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Abstract: Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development
of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant
morbidity and mortality. Although various therapeutics are available for the treatment of diabetic
neuropathy, no absolute cure exists, and additional research is necessary to comprehensively
understand the underlying pathophysiological pathways. A number of studies have demonstrated
the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may
be effective as supplementary treatments for diabetes and its complications. In this review, we
highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids
and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional
clinical studies are required to determine the appropriate dose and duration of bioactive compound
supplementation for neuroprotection in diabetic patients.
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1. Introduction

Diabetes, a complex metabolic disorder caused by insulin insufficiency and/or insulin dysfunction,
is characterized by abnormal blood glucose and insulin levels. Type 1 diabetes is caused by cell-specific
autoimmune destruction of the insulin-producing beta cells in the pancreas [1]. Type 2 diabetes is a
result of the failure of beta cells to compensate for insulin resistance or selective loss of pancreatic beta
cells due to toxic damage, leading to insulin insufficiency [2].

Uncontrolled hyperglycemia resulting from type 1 and type 2 diabetes may cause chronic tissue
dysfunction and organ failure, such as atherosclerosis, retinopathy, nephropathy and neuropathy [3].
Diabetic complications are considered risk factors for morbidity and mortality in patients with diabetes.

Diabetic neuropathy refers to any condition that affects the normal activity of the nervous system
during hyperglycemia, hyperlipidemia and inflammation. Damaged (apoptotic or non-innervated)
neuronal cells can affect pain perception and sensation changes (Figure 1) [4]. It has been reported that
60%–70% of diabetic patients suffer from neuropathy; by the year 2030, approximately 236 million
people will be affected worldwide [5,6]. Increased free radical formation and compromised antioxidant
defense systems have been implicated in the development of diabetic neuropathy [7,8], but more
complex pathophysiological pathways, such as hyperglycemia, hyperlipidemia and impaired insulin
signaling, are also likely to be involved (Figure 2).
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Figure 1. Possible trigger and mechanism underlying the development of diabetic neuropathy.
Hyperglycemia, hyperlipidemia and inflammation induce nerve damage, which increases apoptosis
and decreases cell survival, regeneration and reinnervation, resulting in diabetic neuropathy.
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Figure 2. Pathophysiology of neuronal cell death and dysfunction during diabetes development.
Uncontrolled hyperglycemia, hyperlipidemia and impaired insulin signaling occur during the
development of diabetes and diabetic neuropathy. Hyperglycemia activates glycolysis, oxidative
phosphorylation and aldose reductase pathways, resulting in the formation of oxidative stress, glycation
end-products (AGE) and protein kinase c (PKC)-mediated cell signaling molecules. Elevated levels of
LDL, FFA and TG activate oxidative stress, and impaired insulin signaling induces nerve dysfunction
via inhibition of neurotrophic signaling. PKC, protein kinase C; AGE, advanced glycation end products;
LDL, low-density lipoprotein; FFA, free fatty acid; TG, triglyceride; RAGE, receptor for advanced
glycation end products; LOX, oxidized LDL receptor 1; PI3K, phosphatidylinositol 3-kinase.
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2. Causes of Diabetic Neuropathy and Related Pathophysiology

2.1. Hyperglycemia

Hyperglycemia is a major initiator of the pathophysiology of diabetes and leads to the
development of neuropathy and neuropathic pain. Several theories have been proposed to explain how
hyperglycemia can cause neuronal derangements. Hyperglycemia activates biochemical pathways,
such as glycolysis, the aldose reductase pathway (polyol pathway) and oxidative phosphorylation,
all of which result in the formation of reactive oxygen species (ROS), advanced glycation end-products
(AGE) and protein kinase c (PKC)-mediated cell signaling molecules [9].

Excess glycolysis can lead to the overload of the mitochondrial electron transport chain and
the generation of ROS [10]. Moreover, increased glycolysis can increase activation of the PKCβ and
PKCδ pathways and alter gene expression of cytokines and growth factors. Increased activation of
the polyol pathway reduces NADPH, leading to oxidative stress. Moreover, AGE production was
shown to be enhanced via the attachment of reactive carbohydrate groups to proteins. AGEs bind
to the AGE receptor (RAGE), initiating the inflammatory signaling pathway [11]. Therapeutic
strategies for diabetic neuropathy include neutralization of specific glucotoxins and blocking of
hyperglycemia-induced biochemical pathways, but both showed a lack of efficacy in human trials, and
side effects and toxicity have been observed [12–14].

2.2. Hyperlipidemia

The occurrence rate of hyperlipidemia is high in type 2 diabetes patients, and lipid profiles are
abnormal early on in the development of diabetic neuropathy, suggesting that hyperlipidemia may
be involved in diabetic neuropathy. Indeed, increased levels of free fatty acids directly caused injury
to neuronal cells [15], and oxidized low-density lipoproteins (LDLs) trigger signaling cascades that
activate NADPH oxidase and induce oxidative stress via LDL receptors (LDL receptor LOX1, Toll-like
receptor 4 and RAGE) [16,17]. Clinical trials on the use of lipid-lowering drugs for the treatment of
diabetic neuropathy have been performed, yielding controversial results [18,19].

2.3. Impairment of Insulin Signaling

Insulin has neurotrophic properties, i.e., it promotes neuronal growth and neuronal survival [20].
Phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling is activated by neurotrophic
signaling, and disruption of this pathway leads to nerve dysfunction, as evidenced by
decreased sodium-potassium-ATPase activity, endothelial nitric oxide synthase (eNOS) activity and
cerebral blood flow [21]. Moreover, insulin resistance affects neuronal repair mechanisms and
decreases the levels of nerve growth factors [22]. Therefore, induction of brain neurotrophins,
sodium-potassium-ATPase activity and nerve growth factor (NGF) could be beneficial for the treatment
or prevention of diabetic neuropathy.

