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Abstract: There is much epidemiological evidence that a diet rich in fruits and vegetables could lower
the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides,
numerous studies have demonstrated that natural polyphenols could be used for the prevention and
treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the
modulation of multiple molecular events involved in carcinogenesis. The current review summarized
the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes)
and discussed the potential mechanisms of action, which were based on epidemiological, in vitro,
in vivo and clinical studies within the past five years.
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1. Introduction

Globally, there were approximately 14.1 million new cancer cases in 2012, and the number was
estimated to reach 25 million in 2032. Aside from the high incidence, cancer is also one of the leading
causes of death. In 2012 alone, there were about 8.2 million cancer-related deaths, which were mainly
attributed to lung, gastric, colorectal, liver, breast, prostate and cervical cancer [1]. The situation urges
the research of cancer prevention and treatment. In the last two decades, the anticancer effects of natural
polyphenols have become a hot topic in many laboratories. Meanwhile, polyphenols are potential
candidates for the discovery of anticancer drugs. Polyphenols are defined as compounds having at least
one aromatic ring with one or more hydroxyl functional groups attached. Natural polyphenols refer
to a large group of plant secondary metabolites ranging from small molecules to highly polymerized
compounds [2]. Polyphenols are widely present in foods and beverages of plant origins (e.g., fruits,
vegetables, spices, soy, nuts, tea and wine) [3-5]. Based on chemical structures, natural polyphenols
can be divided into five classes, including flavonoids, phenolic acids, lignans, stilbenes and other
polyphenols. Flavonoids and phenolic acids are the most common classes, and account for about 60%
and 30% of all natural polyphenols, respectively (Table 1) [6]. A plethora of studies have documented
the anticancer effects of natural polyphenols [7-11]. Noteworthy examples include anthocyanins from
blueberries, epigallocatechin gallate (EGCG) from green tea, resveratrol from red wine and isoflavones
from soy. The anticancer efficacy of natural polyphenols has largely been attributed to their potent
antioxidant and anti-inflammatory activities as well as their abilities to modulate molecular targets and
signaling pathways, which were associated with cell survival, proliferation, differentiation, migration,
angiogenesis, hormone activities, detoxification enzymes, immune responses, etc. [12,13].
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The present review summarized recent discoveries about the anti-carcinogenic properties of
natural polyphenols and discussed the mechanisms of action, which were based on evidence from
epidemiological studies, laboratory experiments and clinical trials.

Table 1. The classification of natural polyphenols.

Classification Representative Members Major Dietary Sources
. Iphinidin, pelargonidin, rries, gr , cherries,
anthocyanins de pt .1d pelargo di berries, grapes, cherries
cyanidin, malvidin plums, pomegranates
flavanols epicatechin, epi.ga.llocatechin, apples, p.ears, legumes, tea,
EGCG, procyanidins cocoa, wine
. flavanones hesperidin, naringenin citrus fruits
flavonoids
. . . . arsley, celery, orange,
flavones apigenin, chrysin, luteolin, p .S Y, celery, o ge.
onions, tea, honey, spices
uercetin, kaempferol, myricetin,  berries, apples, br li
flavonols quercetin, kaempferol, myricetin, erries, apples, broccoli,
isorhamnetin, galangin beans, tea
isoflavonoids genistein, daidzein soy
pomegranate, grapes,
hydroxybenoic acid ellagic acid, gallic acid berries, walnuts, chocolate,

phenolic acids wine, green tea

hydroxycinnamic acid  ferulic acid, chlorogenic acid coffee, cereal grains

sesamin, secoisolariciresinol

. . flaxseeds, sesame
diglucoside !

lignans

resveratrol, pterostilbene,

stilbenes .
piceatannol

grapes, berries, red wine

2. Epidemiological Studies

Evidence from epidemiological studies is inconsistent, especially when considering the results of
prospective cohort studies (Table 2). A case-control study in Canada reported favorable effects of a high
dietary intake of total flavonoids on lung cancer risks [14]. Apart from this, in a Korean study, for
women, the intake of total flavonoids, as well as flavones and anthocyanidins, was inversely associated
with the risk of gastric cancer [15]. However, another study in America found no significant association
between flavonoids intake and the incidence or survival of gastric cancer [16]. For colorectal cancer,
a meta-analysis showed protective roles of high dietary isoflavone intake [17]. Besides, a Spanish
case-control study suggested that the dietary intake of total flavonoids (especially certain subclasses)
and lignans might decrease colorectal cancer risks [18]. However, large prospective cohorts showed that
high habitual consumption of flavonoids could not protect against colorectal cancer [19]. In addition,
the Fukuoka study reported no association between total dietary polyphenols and colorectal cancer
risks [20]. For hepatocellular carcinoma (HCC), the European Prospective Investigation into Cancer
and Nutrition suggested that a high intake of dietary flavanols, but not total flavonoids, might
modestly decrease HCC risks [21,22]. In addition, according to a meta-analysis, the risk of breast
cancer was reduced in women with a high intake of flavonols and flavones [23]. Studies also suggested
that soy isoflavone intake reduced breast cancer risk for Asian women, which was more potent
for post-menopausal women (OR 0.46, 95% CI 0.28-0.78) than for premenopausal women (OR 0.63,
95% CI 0.50-0.80). However, for women in Western countries, no significant association could be
found, which might due to low levels of isoflavone consumption in the Western population [24,25].
In addition, the estrogen receptor (ER) status might modify the association. For example, a U.S.
prospective cohort study showed that a modest inverse trend existed for dietary flavanols intake and
the risk of ER-negative breast cancer, but not ER-positive cancer [26]. For prostate cancer, data from a
Netherlands cohort study showed that dietary flavonoid intake was correlated with decreased risks of
advanced stage prostate cancer but not overall or non-advanced prostate cancer [27]. On the contrary,
in a prospective cohort study, the intake of total flavonoids as well as flavan-3-ols, isoflavones, and
proanthocyanidins, increased prostate cancer risks [28].
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It should be noted that the assessment of polyphenol intakes in many epidemiological studies
was based on food questionnaires, which could not provide the exact composition of foods. Therefore,
it might be difficult for them to reflect the real impact of natural polyphenols on cancer. In this case, the
experimental study in cell culture or animal modes might be a more direct way to assess the anticancer
efficacy of natural polyphenols as well as to examine the possible mechanisms involved in this process.

Table 2. Dietary polyphenol intake and cancer risks.

Cancer Polyphenols Study Type Risk Estimates (95% CI) References
lung cancer flavonoids case-control study  0.63 (0.47-0.85) [14]
. flavonoids case-control study  no significant association [16]
gastric cancer
flavonoids case-control study  0.33 (0.15-0.73) [15]
flavonoids cohort study no significant association [19]
flavonoids and case-control stud total flavonoids 0.59 (0.35-0.99); [18]
colorectal cancer lignans y lignans 0.59 (0.34-0.99)
polyphenols case-control study  no significant association [20]
isoflavones meta-analysis 0.76 (0.59-0.98) [17]
HCC flavanols cohort study 0.62 (0.33-0.99) [22]
flavonols 0.88 (0.80-0.98);
flavonoids meta-analysis ﬂavgnqs 0 83 (0'76_9'9‘1); [23]
no significant association for total
breast cancer flavonoids or other subclasses
isoflavones meta-analysis 0.68 (0.52-0.89) [25]
flavanols cohort study 0.81 (0.67-0.97) [26]
flavonoids cohort study 1.15 (1.04-1.27) [28]
total catechin 0.73 (0.57-0.95);
rostate cancer i i o .
P flavonoids cohort study epicatechin 0.74 (0.57-0.95); [27]

kaempferol 0.78 (0.61-1.00);
myricetin 0.71 (0.55-0.91)

3. Experimental Studies

Accumulating evidence from laboratory studies has supported the anticancer properties of natural
polyphenols. Given the vast number of studies, a search of PubMed and Web of Science was conducted
to identify relevant peer-reviewed articles published in English within 5 years.

3.1. Anthocyanins

Anthocyanins (Figure 1), which occur ubiquitously throughout the plant kingdom, are the basis
for the bright attractive red, blue and purple colors of fruits and vegetables. In plants, anthocyanins are
usually glycosylated with glucose, galactose, arabinose, rutinose, etc. The aglycone forms are known as
anthocyanidin, including cyanidin, delphinidin, peonidin, petunidin, pelargonidin, and malvidin [29].

