J. Clin. Pharmacol. 2017, 83, 88-95. [CrossRef] [PubMed]

Godos, J.; Federico, A.; Dallio, M.; Scazzina, F. Mediterranean diet and nonalcoholic fatty liver disease:
Molecular mechanisms of protection. Int. J. Food Sci. Nutr. 2017, 68, 18-27. [CrossRef] [PubMed]
Salomone, F.; Godos, J.; Zelber-Sagi, S. Natural antioxidants for non-alcoholic fatty liver disease: Molecular
targets and clinical perspectives. Liver Int. 2016, 36, 5-20. [CrossRef] [PubMed]

Shapiro, H.; Bruck, R. Therapeutic potential of curcumin in non-alcoholic steatohepatitis. Nutr. Res. Rev.
2005, 18, 212-221. [CrossRef] [PubMed]

Inzaugarat, M.E.; De Matteo, E.; Baz, P.; Lucero, D.; Garcia, C.C.; Gonzalez Ballerga, E.; Daruich, J.; Sorda, ].A.;
Wald, M.R.; Cherfavsky, A.C. New evidence for the therapeutic potential of curcumin to treat nonalcoholic
fatty liver disease in humans. PLoS ONE 2017, 12, e0172900. [CrossRef] [PubMed]

Zhao, X,; Jiang, T.; Wang, L.; Yang, H.; Zhang, S.; Zhou, P. Interaction of curcumin with Zn (II) and Cu (II)
ions based on experiment and theoretical calculation. J. Mol. Struct. 2010, 984, 316-325. [CrossRef]

Zhang, W.; Chen, C.; Shi, H.; Yang, M.; Liu, Y.; Ji, P; Chen, H.; Tan, R.X; Li, E. Curcumin is a biologically
active copper chelator with antitumor activity. Phytomedicine 2016, 23, 1-8. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.cmet.2006.08.009
http://www.ncbi.nlm.nih.gov/pubmed/16950140
http://dx.doi.org/10.1007/s10534-004-1800-0
http://www.ncbi.nlm.nih.gov/pubmed/15865413
http://dx.doi.org/10.1016/j.jnutbio.2015.08.024
http://www.ncbi.nlm.nih.gov/pubmed/26895659
http://dx.doi.org/10.1002/iub.1603
http://www.ncbi.nlm.nih.gov/pubmed/28164426
http://dx.doi.org/10.1111/j.1753-4887.2010.00271.x
http://www.ncbi.nlm.nih.gov/pubmed/20384844
http://dx.doi.org/10.1038/ajg.2010.170
http://www.ncbi.nlm.nih.gov/pubmed/20407430
http://dx.doi.org/10.1007/s12263-009-0153-2
http://www.ncbi.nlm.nih.gov/pubmed/19821111
http://dx.doi.org/10.1097/MPG.0b013e31827aced4
http://www.ncbi.nlm.nih.gov/pubmed/23154483
http://dx.doi.org/10.2169/internalmedicine.43.1042
http://www.ncbi.nlm.nih.gov/pubmed/15609699
http://dx.doi.org/10.1080/10715760000301331
http://www.ncbi.nlm.nih.gov/pubmed/11237103
http://dx.doi.org/10.1111/bcp.12899
http://www.ncbi.nlm.nih.gov/pubmed/26852185
http://dx.doi.org/10.1080/09637486.2016.1214239
http://www.ncbi.nlm.nih.gov/pubmed/27484357
http://dx.doi.org/10.1111/liv.12975
http://www.ncbi.nlm.nih.gov/pubmed/26436447
http://dx.doi.org/10.1079/NRR2005106
http://www.ncbi.nlm.nih.gov/pubmed/19079906
http://dx.doi.org/10.1371/journal.pone.0172900
http://www.ncbi.nlm.nih.gov/pubmed/28257515
http://dx.doi.org/10.1016/j.molstruc.2010.09.049
http://dx.doi.org/10.1016/j.phymed.2015.11.005
http://www.ncbi.nlm.nih.gov/pubmed/26902401

Nutrients 2017, 9, 1137 12 of 12

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Santamarina, A.B.; Carvalho-Silva, M.; Gomes, L.M.; Okuda, M.H.; Santana, A.A.; Streck, E.L;
Seelaender, M.; do Nascimento, C.M.; Ribeiro, E.B.; Lira, E.S.; et al. Decaffeinated green tea extract rich in
epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory
chain complexes in diet-induced obesity mice. J. Nutr. Biochem. 2015, 26, 1348-1356. [CrossRef] [PubMed]
Wing, V.; Hung, S.; Bressan, P.; Seo, K.; Kerman, K. Electroanalysis of Natural Compounds as Copper
Chelating Agents for Alzheimer’s Disease Therapy. Electroanalysis 2015, 27, 2670-2678.

Yin, Y,; Gao, L.; Lin, H.; Wu, Y;; Han, X.; Zhu, Y,; Li, J. Luteolin improves non-alcoholic fatty liver disease
in db/db mice by inhibition of liver X receptor activation to downregulate expression of sterol regulatory
element binding protein 1c. Biochem. Biophys. Res. Commun. 2017, 482, 720-726. [CrossRef] [PubMed]

54, C.; Oliveira, A.R.; Machado, C.; Azevedo, M.; Pereira-wilson, C. Effects on Liver Lipid Metabolism of the
Naturally Occurring Dietary Flavone Luteolin-7-glucoside. Evid. Based Complement. Altern. Med. 2015, 2015.
[CrossRef] [PubMed]

Brown, J.E.; Khodr, H.; Hider, R.C.; Rice-Evans, C.A. Structural dependence of flavonoid interactions with
Cu2+ ions: Implications for their antioxidant properties. Biochem. ]. 1998, 330, 1173-1178. [CrossRef]
[PubMed]