Many agents targeting different pathways have been studied and used for the treatment of
diabetic neuropathy. Several medications for relief from nerve pain are available, but the treatment of
diabetic neuropathy is difficult, as not all medications are effective in all patients, and most have side
effects, such as swelling, dizziness and weight gain [23].

Bioactive compounds from foods are important sources of safe, specific and effective
anti-neuropathic agents and may be useful in the development of safer alternatives to pharmaceuticals.
Flavonoids are the most abundant polyphenolic compounds found in the human diet, and more
than 5000 naturally-occurring flavonoids are currently known to be present in various plants. These
compounds have several beneficial effects on human health [24]. Vitamins also function as antioxidants,
which have diverse chemical structures and biochemical functions. Recent literature suggested that
some bioactive compounds possess both neuroprotective and neurotrophic actions [25]; therefore,
early treatment of peripheral neuropathy using phytochemical approaches may be an important
strategy in preventing the progression of diabetic complications. In this review, we discuss the most
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relevant results concerning the neuroprotective effects of flavonoids and vitamins and their underlying
mechanisms (Table 1).

Table 1. Representative flavonoids and vitamins showing neuroprotective effects under diabetic conditions.

Bioactive Compounds Models Effects Specific Mechanisms of Action Reference
Flavonoids (Subclass)

Baicalein (flavones)

Primary rat cortical neurons ÓAβ-induced cell death Ó12-lipoxygenase [26]

SH-SY5Y cells ÓH2O2-induced cell death Óoxidative stress [27]

Primary dopaminergic
neurons ÓLPS-induced cell injury ÓNO, free radicals [28]

STZ-induced diabetic mice Ònerve conductive velocity Óoxidative-nitrosative stress
and p38 MAPK [29]

Chrysin (flavones)

SH-SY5Y cells ÓER stress cell death Òmitochondrial membrane
potential [30]

Primary microglia/microglia
cell line

ÓLPS-induced NO, TNF-α
and IL-1β ÓJNK, NF-κB and CEBPβ [31–33]

STZ-induced diabetic rats Òlearning and memory
function

ÒCAT, SOD, GSH/
ÓMDA [34]

Diosmin (flavones)

PC12 cells ÓLPS-induced apoptosis ÓTNF-α [35]

High-fat diet-/STZ-induced
diabetic mice

Óglucose level and body
weight
Ònerve function

Óoxidative stress enzyme
activity [36]

STZ-/nicotinamide-induced
diabetic mice Óglucose level Òantioxidants (vitamin c,

vitamin E) and GSH [37]

EGCG (flavanol)

Hippocampal neuronal cells ÓAβ-induced injury ÒMDA and caspase activity [38]

STZ-induced diabetic rats Óhyperalgesia ÓTBARS and NO
ÒSOD [39]

STZ-induced diabetic rats Óhypersensitivity Óoxidative stress damage [40]

Hesperidin (flavanones)

PC12 cells ÓAβ-induced apoptosis ÒGSK3β-mediated VDAC [41]

Cortical progenitors Ócell death ÒPI3K and MAPK [42]

STZ-induced diabetic rats
Óhyperglycemia and
hyperlipidemia
Ònerve function

Ófree radical generation and
proinflammatory cytokines [43]

STZ-induced diabetic mice Ònerve function
ÒAchE and GSH
ÓTBARS, NF-κB, iNOS and
COX-2

[44,45]

Kaempferol (flavonols)
HT22 cells ÓH2O2-induced apoptosis ÓROS production [46]

STZ-induced diabetic mice Óglucose level Ólipid peroxidation [47]

Luteolin (flavones)

Primary cortical neurons ÓAβ-induced cell death ÓERK, JNK, p38 MAPK [48]

SH-SY5Y cells Òneurite outgrowth ÒERK-dependent Nrf2
pathway [49]

STZ-induced diabetic rats Óneuronal injury
Òcognitive performance

Óoxidative stress and ChE
activity [50]

STZ-induced diabetic rats Ònerve conduction ÒNrf2 and HO-1 [51]

Myricetin (flavonols) Rat cortical neurons ÓAβ-induced cell injury ÓAGE [52]

Naringenin (flavones)

Primary microglial cells ÓLPS-induced cytokine
release

Óp38 MAPK, STAT-1
ÒSOCS3 [53,54]

STZ-induced diabetic rats Óglucose level
ÒNGF, IGF ÒSOD, CAT, GPx [55,56]

Proanthocyanidin
(flavanols)

Mouse primary microglia
cells and PC12 ÓH2O2-induced cell death Ólactate dehydrogenase [57,58]

STZ-induced diabetic rats Óglucose level
Ònerve conductive velocity

ÒSOD,
ÓAGE and MDA [59]

STZ-/high
carbohydrate-/high-fat
diet-induced diabetic rats

ÓLDL
Ònerve conductive velocity ÓER stress protein [60]

Aβ-induced diabetic mice Óneuronal apoptosis
Òsynaptic density Òantioxidant level [61]
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Table 1. Cont.