R4

OH
HO ot O
AN R,
O =
OH
OH
Figure 1. The chemical structures of cyanidin (R; = OH, R, = H), delphinidin (R; = Ry, = OH), peonidin

(R; = OCHS3, R; = H), petunidin (R; = OCH3, R; = OH), pelargonidin (R; = Ry = H) and malvidin
(R =R, = OCHB3).
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Among anthocyanins, delphinidin possesses strong anticancer activities. Studies have shown that
delphinidin treatment induced apoptosis and cell cycle arrest in several types of cancer. This effect
might be due to suppression of the NF-kB pathway [30,31]. The over-expression of human epidermal
growth factor receptor 2 (HER2) is usually associated with poor prognosis. A study found that
two anthocyanins extracted from black rice, peonidin-3-glucoside and cyaniding-3-glucoside, could
induce apoptosis and selectively decrease cell proliferation and tumor growth of HER2 positive
breast cancer [32]. In addition, peonidin-3-glucoside treatment significantly suppressed invasion and
metastasis of lung cancer cells by down-regulating the matrix metalloproteinase (MMP) [33]. In similar
ways, cyanidin-3-O-sambubioside from Acanthopanax sessiliflorus fruit inhibited angiogenesis and
invasion of breast cancer cells [34]. Though anthocyanins are usually considered as antioxidants,
a study showed that certain anthocyanins (cyanidin and delphinidin) exhibited oxidative stress-based
cytotoxicity to colorectal cancer cells [35]. Another study evaluated the impact of chemical structures
on chemopreventive activities of anthocyanins in colon cancer cells. Data indicated that nonacylated
monoglycosylated anthocyanins were more potent in inhibiting cancer cell growth, while anthocyanins
with pelargonidin aglycone and triglycosylation were weak [36]. On the other hand, it was suggested
that a mixture of different anthocyanins might be better than a single one in cancer treatment.
For example, a combination of sub-optimal concentration of anthocyanidins synergistically suppressed
the growth of lung cancer cells. Meanwhile, in a mice model of lung cancer, a mixture of anthocyanidins
from bilberry (0.5 mg/mouse) or delphinidin (1.5 mg/mouse) all inhibited tumor growth, and
the effective concentration of delphinidin in the mixture was eight-fold lower than the purified
compound [7].

3.2. Xanthohumol

Xanthohumol (Figure 2) is a major prenylated chalcone isolated from hops (Humulus lupulus).
The compound can also be found in beer, but to a much less extent. In some cancers, the
xanthohumol-induced cell death was accompanied by apoptosis and S phase cell cycle arrest [37,38].
A study suggested that the apoptosis induced by treatment of xanthohumol (10-40 M) to HepG2 liver
cancer cells was due to modulation of the NF-«kB/p53 signaling pathway [39]. Another study reported
that xanthohumol treatment (>5 M) mediated anticancer activity in human liver cancer cells through
suppression of the Notchl signaling pathway [40]. In addition, xanthohumol could block the estrogen
signaling pathway. By doing so, it selectively suppressed the growth of ERx-positive breast cancer
both in vitro and in vivo [41]. Cysteine X Cysteine chemokine receptor 4 (CXCR4) is over-expressed in
many cancers and mediates metastasis of cancer cells to sites expressing its cognate ligand CXCL12.
A study demonstrated that xanthohumol treatment dose- and time-dependently decreased expression
of CXCR4, thus inhibiting cell invasion induced by CXCL12 in breast and colon cancer cells [42].
In another study, by promoting production of reactive oxygen species (ROS), xanthohumol treatment
inhibited the progression of advanced tumor and the growth of poorly differentiated prostate cancer
in the transgenic mice [43].

CHg

Figure 2. The chemical structure of xanthohumol.
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3.3. Flavanols

Flavanols, also known as flavan-3-ols, have the most complex structures among subclasses of
flavonoid. Flavanols include simple monomers (catechins) as well as oligomers and polymers, the latter
two are known as proanthocyanidins or condensed tannins. Flavanols can be commonly found in
foodstuffs [29].

3.3.1. EGCG

Smoking is a well-established risk factor of lung cancer. A study showed that EGCG (Figure 3)
treatment suppressed nicotine-induced migration and invasion of A549 lung cancer cells in vitro as
well as in mice through inhibiting angiogenesis and epithelial-mesenchymal transition (EMT) [9].
The effects of EGCG varied with dose. In CL1-5 lung cancer cells, at concentration of 5-20 uM, EGCG
effectively suppressed the invasion and migration through suppressing MMP-2 expression. While at
higher concentration (>20 uM), it exhibited anti-proliferation activities through induction of G,/M
cell cycle arrest but not apoptosis [44]. Another study found that several gastric cancer cell lines were
sensitive to EGCG (100 uM) induced apoptosis due to inhibition of survivin, a potent anti-apoptotic
protein [45]. Many signaling pathways might be affected by EGCG treatment. A study showed that
EGCG (20 pM) exerted anti-proliferative effects in gastric cancer cell by preventing the 3-catenin
oncogenic signaling pathway [46]. Another study on colon cancer suggested that the Akt, extracellular
signal-related kinase (ERK) 1/2 and alternative p38MAPK signaling pathways were involved in the
chemopreventive effects of EGCG [47]. Besides, there is a growing interest in cancer epigenetics in
recent years mainly due to the reversibility of epigenetic alterations. Major epigenetic alterations
involve DNA methylation, histone modifications and miRNAs [48]. The combination of EGCG
and sodium butyrate inhibited DNA methytransferases and class I histone deacetylases (HDACs)
in colorectal cancer cells, thus modulating global DNA methylation and histone modifications [49].
In addition, the cancer stem cell plays a key role in chemoresistance and recurrence. Both in vitro
and in vivo studies showed that EGCG could suppress cancer stem cell growth of colorectal cancer
as well as breast cancer [50,51]. The anticancer activities of EGCG might involve modulation of
hormone activities. It is known that exposure to estrogen is an important risk factor of breast cancer.
A study found that EGCG (1 pM) could suppress estrogen (estradiol, E2)-induced breast cancer
cell proliferation [52]. In addition, EGCG treatment down-regulated ERx in ER* /PR* breast cancer
cells [53]. Treatment of EGCG (20 uM) also inhibited metastasis of breast cancer cells by restoring the
balance between MMP and the tissue inhibitor of matrix metalloproteinase (TIMP). Mechanistic studies
suggested that the epigenetic induction of TIMP-3 was a key event in this process, which involved
modifying the enhancer of zeste homolog 2 and HDAC1 [54]. Androgen deprivation is a main therapy
for prostate cancer. It was reported that EGCG could functionally antagonize androgen, leading to
suppression of prostate cancer growth both in vitro and in vivo [55].

HO.

HO'

OH

Figure 3. The chemical structure of EGCG.
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3.3.2. Procyanidins

A study suggested that procyanidin C1 from Cinnamomi cortex might be able to prevent
TGF-B-induced EMT in the A549 lung cancer cells [56]. Another study found that hexmer form
of procyanidins from cocoa inhibited the proliferation (50 and 100 uM), induced apoptosis and G, /M
cell cycle arrest in several colorectal cancer cells, which was possibly mediated by the Akt pathway [57].
Procyanidins from Japanese quince also showed pro-apoptotic effects on Caco-2 colon cancer cells,
with the oligomer enriched extract showing a more potent pro-apoptotic activity [58]. Besides, data
shows that in breast cancer cells, treatment of procyanidins from evening primrose (25-100 pM
gallic acid equivalents) decreased cell viability by promoting apoptosis and reduced cell invasion by
suppressing angiogenesis propensity [59].

3.4. Flavanones

Flavanones (Figure 4) are abundant in citrus fruits, especially the solid parts of fruit.
Major flavanones are naringenin from grapefruit and hesperetin from oranges [2].

OH OH

HO N

OH o
(a) (b)

Figure 4. The chemical structures of naringenin (a) and hesperetin (b).

3.4.1. Naringenin

In A549 lung cancer cells, naringenin treatment enhanced TRAIL-mediated apoptosis by
up-regulating the expression of death receptor 5 [60]. Besides, in SGC-7901 gastric cancer cells,
naringenin treatment inhibited cancer cell proliferation, invasion, and migration and induced apoptosis,
which might be related to its inhibition of the Akt signaling pathway [61]. Another study in
colon cancer cells suggested that the pro-apoptotic activity of naringenin was mediated by the
p38-dependent pathway [62]. In HCC cells, naringenin could suppress TPA-induced cancer cell
invasion by down-regulating multiple signaling pathways, such as the NF-«B pathway, the ERK and
c-Jun N-terminal kinase (JNK) signaling pathway [63]. Besides, naringenin treatment to HepG2 liver
cancer cells induced mitochondrial-mediated apoptosis and cell cycle arrest through up-regulation of
p53 [64]. In breast cancer cells, naringenin demonstrated anti-estrogenic activity in estrogen-rich status
and estrogenic activity in estrogen-deficient status [65]. In addition, oral administration of naringenin
suppressed breast cancer metastases after surgery by modulating the host immunity [66].

3.4.2. Hesperetin

In gastric cancer cells, hesperetin treatment (100400 M) decreased cell proliferation and induced
mitochondria-mediated apoptosis via promoting intracellular ROS accumulation. Meanwhile, the
compound (i.p. 2040 mg/kg thrice a week) significantly suppressed the growth of xenograft tumors
in mice model of gastric cancer [67]. Besides, dietary hesperetin showed anti-proliferative activities
against chemical-induced colon carcinogenesis. Oral supplements of hesperetin (20 mg/kg/day)
reduced the proliferating cell nuclear antigen, the formation of aberrant crypt foci induced by
1,2-dimethylhydrazine in rat [68]. In breast cancer cells, hesperetin (40-200 M) induced growth
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inhibition also involved mitochondria-mediated apoptosis, increased ROS and activation of ASK1/JNK
pathway [69]. Cancer cells usually have high levels of glucose uptake and metabolism, which
plays an important role in tumor growth. A study suggested that the anti-proliferative effects of
hesperetin (50-100 uM) on breast cancer were possibly due to the suppression of glucose uptake [70].
Another study found that hesperetin treatment (IC5y 40-90 uM) decreased proliferation and induced
apoptosis in PC-3 prostate cancer cells, which was likely mediated by inhibition of the NF-xB
pathway [71]. In addition, hesperetin (ICsy 650 pM) exhibited potential anticancer effects on cervical
cancer cells through the induction of both extrinsic and intrinsic apoptosis [72].