Yesil, A.; Yilmaz, Y. Review article: Coffee consumption, the metabolic syndrome and non-alcoholic fatty
liver disease. Aliment. Pharmacol. Ther. 2013, 38, 1038-1044. [CrossRef] [PubMed]

Shen, H,; Lipka, S.; Shahzad, G.; Kumar, A.; Mustacchia, P. Association between caffeine consumption and
nonalcoholic fatty liver disease: A systemic review and meta-analysis. Am. ]. Gastroenterol. 2016, 9, 113-120.
[CrossRef] [PubMed]

Liao, C.C.; Ou, T.T,; Huang, H.P.; Wang, C.J. The inhibition of oleic acid induced hepatic lipogenesis and the
promotion of lipolysis by caffeic acid via upregulation of AMP-activated kinase. J. Sci. Food Agric. 2014, 94,
1154-1162. [CrossRef] [PubMed]

Nkhili, E.; Loonis, M.; Mihai, S.; el Hajji, H.; Dangles, O. Reactivity of food phenols with iron and copper
ions: Binding, dioxygen activation and oxidation mechanisms. Food Funct. 2014, 5, 1186-1202. [CrossRef]
[PubMed]

Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the olive-derived
polyphenol oleuropein on human health. Int. ]. Mol. Sci. 2014, 15, 18508-18524. [CrossRef] [PubMed]

Kim, S.W.; Hur, W,; Li, T.Z.; Lee, Y.K,; Choi, ].E.; Hong, SW.; Lyoo, K.S.; You, C.R,; Jung, E.S.; Jung, CK;
Park, T; et al. Oleuropein prevents the progression of steatohepatitis to hepatic fibrosis induced by a high-fat
diet in mice. Exp. Mol. Med. 2014, 46, €92. [CrossRef] [PubMed]

Bendini, A.; Cerretani, L.; Vecchi, S.; Carrasco-Pancorbo, A.; Lercker, G. Protective effects of extra virgin olive
oil phenolics on oxidative stability in the presence or absence of copper ions. J. Agric. Food Chem. 2006, 54,
4880-4887. [CrossRef] [PubMed]

Porras, D.; Nistal, E.; Martinez-Flores, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; Gonzélez-Gallego, J.;
Garcia-Mediavilla, M.V.; Sanchez-Campos, S. Protective effect of quercetin on high-fat diet-induced
non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and
related gut-liver axis activation. Free Radic. Biol. Med. 2017, 102, 188-202. [CrossRef] [PubMed]

Panchal, S.K.; Poudyal, H.; Arumugam, T.V.; Brown, L. Rutin Attenuates Metabolic Changes, Nonalcoholic
Steatohepatitis, and Cardiovascular Remodeling in High-Carbohydrate, High-Fat Diet-Fed Rats. J. Nutr.
2011, 141, 1062-1069. [CrossRef] [PubMed]

Bukhari, S.B.; Memon, S.; Mahroof-Tahir, M.; Bhanger, M.I. Synthesis, characterization and antioxidant
activity copper-quercetin complex. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 71, 1901-1906.
[CrossRef] [PubMed]

Aguirre, L.; Portillo, M.P,; Hijona, E.; Bujanda, L. Effects of resveratrol and other polyphenols in hepatic
steatosis. World ]. Gastroenterol. 2014, 20, 7366-7380. [CrossRef] [PubMed]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.jnutbio.2015.07.002
http://www.ncbi.nlm.nih.gov/pubmed/26300331
http://dx.doi.org/10.1016/j.bbrc.2016.11.101
http://www.ncbi.nlm.nih.gov/pubmed/27888103
http://dx.doi.org/10.1155/2015/647832
http://www.ncbi.nlm.nih.gov/pubmed/26113868
http://dx.doi.org/10.1042/bj3301173
http://www.ncbi.nlm.nih.gov/pubmed/9494082
http://dx.doi.org/10.1111/apt.12489
http://www.ncbi.nlm.nih.gov/pubmed/24024834
http://dx.doi.org/10.1177/1756283X15593700
http://www.ncbi.nlm.nih.gov/pubmed/26770272
http://dx.doi.org/10.1002/jsfa.6386
http://www.ncbi.nlm.nih.gov/pubmed/24027117
http://dx.doi.org/10.1039/C4FO00007B
http://www.ncbi.nlm.nih.gov/pubmed/24700074
http://dx.doi.org/10.3390/ijms151018508
http://www.ncbi.nlm.nih.gov/pubmed/25318054
http://dx.doi.org/10.1038/emm.2014.10
http://www.ncbi.nlm.nih.gov/pubmed/24763197
http://dx.doi.org/10.1021/jf060481r
http://www.ncbi.nlm.nih.gov/pubmed/16787043
http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037
http://www.ncbi.nlm.nih.gov/pubmed/27890642
http://dx.doi.org/10.3945/jn.111.137877
http://www.ncbi.nlm.nih.gov/pubmed/21508207
http://dx.doi.org/10.1016/j.saa.2008.07.030
http://www.ncbi.nlm.nih.gov/pubmed/18783981
http://dx.doi.org/10.3748/wjg.v20.i23.7366
http://www.ncbi.nlm.nih.gov/pubmed/24966607
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Pathophysiology of NAFLD and Nutritional Implications 
	Dietary Fats 
	Dietary Carbohydrates 

	NAFLD-Related Oxidative Stress 
	Special Focus on Copper 
	Copper Homeostasis and Metabolism 
	Copper and Its Role in NAFLD Onset and Progression 
	Copper and Nutrients in NAFLD 


	Conclusions 