Bioactive Compounds Models Effects Specific Mechanisms of Action Reference

Puerarin (isoflavones)

PC12 cells ÓH2O2-induced cell death Òcaspase-3, caspase-9
ÒSOD, GSHAKT/PI3K [62,63]

PC12 cells ÓAβ-induced cell death ÒAKT/PI3K [64]

Primary rat hippocampal
neurons

ÓAβ-induced oxidative
stress ÒNrf-2/HO-1 [65]

STZ-induced diabetic rats Ópain sensitivity Óinflammatory cytokines [66]

Quercetin (flavonols)

SH-SY5Y cells ÓH2O2-induced cell death ÓKLF4 [67]

Dorsal root ganglion cells,
primary Schwann cells and
RSC96 cells

Óhigh-glucose injury ÒNrf-2/HO-1,
ÓNF-kB [68,69]

Schwann cells
Ògrowth
Óhigh glucose-induced
damage

Òautophagy [69,70]

High-fat diet-induced
diabetic mice Òcognitive function Óoxidative stress enzyme

activity [71]

Rutin (flavonols)

STZ-induced diabetic rats Óglucose level ÓTBARS and lipid
hydroperoxides [72]

STZ-induced diabetic rats Óglucose level
Ònerve function ÒNrf-2 [73]

Silibinin

SH-SY5Y cells ÓAβ induced cytotoxicity Óoxidative stress [74]

Mouse cortical neurons ÓH2O2-induced cell death Óbeclin-1, LC3-II expression [75]

db/db mice Óoxidative stress
ÒDNA protection ÒHO-1 [76]

Vitamins

Vitamin A

Rat embryonic cortical
neurons Òneurite outgrowth ÒRAC1 [77]

SH-SY5Y cells Òneuronal differentiation Òglycolytic pathway and
antioxidant pathway [78]

Vitamin C

SH-SY5Y cells ÓAβ induced cytotoxicity Óoxidative stress [79]

Human brain pericytes Óhigh glucose induced
apoptosis

Óadvanced glycation end
production [80]

Vitamin D
Primary astrocytes/C6
glioma cells

ÒNGF, GDNF and
neurotrophin - [81–83]

STZ-induced diabetic rats no changes in glucose levels ÒNGF level [84]

Vitamin E

HT22 cells/rat cerebellar
granule neurons

ÓAβ- and H2O2-induced cell
death

ÒNF-κB activity
ÓHSP60 and vimentin [85,86]

Ex vivo embryo tissues Óhigh glucose-induced
neuronal tube defect ÒPax-3 expression [87]

STZ-induced diabetic rats Óreactive astrocytosis Ólipid peroxidation [88]

3. Method of Literature Mining

A computerized search of the “MEDLINE/PubMed” database from 1994 to 2016 for
English-language publications was conducted using the following keyword combinations: “bioactive
component or food compound or nutrients (baicalein, chrysin, diosmin, epigallocatechin gallate EGCG,
hesperidin, kaempferol, luteolin, myricetin, naringenin, proanthocyanidin, puerarin, quercetin, rutin,
silibinin, vitamin A, vitamin C, vitamin D and vitamin E)” and “neuronal cell death or neuroprotection
or neuronal cell survival, diabetic neuropathy or neuronal function”. The titles and abstracts of the
publication hits were subsequently reviewed to select only the papers dealing with the association
between bioactive compounds and neuroprotective effects. We included any articles that pertained to
the effect of bioactive food compounds on neuroprotection using cell culture and included research
on diabetic neuropathy animal models. To evaluate the effects on humans, we searched for relevant
reviews, such as cohort/case-control studies, randomized clinical trials and systemic reviews.

4. Effect of Flavonoids on Neuronal Cell Death and Dysfunction

Flavonoids are a class of plant and fungus secondary metabolites that are found in fruits,
vegetables, grains, roots, stems, flowers, tea and wine. They are divided into flavonols, flavones,
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flavanols, flavanones, anthocyanidins and isoflavonoids on the basis of their saturation level and
opening of the central pyran ring [24]. Flavonoids may play a role in diabetic neuropathy, as shown
in several in vitro and in vivo models and some human studies [25]. Flavonoids, such as baicalein,
chrysin, diosmin, EGCG, hesperidin, kaempferol, luteolin, myricetin, naringenin, proanthocyanidin,
puerarin, quercetin, rutin and silibinin, possess antioxidant, anti-inflammatory and anti-amyloidogenic
activities and protect against diabetic neuronal cell death and dysfunction.

4.1. Baicalein

Baicalein (5,6,7-trihydroxyflavone), originally isolated from the roots of Scutellaria baicalensis,
has been used in traditional Chinese herbal medicine for its antibacterial and antiviral effects since
several centuries [89].

Baicalein showed protective effects against amyloid β-(Aβ)-(25–35) and hydroperoxide
(H2O2)-induced neuronal cell injury (rat cortical neurons and human neuroblastoma SH-SY5Y cells) via
upregulation of the 12-lipoxygenase and anti-oxidant signaling pathway [26,27]. Li et al. demonstrated
that 5 µM baicalein ameliorated lipopolysaccharide (LPS)-induced degeneration of dopaminergic
neurons and that the neuroprotective effect of baicalein involved the inhibition of nitric oxide (NO)
and free radical release from microglia [28]. Treatment of streptozotocin (STZ)-induced diabetic mice
(30 mg/kg/day, intraperitoneally (i.p.) for four weeks) with baicalein significantly reduced diabetic
neuropathy, such as motor and sensory nerve conduction velocity deficits, thermal hypoalgesia and
tactile allodynia [29]. Although clinical studies are warranted, these results suggest a potential future
use of baicalein as a treatment for diabetic neuropathy.