3.5. Flavones

Flavones (Figure 5) in food are usually the glycosides of apigenin and luteolin. Important dietary
sources of flavones are parsley and celery [2].

R4

HO. O.
Ra

OH (6]

Figure 5. The chemical structures of apigenin (R; = OH, R, = H), chrysin (R; = R, = H) and luteolin
(R =R, = OH).

3.5.1. Apigenin

Apigenin is a common flavonoid widely distributed in plant-based food, such as orange,
parsley, onions, tea and wheat sprouts [73]. In H460 lung cancer cells, treatment of apigenin
(40-160 uM) induced apoptosis and DNA damage, which was accompanied by increased production
of ROS and Ca®* as well as a change of the Bax/Bcl-2 ratio [74]. Apigenin (20 pg/mL) also
induced apoptosis in gastric cancer cells, especially in the undifferentiated gastric cancer cells,
while showed little cytotoxicity to normal gastric cells [75]. Helicobacter pylori infection is known
to cause ulcers and is possibly linked to gastric cancer. Atrophic gastritis was suggested to be
a critical step in Helicobacter pylori-induced carcinogenesis. A study found that apigenin administration
(30-60 mg/kg/week) could prevent Helicobacter pylori-induced atrophic gastritis as well as gastric
cancer development in Mongolian gerbils [76]. Additionally, apigenin treatment (20-120 pM)
suppressed proliferation, invasion and migration of several colorectal cancer cell lines. The compound
(50 mg/kg) also inhibited tumor growth and metastasis in the orthotopic colorectal cancer model [77].

About 20% of breast cancer cases are HER2-positive, with amplification of human epidermal
growth factor receptor (HER2) or over-expression of HER2 protein. These cancers are usually more
aggressive and more resistant to hormone treatment than other types of breast cancer. A study
found that apigenin treatment (20-100 pM) significantly suppressed growth and caused apoptosis in
HER?2-positive breast cancer cells, which was possibly mediated by inhibition of the signal transducer
and activator of transcription 3 (STAT3) signaling pathway [78]. Another study reported anticancer
effects of apigenin on MDA-MB-231 breast cancer cells in vitro (10-40 pM) and in vivo (5 and
25 mg/kg). Possible mechanisms included induction of G,/M cell cycle arrest and epigenetic
alterations. Apigenin inhibited HDACs, which induced acetylation of histone H3 in the p21WAF1/CIP1
promoter region, leading to enhanced transcription of p21WAFI/CIP1 [79] Similar epigenetic effects
were also found in prostate cancer. Apigenin inhibited HDACsS, especially HDAC1 and HDAC3
expression. In this way apigenin treatment (2040 uM) induced cell cycle arrest and apoptosis in
prostate cancer cells and markedly inhibited tumor growth in mice (oral administration: 20 and
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50 ug/mouse/day) [80]. In addition, apigenin treatment to mice (20 and 50 pg/mouse/day) markedly
decreased tumor volumes of the prostate, inhibited angiogenesis and completely prevented distant
organ metastasis, which at least in part, was mediated by the PI3K/Akt/Forkhead box O (FoxO)
signaling pathway [81].

3.5.2. Chrysin

Chrysin is a naturally occurring flavone present in honey and propolis as well as the passion flower
(Passiflora caerulea), and has displayed a variety of bioactivities, such as antioxidant, anti-inflammatory
and anticancer activities [82]. AMPK activation is associated with cancer cell apoptosis. A study
suggested that AMPK activation might be involved in the growth inhibition and apoptosis induced by
chrysin treatment (10 uM) in lung cancer cells, and ROS might be a key regulator in this process [83].
Chrysin (50-100 uM) also exhibited chemopreventive effects in colorectal cancer cells, mainly as a result
of TNF-mediated apoptotic cell death, and the aryl hydrocarbon receptor, a transcriptional factor,
seemed to modulate this process [84]. Besides, in human triple-negative breast cancer cells, chrysin
treatment (5, 10 and 20 uM) dose-dependently inhibited the potential of cancer cells to invasion and
migration by down-regulating MMP-10, EMT and the PI3K/ Akt signaling pathway [82].

3.5.3. Luteolin

Luteolin is abundant in artichoke as well as several spices, including sage, thyme and oregano.
In A549 lung cancer cells, luteolin exhibited significant cytotoxic effects (ICsy 40.2 pM) through induction
of Gy cell cycle arrest and apoptosis. The apoptosis was induced in a mitochondria-dependent
pathway and was associated with activation of JNK and inhibition of NF-kB (p65) translocation [85].
The micro-environment around cancer cells is highly involved in cancer progression. It was
reported that luteolin (1-10 uM) effectively suppressed IL-4 induced polarization of tumor-associated
macrophages (major components of cancer cell micro-environment) and consequently inhibited
monocyte recruitment and migration of Lewis lung cancer cells [86]. Hypoxia is another important
component of cancer micro-environment. In non-small lung cancer cells, high levels of hypoxia are
usually related to EMT. Luteolin treatment (5-50 uM) to non-small lung cancer cells could inhibit
hypoxia-induced EMT as well as cell viability, proliferation and motility. The effect was at least
partly through suppressing the expression of integrin 31 and FAK [87]. More importantly, luteolin
administration (i.p. 10 and 30 mg/kg/day) effectively suppressed tumor growth in a lung cancer mice
model with EGF receptor mutation and drug resistance [88].

In a human gastric cancer xenograft model, luteolin treatment (i.p. 10 mg/kg/day) significantly
suppressed tumor growth, without causing apparent toxicity or weight loss [89]. Luteolin treatment
(20-100 uM) also exhibited cytotoxic effect on several colon cancer cell lines through induction
of apoptosis and cell cycle arrest. Meantime, the same treatment exerted no evident toxicity
on normal differentiated enterocytes [90,91]. These effects of luteolin might be associated with
down-regulation of the IGF-1-mediated PI3K/Akt and ERK1/2 pathways, and suppression of synthesis
of sphingosine-1-phosphate and ceramide traffic [90,91]. Besides, it was indicated that ERx was
a possible target of luteolin. By down-regulating the expression of ER«, luteolin treatment (10-40 uM)
suppressed IGF-1-mediated PI3K/ Akt pathway, leading to growth inhibition of MCF-7 breast cancer
cells accompanied by cell cycle arrest and apoptosis [92]. In the MDA-MB-231 ER-negative breast
cancer cells, luteolin treatment also induced cell cycle arrest and apoptosis possibly mediated by EGFR.
In addition, luteolin-supplemented diet (0.01% or 0.05%) effectively reduced tumor burden in mice
inoculated with MDA-MB-231 cells [93]. Besides, in LNCaP prostate cancer cells, luteolin treatment
(30 uM) arrested the cell cycle at G; /S phase, induced cell apoptosis and inhibited cell invasion. The
possible mechanism might be down-regulated expression of prostate-specific antigen by luteolin [94].
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3.6. Flavonols

Flavonols (Figure 6) are probably the most widely distributed flavonoids in foods, but they are
usually present at relatively low concentrations [2]. Representatives of this subclass are quercetin,
kaempferol, myricetin, galangin and isorhamnetin.

R4

Ra

HO (@)
R3

OH
OH o

Figure 6. The chemical structures of quercetin (R; = H, R, = R3 = OH), kaempferol (R; = R3 = H,
Ry, = OH), myricetin (R; = Ry = R3 = OH), galangin (R; = Ry = R3 = H) and isorhamnetin (R; = H,
R, = OH, R3 = OCH3).

3.6.1. Quercetin

Quercetin treatment (IC59 2.30 £ 0.26 uM) to A549 lung cancer cells induced growth inhibition
via apoptosis. In similar ways, quercetin (8.4 mg/kg) inhibited the growth of transplanted lung
cancer in nude mice [95]. On the other hand, though exposure of gastric cancer cells to quercetin
(ICs50 40 and 160 uM in two cell lines respectively) led to pronounced apoptosis, the treatment also
induced protective autophagy, which impaired the anticancer effects of quercetin [96]. AMPK-mediated
signaling pathway, which participates in regulation of energy homeostasis, is important for the adaptive
responses of cancer cells and might be critical for the effects of quercetin. A study found that quercetin
treatment (i.p. 50 mg/kg/day) significantly decreased tumor volume in the HCT116 colon cancer
xenograft model by reducing AMPK activity. Similarly, by inhibiting AMPK, the apoptosis induced
by quercetin (100 uM) was more pronounced under hypoxic conditions than normoxic conditions
in HCT116 colon cancer cells [97]. Besides, in a mouse model of colorectal cancer, dietary quercetin
supplementation (25 mg/kg/day) alleviated several symptoms of cachexia such as body weight, grip
strength and muscle mass [98]. Another study found that quercetin treatment (0.05-0.15 mM) to HCC
cells effectively inhibited proliferation and induced apoptosis through up-regulation of Bad and Bax,
and concomitant down-regulating Bcl-2 and survivin. Importantly, quercetin (i.p. 40 mg/kg/day) also
exhibited excellent inhibition effects on tumor growth in mice [99].