4.2. Chrysin

Chrysin (5,7-dihydroxy-2-phenyl-4H-chromen-4-one) is a naturally-occurring flavone, a type of
flavonoid, found in honey, fruit and vegetables. Previous studies have demonstrated that chrysin is
protective against neuroinflammation and has antioxidant, antidepressant and anti-amyloidogenic
effects [31,90].

Chrysin was protective against apoptosis mediated by H2O2 and the endoplasmic reticulum (ER)
stress inducers tunicamycin and staurosporine, as well as attenuated neuronal death. It (4–20 µM)
significantly reduced tunicamycin-induced disruption of the mitochondrial membrane potential in
SH-SY5Y cells [30,91]. Chrysin also downregulated LPS-induced production of NO, tumor necrosis
factor (TNF)-α and interleukin (IL)-1β in primary microglia and the mouse microglial cell line
BV-2. The inhibition of nuclear factor kappa kB (NF-κB) and CCAAT/enhancer binding protein
(C/EBP)-β and -δ transcription also contributed to the anti-inflammatory effect of chrysin [32,33].
Administration of 30 and 100 mg/kg/day chrysin to STZ-induced diabetic rats for 26 days ameliorated
diabetes-associated learning and memory dysfunction. Moreover, chrysin attenuated oxidative stress,
as evidenced by increased malondialdehyde (MDA) and decreased catalase (CAT), superoxide mutase
(SOD) and glutathione (GSH) in the cerebral cortex and hippocampus [34]. However, chrysin enhanced
the formation of Aβ fibril formation, whereas other flavonoids, such as luteolin, quercetin and,
myricetin inhibited it [92], suggesting that more studies on the clinical effects of chrysin should
be performed.

4.3. Diosmin

Diosmin (diosmetin-7-O-rutinoside), a natural flavonoid glycoside, is obtained via the dehydrogenation
of hesperidin. It is abundant in the pericarp of various citrus fruits and possesses multiple biological
activities, including anti-inflammatory, antihyperglycemic, antihyperlipidemic and antioxidant
properties [93].

Dholakiya et al. demonstrated that diosmin (1, 3 and 5 µM) treatment, in a dose-dependent
manner, reduced the death of PC12 cells (derived from a pheochromocytoma of the rat adrenal
medulla) and suppressed LPS-induced TNF-α expression [35]. The effect of diosmin on neuronal
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cell death induced by other stimuli has not been well reported. In an animal model of diabetes, of
Sprague-Dawley (SD) rats fed a high-fat diet and injected with a relatively low concentration of STZ
(35 mg/kg), diosmin (50 and 100 mg/kg/day) significantly reduced body weight and glucose levels.
Moreover, diosmin, in a dose-dependent manner, improved thermal hyperalgesia, cold allodynia
and movement and ameliorated oxidative stress enzyme activity [36]. In STZ-nicotinamide-induced
diabetic rats, oral treatment with diosmin (100 mg/kg/day) for 45 days significantly reduced plasma
glucose levels and increased non-enzymatic antioxidants (vitamin C and vitamin E) and GSH [37].

A double-blind placebo-controlled study demonstrated that Daflon 500, which is composed of
90% diosmin, reduced HbA1c level, as well as increased glutathione peroxidase activity in type 1
diabetic patients [94].

4.4. Epigallocatechin-3-Gallate

EGCG (((2R,3R)-5,7,-dihydroxy-2(3,4,5-trihydroxyphenyl) chroman-3-yl) 3,4,5-trihydroxybenzoate),
which accounts for about one-third of green tea dry mass, is a polyphenolic bioflavonoid derived from a
variety of plants, especially green tea. It is responsible for the beneficial, antioxidant effect of the latter.
EGCG showed neuroprotective activity against oxidative damage and neurodegeneration [95].

Exposure of hippocampal neurons to Aβ caused marked neuronal injury and increases in MDA
levels and caspase activity, while co-treatment with EGCG reduced neuronal apoptosis through
scavenging of ROS [38].

Chronic treatment of STZ-induced diabetic rats with EGCG (40 mg/kg/day, orally for seven
weeks) reduced hyperalgesia and significantly decreased diabetes-induced thiobarbituric acid reactive
substances (TBARS) formation and NO content, as well as reversed the reduction of SOD [39].
Raposo et al. demonstrated that early treatment with EGCG prevented oxidative stress damage
(8-hydroxy-21-deoxyguanosine) and neuronal hyperactivity in the spinal cord and ameliorated behavior
related to diabetic neuropathy [40].

4.5. Hesperidin

The bioflavonoid hesperidin (31,5,7-trihydroxy-41-methoxy-flavanone-7-rhamno glucoside) is a
specific flavonoid glycoside that is frequently found in oranges and lemons. It contributes to the
intracellular antioxidant defense systems. It acts as a powerful agent against superoxide, singlet
oxygen and hydroxyl radicals [96–98].

In PC12 cells, hesperidin was protective against Aβ(25–35) by improving mitochondrial
function via glycogen synthase kinase (GSK)-3β-mediated voltage-dependent anion channel (VDAC)
dephosphorylation [41]. Nones et al. reported that hesperidin treatment decreased the cell death of
cortical progenitors obtained from E14 Swiss mice through activation of the PI3K and mitogen-activated
protein kinase (MAPK) pathways [42].

Treatment of STZ-induced diabetic rats with hesperidin (50 and 100 mg/kg/day, orally for
four weeks) reduced hyperglycemia and restored the decreased nociceptive threshold, motor
nerve conduction velocity and sensory nerve conduction velocity. Moreover, hesperidin reduced
hyperlipidemia, as well as downregulated free radical generation and pro-inflammatory cytokine
production [43]. Pretreatment of STZ-induced mice with hesperidin (100 and 200 mg/kg/day,
intracerebroventricular (ICV)) improved memory consolidation processes, possibly through
modulation of acetylcholine esterase activity (AChE), a key enzyme that catalyzes the breakdown of
the neurotransmitter acetylcholine and choline esters. Moreover, in these mice, hesperidin restored the
reduced levels of GSH and elevated the levels of TBARS. Upregulation of inflammatory markers such as
NF-κB, inducible NOS and cyclooxygenase-2 in hippocampal neurons was inhibited by hesperidin
treatment [44]. The antidepressant effect of hesperidin in STZ-induced diabetic rats was demonstrated
after treatment with 25–100 mg/kg/day hesperidin for 21 days; its effect was similar to that of the
marketed antidepressant fluoxetine [45]. In vivo and in vitro studies suggest that hesperidin may be a
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novel neuroprotective compound, indicating the need for clinical studies of the neuroprotective effect
of hesperidin.

4.6. Kaempferol

Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found
in several plants, e.g., tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries, grapes
and cruciferous vegetables. Kaempferol has a wide range of pharmacological activities, including
antioxidant, anti-inflammatory, antidiabetic and neuroprotective effects.

Kaempferol treatment showed efficient neuroprotection against several types of apoptosis- and
necrosis-inducing insults. In PC12 cells and primary cortical neurons, kaempferol (25–100 µM)
treatment reduced oxidative stress and attenuated H2O2- and Aβ-induced apoptosis [46,99]. These
effects were due to a decrease in the caspase cascade and ROS production [46].

In one study, STZ-induced diabetic mice showed increased levels of TBARS, lipid peroxides
and conjugated dienes; kaempferol (100 mg/kg/day, orally) ameliorated hyperglycemia, increased
antioxidant status and decreased lipid peroxidation markers [47]. Administration of kaempferol
(10–40 mg/kg/day) significantly rescued Aβ-induced impaired performance of diabetic Institute of
Cancer Research (ICR) mice in a Y-maze test [99]. Kaempferol-3-O-β-D-glucopyranoside (a kaempferol
derivative) showed stronger inhibitory effects on AGE production than was observed for the positive
control (amino guanidine) [100]. Although several studies have reported on the beneficial effects of
kaempferol on neuronal cells and diabetic animal models, further studies are needed to confirm these
effects in patients.

4.7. Luteolin

Luteolin (31,41,5,7-tetrahydroxyflavone) is a flavonoid present in many medicinal plants, as well
as in some commonly-consumed fruits and vegetables, including green leafy spices, such as parsley,
sweet peppers and celery [101]. It shows antioxidant, anti-inflammatory and neuroprotective
activities [102,103].

Luteolin (2–50 µM) was neuroprotective against H2O2-induced cell death in SH-SY5Y cells [91].
Cheng et al. reported that pretreatment with luteolin (1 and 10 µM) concentration-dependently
inhibited Aβ (25–35)-induced apoptosis in primary cortical cells, the effect of which was mediated
by inhibiting the protein level of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase
(JNK) and p38 MAPK [48]. In addition to its cytoprotective effect, luteolin is a neurotrophic, as it
induces neurite outgrowth, increases the expression of the growth-associated protein-43 (GAP-43),
a differentiation marker and activates the ERK-dependent nuclear factor E2-related factor2 (Nrf2)
pathway [49]. STZ-induced diabetic rats exhibit neuron damage, cognitive dysfunction and increased
oxidative stress and choline esterase (ChE) activity, a marker of cholinergic dysfunction. Chronic
treatment with luteolin (50 and 100 mg/kg/day, orally for eight weeks) reduced neuronal injury and
improved cognitive performance by attenuating oxidative stress and ChE activity [50]. Treatment
of STZ-induced diabetic rats with luteolin (50, 100 and 200 mg/kg/day, i.p. for three weeks)
reduced abnormal sensation and improved nerve conduction velocities and nerve flow, and it
significantly upregulated Nrf2 and heme oxygenase-1 (HO-1) in diabetic nerves [51], suggesting that
the neuroprotective effect involved the Nrf2 pathways. Thus far, no clinical studies of luteolin have
been performed, and more studies using diabetic subjects are needed to develop novel therapeutics for
the treatment of diabetic neuropathy.

4.8. Myricetin

Myricetin (3,5,7,31,41,51-hexahydroxyflavone cannabiscetin) is a natural flavonol found in
fruits, vegetables, tea, berries, red wine and medicinal plants [104]. Myricetin has antioxidative
and cytoprotective effects, and the results of recent studies suggest that it is a hypoglycemic
agent [52,105,106].
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Myricetin has anti-aldose reductase activity and may play an important role in the development
of diabetic neuropathy [107]. Myricetin (300 nM) potentially reduced Aβ(1–42)-induced cell injury in
rat cortical neurons [52]. Moreover, myricetin markedly inhibited the cross-linking formation of AGE
in collagen incubated with glucose-treated cells compared to the inhibition by quercetin, rutin, catechin
and kaempferol, suggesting that myricetin might be a highly potent inhibitor of AGEs [108]. Although
myricetin showed promising antihyperglycemic and antidyslipidemic effects in some studies [109,110],
its potential antineuropathic effect requires a detailed study using animal models of diabetes.

4.9. Naringenin

Naringenin (41,5,7-trihydroxyflavanone) is a biological active molecule found in citrus fruits, such
as grapefruits and oranges, and tomatoes [111]. Biological activities, such as antioxidant, antitumor
and anti-inflammatory effects, as well as activation of peroxisome proliferator-activator receptors
(PPARs), have been observed [112]. Furthermore, decreased diabetic neuropathy has been reported, as
well [113,114].