The exposure of MCF-7 breast cancer cells to quercetin (50-200 uM) caused a dose- and
time-dependent decrease of proliferation through induction of apoptosis, which was accompanied by
up-regulation of Bax and down-regulation of Bcl-2 [100]. The inhibition of insulin receptor signaling
by quercetin (100 uM) also impairs proliferation of MDA-MB-231 breast cancer cells. Quercetin
feeding (50 pg/mouse/day) resulted in a significant decrease of tumor growth in mice model of breast
cancer [101]. In another study, quercetin (1-100 pM) inhibited breast cancer cells growth and migration
via reversing EMT, which was linked with the modulation of 3-catenin as well as its target genes
(e.g., cyclin D1 and c-Myc) [102]. VEGFR2-mediated pathway participates in the angiogenesis in
cancer development. Quercetin (34 mg/kg/day) inhibited angiogenesis of breast cancer xenograft
in mice, which was performed through suppressing this pathway [103]. Besides, dietary quercetin
(200 mg/kg body weight thrice a week) protected against prostate carcinogenesis induced by hormone
(testosterone) and carcinogen (N-methyl-N-nitrosourea) in rats [104]. In another preclinical rat model
of prostate cancer, oral administration of quercetin (200 mg/kg/day) prevented cancer development
by down-regulating the cell survival, proliferative and anti-apoptotic proteins [105]. In HeLa cervical
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cancer cells, quercetin treatment (110.38 & 0.66 M) led to ROS accumulation to induce apoptosis and
Gy /M cell cycle arrest [106].

3.6.2. Kaempferol

Kaempferol is a natural flavonol broadly distributed in apples, strawberries, broccoli and
beans, and exhibits a wide range of beneficial properties, such as cardioprotective, anti-diabetic, and
anti-allergic effects [107]. In A549 lung cancer cells, kaempferol treatment inhibited TGF-f1-induced
EMT and migration through suppressing the phosphorylation of smad3 mediated by Aktl [107].
Another study reported that kaempferol treatment exhibited significant anti-proliferative effects on
MKN28 and SGC7901 gastric cancer cells without apparent cytotoxicity to normal gastric epithelial cells.
The possible mechanism might be induction of apoptosis and G, /M cell cycle arrest. More importantly,
administration of kaempferol suppressed gastric cancer growth in vivo [108]. In HT-29 colon cancer
cells, the treatment of kaempferol (0-60 uM) provoked apoptosis by activating the death receptor
pathway and mitochondrial pathway [109]. Another study in SK-HEP-1 human liver cancer cells
found G, /M cell cycle arrest and autophagy following kaempferol treatment, which might be the
result of the modulation of CDK1/cyclin B expression and AMPK and AKT signaling pathways [110].
Kaempferol induced apoptosis in MCF-7 breast cancer cells [111]. In the same cell line, treatment of
kaempferol (100 uM) also significantly suppressed glucose uptake mediated by GLUT1, which might
be another mechanism underlying its anti-proliferative effects [112]. Besides, both in vitro and
in vivo study revealed that kaempferol could prevent breast cancer induced by 17f3-estradiol or
triclosn, an exogenous estrogen [113]. Kaempferol treatment also inhibited breast cell invasion
through down-regulating the expression and activity of MMP-9 by blocking the PKC3/MAPK/AP-1
cascades [114].

3.6.3. Myricetin

Myricetin is rich in berries, walnuts and herbs. Myricetin treatment to gastric cancer cells exhibited
anti-proliferative effects by inducing apoptosis and cell cycle arrest [115]. In HCT-15 human colon
cancer cells, myricetin treatment induced apoptotic cell death by modulating the Bax/Bcl-2-dependent
pathway [116]. Similarly, myricetin also decreased the expression of anti-apoptotic survivin and Bcl-2
and increased the expression of pro-apoptotic Bax in HCC cells and in vivo [117].

3.6.4. Galangin

Galangin is a naturally occurring flavonoid rich in oregano as well as in Alpinis officinarum,
a common spice in Asia. Galangin treatment (50-200 uM) to SNU-484 human gastric cancer cells
dose- and time-dependently inhibited cell proliferation through induction of apoptosis [118]. Besides,
in hepG2 liver cancer cells, galangin treatment (10-30 uM) significantly inhibited chemical-induced
cell invasion and metastasis by modulating the PKC/ERK pathway [119]. Another study suggested
that galangin (79.8-134 uM) could promote ER stress to suppress the proliferation of HCC cells [120].

3.6.5. Isorhamnetin

Isorhamnetin is a natural flavonoid rich in fruits and vegetables as well as tea, and is also
an immediate metabolite of quercetin, which has drawn attention for its excellent anti-inflammatory
and anticancer activities [121,122].

Treatment of isorhamnetin to A549 lung cancer cells induced apoptotic cell death, which was
accompanied by the up-regulation of capase-3, Bax, p53 and the down-regulation of Bcl-2, cyclin
D1 and PCNA protein. More importantly, isorhamnetin administration to tumor-bearing mice
significantly suppressed tumor growth [123]. Additionally, isorhamnetin suppressed gastric cancer
proliferation and invasion, and induced apoptosis by modulating the peroxisome proliferator-activated
receptor v (PPAR y)-mediated pathway in vitro and in vivo [124]. Another study investigated the
anti-proliferative activity of isorhamnetin in several human colorectal cancer cell lines (HT29, HCT116
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and SW480), and found that the compound inhibited proliferation of all tested cancer cells by blocking
the PI3K/Akt/mTOR pathway [125]. Both in vitro and in vivo experiments suggested that the
anticancer property of isorhamnetin in colon cancer involved inhibition of inflammation as well
as oncogenic Src activity and consequential loss of nuclear 3-catenin [126]. Another study documented
the anti-proliferative and pro-apoptotic activities of isorhamnetin in breast cancer cells, which was
probably mediated by the Akt and MAPK kinase signaling pathways [121]. Besides, in MDA-MB-231
breast cancer cells, isorhamnetin treatment significantly suppressed cell invasion by down-regulating
MMP-2 and MMP-9, which might be associated with the inhibition of p38 MAPK and STAT3 [122].

3.7. Isoflavones

Due to structural similarities to estrogen, isoflavones (Figure 7) have been classified as
phytoestrogen, another important class of phytochemicals. Genistein and daidzein from soy are
representative members of this subclass [2].

HO

OH

Figure 7. The chemical structures of daidzein (R = H) and genistein (R = OH).

3.7.1. Daidzein

Data indicated that daidzein was an apoptosis inducer in liver cancer cells and treatment of
daidzein (200-600 pM) caused mitochondrial-dependent apoptosis mediated by the Bcl-2 family [127].
In an in vitro study, daidzein (50 uM) as well as its metabolites R-equol and S-equol, suppressed
the invasion of MDA-MB-231 human breast cancer cells at least partly through the down-regulation
of MMP-2 expression [128]. However, another study reported that daidzein treatment (3—-10 uM)
up-regulated proto-oncogene BRF2 in ER-positive breast cancer cells but not ER-negative cells.
Female mice treated with a high-isoflavone commercial diet showed significantly increased BRF2
expression [129].

3.7.2. Genistein

Genistein is the most abundant isoflavonoid contained in soy as well as soy products and is also
a major active component of hormonal supplements for menopausal women [10]. In H446 lung cancer
cells, genistein treatment (25-75 uM) effectively suppressed the cell proliferation and migration, which
was accompanied by induction of apoptosis and G, /M cell cycle arrest. Importantly, the treatment
also suppressed the expression of Forehead box protein M1 and its target genes regulating cell cycle
or apoptosis, such as survivin, cyclin Bl and Cdc25. Therefore, the effects of genistein were at least
partly mediated by Forkhead box protein M1 [130]. In addition, genistein treatment (15 uM) to gastric
cancer cells suppressed the cancer cell stem-like abilities, includingself-renewal, drug resistance and
carcinogenicity, which might be due to down-regulation of stemness related genes as well as drug
resistance gene ABCG2. Meantime, genistein (i.p. 1.5 mg/kg/day) significantly decreased the weight
and size of gastric cancer inoculated in nude mice [131]. Besides, genistein (25-100 uM) exhibited
anti-proliferative and pro-apoptotic effects on colon cancer cells. The study indicated that inhibition of
oncogenic miR-95, Akt and SGK as well as phosphorylation of Akt could be involved in these anticancer
effects. Moreover, genistein treatment (i.p. 20, 50, 80 mg/kg/day) to mice significantly decreased
the weight and size of transplanted colorectal cancer [132]. Oral administration of genistein also
inhibited angiogenesis and suppressed metastasis of colorectal cancer to distant organs in mice [133].
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According to in vitro studies, the anticancer effects of genistein on colorectal cancer might involve
the suppression of Wnt, NF-«B signaling pathways [134,135]. Additionally, in nude mice inoculated
with liver cancer cells, oral administration of genistein (50 mg/kg/day) significantly suppressed the
intrahepatic metastasis [136].