Treatment of glial cells with naringenin protected against LPS-/interferon (IFN)-induced
neuroinflammatory injury via downregulation of p38 MAPK phosphorylation and signal transducer
and activator of transcription-1 (STAT-1) [53]. In contrast, suppressor of cytokine signaling (SOCS)-3
was upregulated by naringenin treatment [54]. Further, treatment of STZ-induced diabetic rats with 50
and 100 mg/kg/day naringenin (orally for eight weeks) reversed chemical and thermal hyperalgesia
and decreased hyperglycemia, as well as restored SOD activity [55]. Al-Rejaje et al. demonstrated
that naringenin treatment (25 and 50 mg/kg/day) significantly decreased the level of oxidative stress
biomarkers and increased NGF in sciatic nerves of STZ-induced diabetic rats [56].

4.10. Proanthocyanidin

Proanthocyanidin ((3R)-2-(3,5-dihydroxy-4-methoxyphenyl)-8-((2R,3R,4R)-3,5,7 trihydroxy-2-
(4-hydroxyphenyl)-3,4-dihydro-2H-chromen-4-yl)-3,4-dihydro-2H-chromene-3,5, 7-triol) is known as
a condensed tannin, a member of a specific group of polyphenolic compounds derived from grape
seeds. It has been reported to exhibit strong antioxidant activity [115].

Pretreatment with proanthocyanidin (50 mg/L) decreased H2O2-induced reduction of the viability
of mouse primary glial cells and PC12 cells [57,58]. The attenuating effect of proanthocyanidin on
diabetic neuropathy has been investigated in various animal models of diabetes. Proanthocyanidin
(250 mg/kg/day for 24 weeks) significantly increased motor nerve conductive velocity, mechanical
hyperalgesia and SOD activity and decreased serum glucose, AGEs and MDA in STZ-induced diabetic
rats [59]. STZ-, high-carbohydrate- and high-fat diet-induced diabetic SD rats fed proanthocyanidins
(250 mg/kg/day) exhibited significantly decreased LDL levels and increased nerve conduction velocity
compared to those in untreated controls. In addition, proanthocyanidin and its metabolites catechin
and epicatechin reduced cell injury and downregulated the expression level of ER stress proteins in
tunicamycin-treated sciatic nerves and rat Schwann cells (RSC cells) [60]. Intracerebroventricular (ICV)
injection of Aβ(25–35) in C57BL/6 mice impaired learning and memory, which were attenuated after
oral administration of proanthocyanidin (50 and 100 mg/kg/day) as a result of decreased neuronal
apoptosis in the hippocampus and increased synaptic density [61]. Natella et al. demonstrated that
administration of 300 mg/day of proanthocyanidin-rich grape seed extracts minimized postprandial
oxidative stress by increasing plasma antioxidant levels in healthy men (25–40 years old) [116].
However, as the sample size was small, a large-scale study in humans is necessary.

4.11. Puerarin

Puerarin (daidzein-8-C-glucoside 7,41-dihydroxy-8-C-glucosylisoflavone), a naturally-occurring
isoflavone C-glycoside, was isolated from Pueraria lobata. Puerarin is used in the treatment of several
diseases because of its rapid absorption from the intestine, distribution to the brain via specific
transport pathways and low toxicity [117].
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Puerarin reduced Aβ- and H2O2-induced cell injury [62,118], increased AKT/PI3K [64] and
decreased caspase-3 and caspase-9 activity [63]. Further, its neuroprotective effect in vitro involved
GSK-mediated Nrf2 activation [65]. Intrathecal administration of puerarin (4–100 nM/day for seven
days) to STZ-induced diabetic neuropathic pain rats inhibited the mechanical and thermal nociceptive
response and also reduced the upregulated levels of NF-κB and the inflammatory cytokines IL-6, IL-1β
and TNF-α in the spinal cord [66]. The results of different randomized controlled studies (22 studies
with 1664 participants) were analyzed by Wu et al., showing that puerarin could improve the total
effective rate, restore the diabetes-induced decrease in nerve conduction velocity and improve the
hemorheology index [119].

4.12. Quercetin

Quercetin (3,31,41,51,7-pentahydroxy flavone) is a flavonoid that is naturally present in various
foods, such as onions, apples, broccoli, tea and red wine [120]. Quercetin has several beneficial
pharmacological properties, such as anticarcinogenic, anti-inflammatory and antioxidant activity, as
well as anti-diabetic effects [121].

In general, the addition of quercetin protects against H2O2- and glucose-induced toxicity and
promotes neuronal cell proliferation. Exposure of PC12 cells to quercetin alone (10–30 µM), however,
caused cell death and enhanced H2O2-induced (0.1 mM) cell death [122]. In SH-SY5Y cells, on the
other hand, quercetin inhibited H2O2-induced (0.5 mM) cell death and inhibited Krüppel-like factor 4
(KLF4), which is a zinc finger transcription factor playing a role in cell proliferation, differentiation
and apoptosis [67]. Quercetin was protective against high glucose-induced injury (45 mM for 24 h
or 125 mM for 72 h) in dorsal root ganglion (DRG) neurons, primary Schwann cells and RSC cells by
activating Nrf-2/HO-1 and inhibiting NF-κB [68]. Qu et al. reported that quercetin could alleviate high
glucose-induced damage to Schwann cells by increasing autophagy and proliferative activity. Low
expression of beclin-1 and light chain 3 (LC3), the molecular markers for autophagy, caused by high
glucose treatment was rescued by quercetin treatment [69]. The growth-promoting effect on Schwann
cells was also observed with 0.1, 1 and 10 µg/mL quercetin [70].