Genistein treatment (5, 10 or 20 uM) elicited growth inhibition of MDA-MB-231 breast cancer
cells, which was accompanied by apoptosis and G, /M cell cycle arrest. This effect might be mediated
by down-regulation of the NF-«B activity via the Notch-1 pathway [137]. In MC{-7 breast cancer cells,
genistein treatment (15 and 30 pM) also inhibited cell growth, induced apoptosis and decreased the
CD44*CD24~ cancer stem cells. Importantly, genistein (i.p. 20 and 50 mg/kg/day) could also target
breast cancer stem cells to reduce the volume and weight of xenograft tumors in nude mice. The effects
might be correlated with down-regulation of Hedgehog-Glil signaling pathway [138]. However, some
studies found that genistein has adverse effects on breast cancer treatment. A study suggested that the
ER«/ERp ratio could be a determinant of genistein functions in breast cancer. In breast cancer with
a low ERat/ER ratio (e.g., T4D7 cells), genistein treatment might be harmless or even beneficial, while
in breast cancer with a high ratio (e.g., MCE-7 cells), the treatment might be counterproductive [139].
Genistein (10 uM) could also affect the expression and function of ATP-binding cassette drug
transporters in breast cancer cells. The effect resulted in an increase of efflux and resistance of
chemotherapeutic drugs (doxorubicin and mitoxantrone) in MCF-7 cells [10]. Moreover, in athymic
mice model of breast cancer, a low dose long-term treatment of genistein (<500 ppm) led to tumor
growth as well as more aggressive and advanced phenotypes [140]. Genistein was also reported to
have different effects on prostate cancer cells. In LAPC-4 cells with wild androgen receptor, genistein
treatment (0.5-50 M) dose dependently suppressed cell proliferation and androgen receptor. However,
in LNCaP cells with T877A mutant androgen receptor, genistein promoted cancer cell growth and
androgen receptor at physiological concentration (0.5-5 pM), but showed inhibitory activities at higher
concentration. Similar biphasic activities of genistein were also observed in PC-3 cells transfected
with androgen receptor mutants [141]. In addition, the exposure of HeLa cervical cancer cells to
genistein (ICsp 100 uM) led to growth inhibition mediated by apoptosis and G, /M cell cycle arrest and
suppressed cell migration by modulating MMP-9 and TIMP-1 [142].

3.8. Phenolic Acids

Phenolic acids (Figure 8) can be mainly classified into two groups, hydroxybenzoic acid and
hydroxycinnamic acid. Hydroxybenzoic acids present in few edible plants and are not considered to
be of high nutritional interest. The other group is more common in food, but its consumption is highly
variable, depending on intake of coffee [2].

o) HO. 0 o OH
0 OH
=
HO o} HO OH CHa_
o
o)
OH oH

(a) (b) ©
Figure 8. The chemical structures of (a) ellagic acid; (b) gallic acid and (c) ferulic acid.

3.8.1. Ellagic Acid

Ellagic acid is a dietary flavonoid abundantly in pomegranate, grapes, strawberries and
walnuts [143]. Ellagic acid (50-200 uM) exerted anti-proliferative and pro-apoptotic effects in colon
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cancer cell lines in a concentration dependent manner [144]. Besides, in a chemical-induced liver
cancer rat model, oral administration of ellagic acid (30 mg/kg/day) normalized the permeability of
mitochondrial outer membrane and alleviated inflammation-mediated cancer cell proliferation [145].
Ellagic acid (1040 ng/mL) also showed growth inhibitory effects on MCF-7 breast cancer cells, which
was accompanied by Go/Gj cell cycle arrest. The modulation of the TGF-f3 /Smads signaling pathway
was suggested to be the potential mechanism [143]. Furthermore, exposure to ellagic acid (i.p. 50 and
100 mg/kg/day) suppressed tumor growth and angiogenesis in mice implanted with breast cancer
cells [146]. In another study, non-cytotoxic dose of ellagic acid (25 and 50 M) to androgen independent
prostate cancer cells markedly suppressed the cell invasion and motility. The effect might be the result
of down-regulation of MMPs [147]. Besides, at higher dose (10-100 uM), ellagic acid treatment was
found to induce growth inhibition and caspase-dependent apoptosis in PC3 prostate cancer cells in
a dose responsive manner [148].

3.8.2. Gallic Acid

Gallic acid is widely distributed in plant-based food in free forms as well as part of hydrolyzable
tannins. Blackberry, raspberry, walnuts, chocolate, wine, green tea and vinegar are rich sources
of the compound. Gallic acid possesses various pharmacological activities, such as anti-microbial,
anti-inflammatory and anticancer activities [149,150]. Exposure to gallic acid (3.5 pM) inhibited
migration of AGS gastric cancer cells, which was possibly mediated by up-regulation of RhoB as well
as down-regulation of AKT/small GTPase signals and NF-«B activity. In addition to this, compared
with the control, feeding with gallic acid solution (0.25% and 0.5%) significantly decreased tumor size
and weight in mice models of gastric cancer [151]. The ROS-dependent pro-apoptotic effects of gallic
acid led to decreased viability of different cancer cells, such as HCT-15 colon cancer cells (200 M) and
LNCaP prostate cancer cells (80 pug/mL) [149,152]. Besides, gallic acid treatment selectively inhibited
growth of liver cancer cells through the mitochondria-mediated apoptotic pathways (ICsq for cancer
cells 28.5 + 1.6 pg/mL and 22.1 + 1.4 ug/mL, for normal human hepatocytes 80.9 & 4.6 pg/mL) [153].
Studies on MCF-7 breast cancer cells also showed that gallic acid treatment inhibited cell proliferation
(ICs0 80.5 uM) and induced apoptosis via both the extrinsic and intrinsic pathways [150]. Additionally,
exposure to gallic acid (25 and 50 uM) suppressed the invasion and migration of PC-3 prostate cancer
cells through down-regulation of MMP-2 and MMP-9 [154]. In another study, gallic acid (50, 100,
and 200 uM) in PC-3 prostate cancer cells provoked DNA damage and inhibited expression of DNA
repair genes, which contributed to gallic-induced growth inhibition [155]. Treatment with gallic acid
(1040 pg/mL) decreased cell viability, proliferation, invasion and angiogenesis HeLa and HTB-35
cervical cancer cells, but showed less cytotoxicity on normal cells (HUVEC), indicating a potential role
of the compound in cervical cancer treatment [156].

3.8.3. Ferulic Acid

The main dietary sources of ferulic acid are cereal grains, particularly the outer parts of grain.
The compound has attracted great attention due to its therapeutic activities against various diseases,
such as cancer, cardiovascular and neurodegenerative diseases [157,158].

It was reported that ferulic acid was a pro-oxidant at high concentration or in the presence of metal
ions such as copper. Since the increased level of copper was observed in many cancers, and cancer cells
are usually under greater oxidative stress than normal cells, the pro-oxidant ability of ferulic acid might
lead to selective cytotoxicity to cancer cells [157]. Ferulic acid (10 pg/mL) also decreased cell viability
and enhanced efficacy of radiotherapy in two cervical cancer cell lines (HeLa and ME-180), possibly
through promotion of ROS [159]. Another study on prostate cancer found that the effects of ferulic
acid varied with cell types. Ferulic acid treatment caused cell cycle arrest in PC-3 cells (ICsy 300 pM),
and led to apoptosis in LNCaP cells (IC59 500 uM) [158].
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3.9. Lignans

Lignans (Figure 9) are widely present in plants, such as flaxseed, sesame, and seeds of
Arctium lappa. Secoisolariciresinol diglucoside (SDG) is a natural lignan rich in flaxseed, and can
be converted into more biologically active lignans (enterodiol and enterolactone) by human colon
bacteria. These lignans are structurally similar to estradiol; thus, they may have anticancer effects for
hormone-related cancers, such as breast, prostate and colon cancer. For example, SDG was reported to
possess selective estrogen receptor modulating effects and display anti-estrogenic activity in a high
estrogen environment. Treatment with SDG (100 ppm in diet) normalized some biomarkers changed
by carcinogen in mammary gland tissue of mice [160]. In another study, enterolactone modulated
expression of genes involved in cell proliferation and cell cycle of MDA-MB-231 breast cancer cells
(ICs0 261.9 £ 10.5 uM) [161].
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Figure 9. The chemical structures of (a) Secoisolariciresinol diglucoside and (b) sesamin.

Sesamin is a major lipid soluble lignan from sesame oil. Sesamin treatment (1, 10 and 50 uM)
dose-dependently decreased cell viability and increased apoptosis in MCF-7 breast cancer cells.
The lignan (10-100 uM) also inhibited the pro-angiogenic activity of macrophages in MCF-7 cells by
down-regulating VEGF and MMP-9 [162]. Besides, it was suggested that STAT3 played an important
role in sesamin (25-125 pM) induced G;/M cell cycle arrest and apoptosis in HepG2 cells [163].
Sesamin (10-100 pg/mL) could suppress lipopolysaccharide-induced proliferation and invasion of
PC3 prostate cancer cells by modulating the p38-MAPK and NF-«B signaling pathways. Likewise,
sesamin pretreatment (10 mg/kg every three days, injection) suppressed PC3 cells-derived tumor
growth triggered by lipopolysaccharide in mice [164].

3.10. Stilbenes

Natural stilbenes (Figure 10) are another important group of polyphenols. Though they only exist
in a limited group of plant families, the prominent health benefits of resveratrol, an important member
of this class, have attracted a lot of studies into natural stilbenes.
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Figure 10. The chemical structures of resveratrol (R; = R, = R3 = H), pterostilbene (R; = R, = CH3,
R3 = OH), piceatannol (R; =R, = H, R3 = OH).

3.10.1. Resveratrol

Resveratrol is predominantly found in red wine, grapes and berries. X-ray repair cross
complement group 1 (XRCC1) participates in base excision repair. It was reported that resveratrol
treatment (5-50 uM) could suppress XRCC1 expression, thus leading to enhanced chemosensitivity to
etoposide (a topoisomerase II inhibitor) of human non-small-cell lung cancer cell lines [165]. Besides,
it was reported that 20 uM resveratrol treatment significantly suppressed invasion and metastasis of
A549 lung cancer cells by inhibiting EMT [11].

In gastric cancer cells, resveratrol treatment (25 and 50 uM) arrested cancer cells in the G; phase,
resulting in senescence instead of apoptosis. In similar ways, resveratrol (40 mg/kg/day) inhibited
gastric cancer development in nude mice [166]. However, at higher concentrations (50-200 pM),
resveratrol induced DNA damage and apoptosis in human gastric adenocarcinoma cells via promoting
generation of ROS [167]. Resveratrol induced apoptosis in different colon cancer cell lines via
modulating diverse targets. For example, resveratrol induced caspase-8 and -3 dependent apoptosis
via ROS-triggered autophagy in HT-29 (IC5¢ 150 uM) and COLO 201 (ICsp 75 pM) human colon
cancer cells [168]. A study reported that the indirect DNA-damaging effects of resveratrol (30 uM)
in colon cancer cells were mainly caused by overproduction of ROS [169]. Another study suggested
that the DNA damage induced by resveratrol (25 pM) was due to topoisomerase II poisoning
rather than promoting ROS production [170]. Besides, resveratrol (50 uM) suppressed expression of
multi-drug resistance protein 1 (MDR1) and drug efflux in drug-resistant colorectal cancer cells [171].
Activating mutations in Kras contribute to sporadic colorectal cancer. An in vivo study found that
dietary supplements of resveratrol (equivalent to 105 and 210 mg daily for humans) protected against
formation and growth of colorectal cancer by suppressing expression of Kras [172]. In addition,
in colorectal cancer patients, following oral administration of resveratrol, high concentrations of
resveratrol conjugates (mainly RSV-3-O-sulfate, RSV-3-O-glucuronide and RSV-4'-O-glucuronide)
were found in the colorectum. Mixture of these conjugates exhibited synergistic anticancer effects
by inducing DNA damage and apoptosis in human colorectal cancer cells. Therefore, despite the
low bioavailability of resveratrol, the anti-carcinogenic properties could also be achieved by its
main metabolites [173]. Cancer stem cells possess the ability to self-renew and are important for
tumor generation. Three signaling pathways regulated the self-renewal of breast cancer stem cells
are Wnt, Notch and Hedgehog. It was reported that resveratrol could inhibit the Wnt/3-catenin
signaling pathway in breast cancer stem cells. Accordingly, resveratrol treatment (i.v. 100 mg/kg/day)
to mice significantly suppressed tumor growth as well as the breast cancer stem cells in primary
xenografts [174]. Resveratrol is also a powerful chemopreventive agent against liver cancer. At low
concentration, resveratrol treatment (25-100 uM) inhibited metastasis of HCC cells and decreased
expression of urokinase-type plasminogen activator (u-PA), which involved down-regulation of the
SP-1 signaling pathway [175]. Besides, in N-nitrosodiethylamine treated rat, the oral administration
of resveratrol (20 mg/kg/day) either at early or advanced stages of liver carcinogenesis was equally
effective, possibly mediated by apoptosis [176]. In androgen independent prostate cancer cells,
resveratrol treatment (25-100 pM) induced autophagy-mediated cell death [177]. In addition,
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oral administration of resveratrol (30 mg/kg thrice a week) to mice inhibited proliferation, induced
apoptosis, and suppressed angiogenesis and metastasis of prostate cancer [178]. In several cervical
cancer cells, resveratrol treatment (150-250 uM) caused cell cycle arrest and apoptosis [179].

3.10.2. Pterostilbene

Pterostilbene is a natural dimethoxylated analog of resveratrol mainly found in blueberries.
The hydroxyl group substitution with methoxyl groups gives pterostilbene greater lipophilicity,
oral bioavailability and biological half-life than resveratrol.

Pinostilbene is a major metabolite of pterostilbene in the colon of mice. At physiologically relevant
concentrations (20 and 40 uM), it significantly inhibited cell growth, and induced apoptosis and S phase
arrest of human colon cancer cells. Therefore, pinostilbene might be important for the anticancer effects
of orally administered pterostilbene [180]. In addition, pterostilbene treatment (25-75 uM) was able
to induce apoptosis in breast cancer cells via Bax activation and over-expression [181]. MicroRNAs
(miRNAs) are small non-coding RNAs, which control post-transcriptional expression of genes. It was
suggested that miRNAs are highly involved in the development of cancer [48]. A study reported that
pterostilbene treatment inhibited EMT and metastasis of breast cancer cells (2.5-10 uM). Mechanistic
investigations also showed an up-regulation of miR-205 following pterostilbene treatment, which
inhibited the Src/Fak signaling and suppressed tumor growth and metastasis in MDA-MB-231-bearing
NOD/SCID mice (i.p. 10 mg/kg thrice a week) [182]. Another study found that pterostilbene treatment
selectively killed breast cancer stem cells (IC5y 25 tM) and sensitized these cells to chemotherapeutic
drug paclitaxel [183]. Besides, pterostilbene treatment (80 uM) activated AMPK in both p53 positive
and negative human prostate cancer cells, but the cell fate following AMPK activation was affected
by p53 status. In p53 positive LNCaP cells, pterostilbene caused G; cell cycle arrest by increasing
P53 expression, while in p53 negative PC3 cells, pterostilbene treatment induced apoptosis [184].
In another study, pterostilbene (i.p. 50 mg/kg/day) inhibited tumor growth in mice models of prostate
cancer [185].

3.10.3. Piceatannol

Piceatannol is a hydroxylated analog of resveratrol present in a variety of foods, for example,
grapes, berries, passion fruit, and white tea. In colorectal cancer cells, piceatannol treatment (30 pM)
induced apoptosis by up-regulating miR-129, and thus down-regulating Bcl-2, which is a known
target of miR-129 [186]. Besides, in prostate cancer cells, treatment with piceatannol (25 and 50 M)
inhibited proliferation, and induced cell cycle arrest and apoptosis, which might be associated with
down-regulated mTOR [187]. Piceatannol was also a potential anti-invasive and anti-metastasis
agent on prostate cancer cells. The oral administration of piceatannol (20 mg/kg/day) significantly
suppressed the metastasis of prostate cancer to lung in mice [188].

The anticancer activities and potential mechanisms of the polyphenols reviewed in this section
were summarized in Table 3 and Figure 11. Due to the critical role of cancer stem cells in cancer
development and treatment, the anti-cancer stem cell effects of polyphenols were summarized in
Table 4. It should be noted that curcumin is not discussed in this section because it has been extensively
reviewed [189-191]. Besides, the bioavailability of many polyphenols is low, which might hamper
their application in cancer treatment (Table 5) [6].
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Table 3. The in vitro and in vivo anticancer activities of natural polyphenols.