Several studies have shown that quercetin can exert neuroprotective effects in vivo. A four-week
treatment course of quercetin (100 mg/kg/day, orally) ameliorated thermal hyperalgesia in an
STZ-induced diabetic neuropathic pain model by inhibiting PKC [123]. Administration of a high
dose of quercetin (200 mg/kg/day) to STZ-induced diabetic rats did not affect glucose levels, but
prevented neuronal loss and increased the number of glial cells compared to control mice [124]. In
mice fed a high-fat diet, quercetin (0.5–50 mg/kg/day for 13 weeks) was protective against oxidative
stress and improved cognitive function [71]. SD rats that were administered quercetin (0.2 pg/day
´0.2 µg/day) for eight weeks exhibited an increase in myelinated axons, suggesting that quercetin
might be an addition to or replacement of neurotrophic factors to promote nerve regeneration [70].

Although several studies have assessed the anti-diabetic neuropathic activity in in vivo models,
only a few clinical studies have assessed the effects of quercetin in humans. For example, Valensi et al.
showed in a randomized, placebo-controlled, double blind trial involving diabetic neuropathy patients
that application of QR-333, a topical compound containing quercetin, three times daily for four weeks
safely induced relief from symptoms (e.g., foot pain, irritation and sensitivity) related to diabetic
neuropathy and improved quality of life [125].

4.13. Rutin

Rutin (3,31,41,5,7-pentahydroxyflavone-3-rhamnoglucoside) is one of the most common native
flavonoids present in food, including onions, apples, tea and red wine [126]. Rutin exhibits both
antidiabetic and anti-inflammatory properties [127].

In neuronal cells, rutin protects against various neurotoxicities induced by the prion peptide [128],
ethanol [129], glutamate [130] and dexamethasone [131]. Nevertheless, its protective effects against
high glucose-, H2O2- and Aβ-induced toxicities have not been reported.
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Oral administration of rutin (100 mg/kg/day for 45 days) to STZ-induced diabetic rats
significantly decreased fasting glucose and glycosylated hemoglobin and increased insulin and
C-peptide. Moreover, rutin-treated rats showed antioxidant activity, as demonstrated by significant
decreases in TBARS and lipid hydroperoxides and increases in non-enzymatic antioxidants [72].
Recently, Tian et al. demonstrated that rutin (5, 25 and 50 mg/kg/day, i.p. for two weeks)
reduced mechanical hyperalgesia, heat hyperalgesia and cold allodynia in STZ-induced diabetic
rats, significantly increased Na+, K+-ATPase activity in diabetic nerves and decreased caspase-3
expression in DRG neurons. In addition, rutin significantly decreased the plasma glucose levels and
attenuated oxidative stress via upregulation of the Nrf2 signaling pathway [73].

A combination therapy of rutin (50 mg/kg/day) and silymarin in STZ-induced diabetic rats for
six weeks reduced plasma glucose levels and significantly increased SOD, CAT and GST levels in the
sciatic nerve of diabetic rats. Moreover, rutin reduced hyperalgesia, analgesia and improved motor
coordination in diabetic rats [132].

4.14. Silibinin

Silibinin ((2R,3R)-3,5,7-trihydroxy-2-((2R,3R)-3-(4-hydroxy-3-methoxyphenyl)-2- (hydroxymethyl)-
2,3-dihydrobenzo[b][1,4]dioxin-6-yl)chroman-4-one) is a flavonoid and the major active constituent of
silymarin (known as milk thistle seed extract). It has been proposed to have anticancer, antioxidant,
anti-inflammatory and neuroprotective effects.

The neuroprotective activity of silibinin was observed in experimental models, such as
1-methyl-4-phenylpyridine and aluminum-induced neurotoxicity [133–135]. Under conditions of
oxidative stress induced by Aβ, silibinin prevented H2O2 production in SH-SY5Y cells [74]. Recently,
Wang et al. demonstrated that silibinin promoted neuron viability upon H2O2 treatment in cortical
neuron cells and reduced cerebral ischemia reperfusion injury in mouse [75]. Administration of
silibinin (20 mg/kg/day, i.p. for four weeks) reduced DNA damage and oxidative stress in a brain
of db/db mice, and the heme oxygenase-1 pathway was involved in the neuroprotective effect [76].
These results indicate that silibinin may be a novel therapeutic agent for the treatment of neuronal cell
death in diabetes.

5. Effect of Vitamins on Neuronal Cell Death and Dysfunction

Dietary vitamins, such as vitamins A, C, D and E, have a number of biological activities, including
immunostimulatory effects, prevention of ROS-induced DNA damage and neuritogenic activities.
These properties are known to alleviate diabetes-induced neuronal cell death and dysfunction in
in vitro, in vivo and clinical studies.