17 of 35

Polyphenol Study Type Dose Main Effects References
Lung Cancer
1 . - inhibiting cancer cell invasion, motility,
peonidin-3-glucoside  in vitro 1040 uM secretion of MMPs and u-PA [33]
anthocyanidins in vivo 0.5 mg/mouse inhibiting tumor growth [7]
xanthohumol in vitro 14-42 yM inducing apoptosis and cell cycle arrest [38]
S » suppressing cancer cell invasion,
EGCG in vitro 5-20 uM migration, MMP-2 [44]
EGCG in vivo NA'T suppressing nicotine-induced angiogenesis [9]
procyanidin C1 in vitro 1.25-40 pug/mL inhibiting TGF-p-induced EMT [56]
naringenin in vitro 100 uM enhancing TRAIL-mediated apoptosis [60]
apigenin in vitro 40-160 uM inducing apoptosis and DNA damage [74]
chrysin in vitro 10 uM inducing apoptosis, AMPK activation, ROS [83]
inducing apoptosis, cell cycle arrest,
luteolin in vitro 5-50 uM inhibiting monocyte recruitment, [85-87]
migration, EMT
luteolin in vivo 10-30 mg/kg suppressing tumor growth [88]
quercetin in vivo 8.4mg/kg suppressing tumor growth [95]
kaempferol in vitro 10-50 uM 1nh1b1t} ng TGF—Bl—mduced EMT [107]
and migration
isorhamnetin in vivo NA suppressing tumor growth [123]
suppressing cancer cell proliferation and
genistein in vitro 25-75 uM migration, accompanied by apoptosis and [130]
cell cycle arrest
decreasing XRCC1 expression, enhancing
resveratrol in vitro 5-50 uM chemosensitivity, suppressing [13,165]
invasion, metastasis
Gastric Cancer
EGCG in vitro 20-100 uM inducing apoptosis, down-regulating [45,46]
survivin, the 3-catenin signaling pathway
inducing apoptosis, inhibiting cancer cell
naringenin in vitro 20-80 uM proliferation, invasion, migration and the [61]
AKT pathway
hesperetin in vivo 20-40 mg/kg suppressing tumor growth [67]
apigenin in vitro 20 pg/mL inducing apoptosis [75]
Lo o g preventing Helicobacter pylori-induced
aprgenin mvive 30-60 mg/kg atrophic gastritis and carcinogenesis [76]
luteolin in vivo 10 mg/kg suppressing tumor growth [89]
. I g inducing apoptosis and
quercetin in vitro 40-160 uM protective autophagy [96]
kaempferol in vivo 20 mg/kg suppressing tumor growth [108]
myricetin in vitro 20-40 uM inducing apoptosis and cell cycle arrest [115]
galangin in vitro 50-200 uM inducing apoptosis [118]
isorhamnetin in vivo 1 mg/kg increasing PPAR-y, decreasing Bcl-2 and [124]
CD31
gallic acid in vivo 0'25. Vo and 0.5% decreasing tumor size and weight [151]
in water
. . inducing apoptosis, DNA damage,
resveratrol in vitro 50-200 uM ROS production [167]
resveratrol in vivo 40 mg/kg suppressing tumor growth [166]
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Polyphenol Study Type Dose Main Effects References
Colorectal Cancer
delphinidin in vitro 30-240 uM inducing apoptosis, cell cycle arrest, [30]
oxidative stress
cyanidin in vitro 100 uM inducing oxidative stress [35]
L N inducing epigenetic alteration, apoptosis,
EGCG in vitro 1-50 M MAPK and Akt pathways activation (47,491
procyanidins in vitro 50 and 100 uM inducing apoptosis and cell cycle arrest [57]
naringenin in vitro 50-200 uM inducing apoptosis [62]
hesperetin in vivo 20 mg/kg SUpPressing c'hemlcal-mduced [68]
carcinogenesis
apigenin in vivo 50 mg/kg inhibiting tumor growth and metastasis [77]
. - inducing TNF-mediated apoptotic
chrysin in vitro 50-100 uM cell death [84]
luteolin in vitro 20-100 uM inducing apoptosis and cell cycle arrest [90]
suppressing tumor growth by reducing
quercetin in vivo 25-50 mg/kg AMPK activity and alleviating [97,98]
cachexia symptoms
kaempferol in vitro 0-60 uM inducing apoptosis [109]
myricetin in vitro NA inducing apoptosis [116]
suppressing mortality, tumor number,
isorhamnetin in vivo 200 g/kg in diet tumor burden and chemical-induced [126]
inflammatory responses
decreasing the weight and size of
genistein in vivo 20-80 mg/kg transplanted tumor, inhibiting angiogenesis [132,133]
and metastasis
ellagic acid in vitro 50-200 uM inducing apoptosis [144]
gallic acid in vitro 200 uM inducing apoptosis [149]
resveratrol in vitro 25-150 uM 1nduc1ng.apopt051s, ]?NA damage and [168-171]
suppressing drug resistance
L equal to 105 and suppressing tumor development by
resveratrol e 210 mg for human  modulation of Kras (172]
piceatannol in vitro 30 uM inducing apoptosis mediated by miR-129 [186]
Liver Cancer
inducing apoptosis, modulating the
xanthohumol in vitro 5-40 uM NEF-«kB/p53 and the Notchl [39,40]
signaling pathways
suppressing TPA-induced cancer cell
naringenin in vitro 25-200 uM invasion, inducing apoptosis and cell [63,64]
cycle arrest
quercetin in vivo 40 mg/kg suppressing tumor growth [99]
kaempferol in vitro 25-100 uM inducing cell cycle arrest and autophagy [110]
myricetin in vivo 100 mg/kg SUpPIessing c'hemlcal-mduced [117]
carcinogenesis
. L inhibiting chemical-induced cell invasion,
galangin in vitro 10-134 uM metastasis, promoting ER stress [119,120]
daidzein in vitro 200-600 uM inducing apoptosis [127]
genistein in vivo 50 mg/kg suppressing the intrahepatic metastasis [136]
ellagic acid in vivo 30 mg/kg SUPPIessing c'hemlcal-mduced [145]
carcinogenesis
gallic acid in vitro 22.1-285 pg/mL  inducing apoptosis [153]
sesamin in vitro 25-125 M inducing apoptosis and cell cycle arrest [163]

mediated by STAT3
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Polyphenol Study Type Dose Main Effects References
Liver Cancer
inhibiting metastasis, decreasing
resveratrol in vitro 25-100 uM expression of u-PA, down-regulating the [175]
SP-1 signaling pathway
resveratrol in vivo 20 mg/kg izﬁ};ﬁzs;;ﬁgsci?emlcal-mduced [176]
Breast Cancer
anthocyanins in vivo 6 mg/kg gﬁ%ﬁ?ﬁfgi il:g\;th of 32]
cyanidin-3- - N o . . . .
O-sambubioside in vitro 1-30 uM inhibiting angiogenesis and invasion [34]
S decreasing expression of CXCR4, inhibiting
xanthohumol mn vitro NA cell invasion induced by CXCL12 [42]
blocking the estrogen singling pathway,
xanthohumol in vivo 0.3and 1.0 mg/kg  selectively suppressing the growth of [41]
ER«-positive breast cancer
suppressing estrogen-induced cancer cell
- proliferation, down-regulating ERe , N
EGCG mn vitro 1-0uM inhibiting metastasis by restoring the [52-54]
balance between MMP and TIMP
procyanidins in vitro 25-100 uM iﬂi:;‘:f zﬂ?i’(f;z;sésr;dmng [59]
. . S suppressing lung metastases by the
naringenin in vivo 100 mg/kg host immunity [66]
inducing apoptosis, ROS production and
hesperetin in vitro 40-200 uM activation of ASK1/JNK pathway, [69,70]
suppressing glucose uptake
suppressing growth and causing apoptosis
apigenin in vitro 20-100 uM possibly mediated by the STAT3 [78]
signaling pathway
Lo o inducing cell cycle arrest through
apigenin in vivo 5-25mg/kg epigene%ic chal}:ge & [79]
chrysin in vitro 5-20 uM ;ﬁlﬂgli:;r:er cell invasion [84]
luteolin in vitro 10-40 uM down-regulating ERx expression, inducing [92]
W apoptosis and cell cycle arrest
luteolin in vivo O'Ol. /0_(.)'05 o reducing tumor burden [93]
in diet
. - N inducing apoptosis, suppressing the insulin g
quercetin in vitro 1-200 uM receptor signaling and EMT [100-102]
quercetin in vivo 34 mg/kg inhibiting angiogenesis [103]
kaempferol in vitro 100 uM inducing apoptosis and suppressing [111,112]
glucose uptake
K A preventing cancer development induced
aempferol in vivo 100 mg/kg by estrogen [113]
isorhamnetin in vitro 10-40 uM i?gﬂ;;igi C;E;z;gin adhesion, [122]
decreasing invasion, MMP-2 expression,
daidzein in vitro 3-50 uM up-regulating proto-oncogene BRF2 in [128,129]
ER-positive cancer cells
. A . inducing apoptosis, cell cycle arrest,
genistein in vitro 5-20 uM increasing drug resistance [10,137]
genistein in vivo <500 ppm enhancing tumor growth [140]
ellagic acid in vitro 1040 pg/mL inducing cell cycle arrest [143]
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Table 3. Cont.
Polyphenol Study Type Dose Main Effects References
Breast Cancer
ellagic acid in vivo 50-100mg/kg ~ SUPpressing tumor growth [146]
and angiogenesis
gallic acid in vitro 80.5 uM inducing apoptosis [150]
SDG in vivo 100 ppm in diet normal;zmg some biomarkers changed [160]
by carcinogen
enterolactone in vitro 261.9 £ 10.5 uyM modulat} 1§ expression of genes involved in [161]
cell proliferation and cell cycle
sesamin in vitro 1-100 uM mducmg apoptosis a.nd inhibiting the [162]
pro-angiogenic activity of macrophages
pterostilbene in vitro 25-75 uM inducing apoptosis [181]
pterostilbene in vivo 10 mg/kg suppressing tumor growth and metastasis [182]
Prostate Cancer
delphinidin in vitro 3-90 uM inducing apoptosis and cell cycle arrest [31]
xanthohumol in vivo 50 pg/mouse suppressing tumor growth and progression [43]
EGCG in vivo 1 mg 3x /week antagonizing androgen, suppressing [55]
tumor growth
. - . inducing apoptosis, inhibiting the
hesperetin in vitro 40-90 uM. NE-«B pathway [71]
Lo N 20 and suppressing tumor growth,
aprgenin mvive 50 pg/mouse angiogenesis, metastasis [81]
. - inducing apoptosis, cell cycle arrest,
luteolin in vitro 30 uM inhibiting invasion [94]
quercetin in vivo 200 mg/kg inhibiting carcinogenesis induced by [104]
hormone and carcinogen
genistein in vitro 0.5-50 M different effects dependent on [141]
androgen receptor
ellagic acid in vitro 10-100 uM inducing apoptosis, inhibiting cell [147,148]
invasion, motility
gallic acid in vitro 25-200 uM provoking DNA damage, down-regulating 1, 5, ; 5o,
DNA repair genes, invasion and migration
ferulic acid in vitro 300-500 uM inducing apoptosis and cell cycle arrest [158]
sesamin in vivo 10 mg/kg suppressed tumor growth induced by LPS [164]
resveratrol in vitro 25-100 uM inducing autophagy-mediated cell death [177]
resveratrol in vivo 30 mg/kg 1ndgc1ng ap Optosis, supp ressmg [178]
angiogenesis and metastasis
pterostilbene in vitro 80 uM inducing apoptosis and cell cycle arrest [184]
pterostilbene in vivo 50 mg/kg suppressing tumor growth [185]
piceatannol in vitro 25 and 50 uM inducing apoptosis and cell cycle arrest [187]
piceatannol in vivo 20 mg/kg suppressing lung metastasis [188]
Cervical Cancer
hesperetin in vitro 650 uM inducing apoptosis [72]
quercetin in vitro 110.38 uM inducing apoptosis and cell cycle arrest [106]
genistein in vitro 100 uM 1nduc1ng‘apopt051s., cell' cycle arrest, [142]
suppressing cell migration
gallic acid in vitro 1040 pg/mL f:lecrefasmg Ceu prohf?ratlon, [156]
invasion, angiogenesis
ferulic acid in vitro 10 pug/mL enhancing efficacy of radiotherapy [159]
resveratrol in vitro 150250 uM inducing apoptosis and cell cycle arrest [179]