5.1. Vitamin A

Vitamin A is an essential dietary nutrient required for normal growth, reproduction and vision.
Root vegetables and greens, such as squash, carrots, pumpkins and beet greens, are rich sources
of vitamin A. Retinoic acid, a physiologically-active retinoid synthesized from vitamin A, regulates
neuronal differentiation during embryonic development and is required for the maintenance of
plasticity in differentiated neurons. Retinoic acid (300 nM) induced neuronal differentiation as
measured by neurite outgrowth of cortical neurons from rat embryos (Embryonic Day 16) by activating
Rac1 [77]. De Bittencourt Pasquali et al. demonstrated that the glycolytic and antioxidant pathways
were involved in the differentiation of SH-SY5Y cells by retinoic acid [78]. Treatment of diabetic mice
with 20 mg/kg/day retinoic acid for 60 days significantly increased nerve and serum NGF levels,
nerve regeneration (myelinated axons and Schwann cells) and nerve sensitivity [136,137]. These results
suggest that retinoic acid is a potential therapeutic agent for the treatment of nerve degeneration and
dysfunction in diabetes.
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5.2. Vitamin C

Vitamin C (ascorbic acid), a water-soluble anti-oxidant vitamin, is widely distributed in
fresh fruits and vegetables and plays an important role in protecting against free radical-induced
damage. Neurons in the CNS contain the highest ascorbic acid concentrations [138], and intracellular
ascorbate plays several functions, including antioxidant activity, peptide amidation, myelin formation,
synaptic potentiation and neuroprotection against toxicities, such as ethanol, methamphetamine and
lead [139–142].

Ascorbate treatment (100 µM) protects Aβ (25–35)-induced toxicity in SH-SY5Y cells [79] and
high glucose-induced apoptosis in human brain pericytes [80]. However, the studies investigating the
effect of vitamin C in diabetic animal models and diabetic patients have not been well investigated.
Therefore, more research is needed to ascertain the effect of vitamin C in diabetic neuropathy.

5.3. Vitamin D

The various forms of vitamin D comprise a group of essential steroid hormones that are
synthesized under exposure to sunlight and are also absorbed from foods. Foods containing high
levels of vitamin D are fatty fish and their liver-derived oils, eggs and fortified foods. Although the
role of vitamin D in neuronal physiology remains unclear, some studies have found a role for vitamin
D in neuronal cells.

NGF, neurotrophin and glial cell line-derived neurotrophic factor (GDNF) synthesis were
upregulated by 1,25(OH)2D3, the active form of vitamin D, in neuronal cells [81–83]. A vitamin
D3 derivative (CB1093, 1(S),3(R)-dihydroxy-20(R)-(1-ethoxy-5-ethyl-5-hydroxy-2-heptyn-1-yl)
-9,10-seco-pregna-5(Z),7(E),10(19)-triene; 0.3 and 1 µg/kg/day) also caused a dose-dependent increase
in NGF production in the sciatic nerve of diabetic rats; however, it did not change glucose levels [84].

In a study in humans, it was reported that vitamin D deficiency in diabetes was associated with
symptoms of diabetic neuropathy, e.g., pain, loss of feeling and tingling in the hands and/or feet [143].
In a non-randomized study of vitamin D supplementation comprising 51 type 1 diabetes subjects with
painful diabetic neuropathy, 50% of the patients had a decrease in pain scores [144].

5.4. Vitamin E

Vitamin E belongs to a group of fat-soluble vitamins and is found predominantly in oily
plants. Nuts, seeds and oils are rich sources of vitamin E. Vitamin E is a potent antioxidant with
anti-inflammatory properties [145]. Several lines of evidence have suggested that among the different
forms of vitamin E, α-tocopherol has beneficial effects against diabetic neurocytotoxicity.

In in vitro studies, vitamin E protected neurons against the toxicity of Aβ, high glucose and H2O2.
At concentrations as low as 100 nM, α-tocopherol was protective against oxidative cell death caused
by Aβ, H2O2 and the amino acid glutamate in HT22 cells (mouse hippocampal cells) and rat cerebellar
granule neurons. Moreover, vitamin E increased the activity of NF-κB, which is involved in the control
of nerve cell survival [85]. A high dose of α-tocopherol (1 mM) reduced H2O2-induced oxidative
stress. In addition, heat shock protein 60 and vimentin, two anti-apoptotic proteins, were not oxidized
in the presence of α-tocopherol (1 mM), which thus prevented cellular apoptosis [86]. In cultured
embryo tissues, high glucose treatment inhibited Pax-3 expression, which is required for neural tube
closure and neural tube defects, and this effect was blocked by α-tocopherol [87]. Several studies have
shown that diabetic rats fed a vitamin E-supplemented diet demonstrated improved nerve conduction
in sensory and motor nerves [146,147]. Further, reactive astrocytosis, which is associated with lipid
peroxidation, was prevented in STZ-induced diabetic rats fed a vitamin E-supplemented diet [88].
Vitamin E plays an important role in diabetic patients, as well. The plasma vitamin E: Lipid ratio was
lower in diabetics with neuropathy than that in controls [8]. In a study of type 2 diabetes mellitus
patients, 88% of the study population reported relief from neuropathic pain after a 400-mg vitamin E
dose in combination with evening primrose (500–1000 mg/day) [148].
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6. Conclusions

As the prevalence of diabetes and its complications continue to increase rapidly, there is an
increasing need for the development of safe and effective functional bioactive compounds with
antidiabetic effects. The discussed flavonoids and vitamins regulate neuronal cell survival and
function by promoting proliferation and neurite outgrowth and reducing apoptosis, inflammation
and oxidative stress. Determining the molecular mechanisms underlying the amelioration of
hyperglycemia, hyperlipidemia and impaired insulin signaling may aid the development of new drugs
for diabetic neuropathy. Moreover, such a neuroprotective effect may also have significant effects on
neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. The bioactive
compounds discussed in this review may prove to be excellent alternative therapeutic strategies,
especially given the positive outcomes of clinical studies of some of these bioactive compounds,
such as diosmin, EGCG, proanthocyanidin, puerarin, quercetin, vitamin D and vitamin E. However,
further clinical trials of the effect of these bioactive compounds are warranted to provide a stronger
foundation for their potential future therapeutic applications.
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