1 NA, stands for not available.
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Figure 11. Mechanisms of the anticancer activities of natural polyphenols — stands for activation, — for
regulation, L for inhibition.

Table 4. The anti-cancer stem cell effects of polyphenols.

Compound Cancer Study Type Dose Effect References
colorectal Inhibiting tumor growth of
in vivo 100 uM spheroid-derived cancer stem [50]
cancer
cell xenografts
EGCG decreasing tumor growth, the
A expression of VEGF-D and
breast cancer in vivo 16.5 mg/kg peritumoral lymphatic [51]
vessel density
gastric cancer in vivo 1.5 mg/kg decreasing tumor weight and size [131]
targeting breast cancer stem cells
genistein to reduce the growth of xenograft
breast cancer in vivo 20-50 mg/kg  tumors and inhibiting [138]
the Hedgehog-Glil
signaling pathway
inhibited the Wnt/ 3-catenin
resveratrol breast cancer in vivo 100 mg/kg  signaling pathway, tumor growth [174]
and cancer stem cells
pterostilbene  breast cancer in vitro 25 uM decreasing cancer stem cells and [183]

drug resistance
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Table 5. The bioavailability of some natural polyphenols.

Compound Subject Treatment Urine Concentration Plasm Concentration
total urinary excretion
anthocyanins human black berries 200 g (960 umol) * of anthocyanin NA
metabolites 0.160%
mean Cmax 0.09 umol/L,
EGCG human 2mg/kg NA Tmax 2 h
. . h fresh orange segments 150 g (11.8 mean urinary mean Cmax 0.08 pmol/L,
naringenin uman mg/150 g fresh weight) * excretion 12.5% Tmax 5.88 h
hesperetin human fresh orange segments 150 g (79.7 mean urinary mean Cmax 0.09 umol/L,
P mg/150 g fresh weight) * excretion 4.53% Tmax 7 h
. dry shallot skin 1.4 mg/kg mean Cmax 3.95 pmol/L,
quercetin human (4.93 umol/g fresh weight) * NA Tmax 2.78 h
. . mean Cmax 0.18 umol/L,
isorhamnetin rat 0.25 mg/kg NA Tmax 8 h
. . soy milk 750 mL/day 148.35 umol/24 h
daidzein human (5.4 mg/250 mL) * after 5 days 196.1 nmol/L after 5 days
s soy milk 750 mL/day 2077.7 umol/24 h
genistein human (16.98 mg /250 mL) * after 5 days 797.04 nmol/L after 5 days
. . freeze-dried black raspberry mean Cmax 0.01 umol/L,
ellagicacid  human o' 4.0 (0.3 mg /g dry weight) * NA Tmax 1.98 h
g/daay 8/ g dry weig
gallic acid human grape skin extract 18 g*(0.7 mg/8 5.9 umol after 24 h NA
dry weight)
. . mean urinary mean Cmax 1.68 umol/L,
ferulic acid rat 5.15mg/kg excretion 43.4% Tmax 1 h
resveratrol human 1 mg/kg trans-resveratrol mean urmary 0.75 pug/mL after 1.5 h

excretion 26%

* Indicates content of the compound in food; NA, stands for not available.

4. Clinical Trials

Though numerous studies have demonstrated that natural polyphenol could be potential
candidates for anticancer therapy, clinical studies in this area are relatively few and the therapeutic
efficacy is sometimes non-significant. A review of early clinical investigations on polyphenolic
phytochemicals suggested tea polyphenols could be used for the prevention of premalignancy,
but evidence was less convincing for curcumin and soy isoflavones [192]. Table 6 summarized
some clinical evidence about the use of natural polyphenol in cancer treatment. The clinical trials in
this section were identified from the PubMed database using the MeSH term “neoplasms” combined
with “polyphenols”.

Table 6. Summary of clinical trials with polyphenols in various cancers.

Subject Treatment Outcome References

54 patients with localized ~ synthetic genistein (30 mg) decreasing level of serum (193]
prostate cancer daily for 3-6 weeks prostate specific antigen (PSA)
158 men aged 50-75 with isoflavone (60 mg) daily for ?ed.ucmg prostate cancer
rising prostate 12 months incidence for patients aged 65 [194]
specific antigen or more
86 patients with localized soy isoflavone (80 mg total no significant change in serum

rostate cancer isoflavones, 51 mg aglucon ~ hormone levels, total [195]
P units) daily for 6 weeks cholesterol, or PSA
10 breast cancer patients EGCG (400 mg) thrice daily =~ enhancing efficacy [196]

undergoing radiotherapy ~ for 2-8 weeks of radiotherapy
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Subject Treatment Outcome References
significant inverse association
. . . between total urinary
1?252:??;2:;{& gg t;;e;j (30 mg) daily for enterolignans and [197]
p y enterolactone and Ki67 in the
tumor tissue
87 patients with resected flavonoid mixture (20 mg reducing recurrence rate of
colorectal cancer apigenin and 20 mg EGCG)  colon neoplasia in patients [198]
or polypectomy for 3—4 years with resected colon cancer
5 familial adenomatous curcumin (480 mg) and reducing polyp number and
polyposis patients quercetin (20 mg) thrice size from baseline without [199]
with colectomy daily for 6 months appreciable toxicity
. . isoflavones (40 mg) and
85 patients with curcumin (100 mg) daily for ~ decreasing level of serum PSA [200]
prostate cancer
6 months
44 smokers with 8 or more  curcumin (2 or 4 g) daily for  decreasing number of aberrant [201]
aberrant crypt foci 30 days crypt foci
. . . . increasing body weight and
126 patients with curcumin (360 mg) thrice expression of p53, suppressing [202]

colorectal cancer

daily for 10-30 days

serum level of TNF-«

5. Conclusions

The epidemiological studies about the relationship between dietary polyphenol consumption
and cancer risks yielded different results. The difficult in assessing intake of dietary polyphenols
and the diversity of polyphenols might contribute to the inconsistent results. On the other hand,
the vast majority of laboratory studies supported anticancer activities of natural polyphenols,
such as anthocyanins, EGCG, resveratrol and curcumin. The mechanisms of action mainly
included modulation of molecular events and signaling pathways associated with cell survival,
proliferation, differentiation, migration, angiogenesis, hormone activities, detoxification enzymes,
immune responses, etc. Besides, the anticancer effects of polyphenol varied with cancer types, cell lines
and doses. It is of note that some polyphenols, such as genistein and daidzein, have been suggested
to have adverse effects on hormone-related cancer. Therefore, the use of these polyphenols in cancer
treatment should be cautious. In addition, clinical trials about the anticancer actions of polyphenol
are limited. In the future, more epidemiological studies employing biomarkers of polyphenols are
needed to assess the impact of dietary polyphenols on cancer risks. Besides, the anticancer activities of
more polyphenols need to be assessed and compared, and the mechanisms of action require further
study. Larger, randomized clinical trials need to be carried out to provide more reliable evidence.
Additionally, the bioavailability of polyphenols should be evaluated and improved. Special attention
should be paid to the safety of polyphenols.
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