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Abstract: Habitual sedentary behavior increases risk of chronic disease, hospitalization and poor
quality of life. Short-term bed rest or disuse accelerates the loss of muscle mass, function, and glucose
tolerance. Optimizing nutritional practices and protein intake may reduce the consequences of
disuse by preserving metabolic homeostasis and muscle mass and function. Most modes of physical
inactivity have the potential to negatively impact the health of older adults more than their younger
counterparts. Mechanistically, mammalian target of rapamycin complex 1 (mTORC1) signaling and
muscle protein synthesis are negatively affected by disuse. This contributes to reduced muscle quality
and is accompanied by impaired glucose regulation. Simply encouraging increased protein and/or
energy consumption is a well-intentioned, but often impractical strategy to protect muscle health.
Emerging evidence suggests that leucine supplemented meals may partially and temporarily protect
skeletal muscle during disuse by preserving anabolism and mitigating reductions in mass, function
and metabolic homeostasis.
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1. Introduction

Without a concerted effort to remain physically active and follow sound dietary practices, muscle
mass and strength begins to decline by approximately 0.8%/year after the age of 40 years. By the time
an individual reaches 65 years, the rate of loss may have increased to 1.5%/year [1–4]. Short-term
bed rest or periods of disuse can accelerate the loss of muscle mass, function, and impair glucose
tolerance (Table 1). Inactivity is a common feature of many clinical environments such as hospitals
and extended care facilities. Modifying habitual diet and physical activity practices are conceptually
easy but practically challenging strategies to counter the effects of disuse. Even in healthy research
volunteers, muscle health (i.e., mass, function, metabolism) is compromised during periods of disuse.
Inattention to either diet or physical activity or the presence of additional catabolic stressors such as
insulin resistance, injury or illness, particularly in older adults, further accelerates inactivity-induced
functional and metabolic decline [5,6].

Various disuse models can be used to mimic physical inactivity [7–9]. In bed rest models, older
adults lose more muscle mass and functional capacity than younger populations [10,11]. Even short
periods of disuse can negatively impact muscle health. In older adults, as little as five days of bed
rest substantially impact leg extension peak torque (´16%) and lean leg mass (´0.5 kg) [10]. Similar
rapid changes have also been reported in healthy middle-aged adults who lost ~1 kg of lean leg mass
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after seven days of bed rest [7]. These data remind us that advanced aged or the overt presence of
sarcopenia is not necessarily a prerequisite for rapid inactivity induced muscle/function loss.

Table 1. The negative consequences of disuse parallel changes observed in clinical populations and
sarcopenic or frail older adults.

Decline in basal energy expenditure
Reduced insulin sensitivity
Reduced muscle strength
Reduced physical performance
Increased risk for falls
Increased health-related expenses
Increased morbidity
Increased mortality

By continuing to refine research models of physical inactivity, we hope to better understand and
target the mechanisms regulating muscle and metabolic dysfunction [12]. While disuse models provide
a platform for a variety of descriptive and intervention studies, we suggest that dietary approaches
to protect muscle health should be viewed as a fundamental prerequisite or companion to exercise
and/or pharmacological support. For example, while exercise can clearly counter the negative effects
of disuse [6], it may not always be feasible, or of sufficient quantity, duration or intensity to be beneficial
in clinical or compromised populations. In contrast, there are few if any circumstances where nutrition
cannot be optimized as part of a coordinated strategy to maintain health.

2. Protecting Muscle Health through Dietary Manipulation

At the most basic level, dietary strategies to preserve or improve muscle health focus on optimizing
energy and protein intake. Beyond the risk of exceeding daily energy requirements and gaining body
fat, chronic consumption of as much as 2 g protein/kg/day is generally regarded as safe [13].

While extremely high protein consumption (e.g., >3 g of protein/kg/day) may be tolerated
by some individuals [14,15], it may be challenging to meet all macro- and micro-nutrient needs
while maintaining energy balance. For the vast majority of healthy, ambulatory adults, consuming
more than approximately 1.5 g protein/kg/day will likely provide limited additional benefit [12].
In addition, variation in age, body size, body composition goals, health status and physical activity
levels complicate the prescription of specific “optimal protein consumption goals” for individuals in a
broad, heterogeneous community.

3. Protein and Targeted Amino Acid Interventions during Inactivity

Current protein recommendations do not discriminate between young and older adults. The
Institute of Medicine (IOM) states that 0.66 g protein/kg/day (Estimated Average Requirement, EAR)
meets the needs of about 50% of healthy adults, 19 years and older. The Recommended Dietary
Allowance (RDA: 0.80 g protein/kg/day) is an estimate of the minimum daily average dietary protein
required to meet the needs of over 97% of the healthy adult population [16]. While the EAR and RDA
are often interpreted, erroneously, as desirable average and upper-limit targets [17], dietary protein
intake at, or marginally above, the RDA is not sufficient to protect muscle mass and function during
inactivity, especially among older adults [7,10,18–23].

An acknowledged limitation of the IOM’s protein recommendations is that they target healthy
adults and not clinical populations. Consequently, if we accept that disuse models represent a
catabolic and metabolically harmful state; direct application of standard protein recommendations
may not be warranted. Meeting the minimum amount of protein to maintain nutritional adequacy is
clearly conceptually different than consuming protein as a means to counter disuse-related changes in
metabolism and muscle health [17,24,25].
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Most experts agree that meeting nutrient and metabolic needs via a “food-first” approach is
desirable (Figure 1). However, in some circumstances, leucine supplementation may be an attractive
option due to its ability to stimulate translation initiation and muscle protein synthesis following
low-to-moderate protein-containing meals [26–28]. Supplemental leucine may also reduce muscle
protein breakdown, although this outcome is perhaps less likely to be demonstrably elevated in
relatively healthy populations, such as bed rest study participants [29].
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Figure 1. Gains in muscle mass and function due to exercise require regular training over an extended
period of time. Twelve weeks of resistance exercise training result in a modest gain (~1.5 kg) in muscle
mass in older adults [1]. However, loss of muscle health due to disuse occurs over a very short period
of time; seven days of bed rest is sufficient to induce ~1 kg loss leg lean mass alone. Given the effort
necessary to maintain muscle health, especially during aging, strategies that protect muscle during
disuse are critical.

Leucine continues to be investigated as an intervention to protect muscle health during
inactivity [7]. In healthy middle-aged adults, 3–4 g leucine/meal (0.06 g leucine/kg body mass/meal)
partially protected leg lean mass during the first week of a 14-day bed rest study [7]. The protective
effect appears to be largely due to a blunted, 10% ˘ 10% reduction (i.e., partial preservation) in muscle
protein synthesis, compared to a much larger, 30% ˘ 9% reduction in the control group. Notably, the
leucine-mediated protection of lean mass was accompanied by the partial preservation of muscular
strength, endurance, and quality (peak torque/kg leg lean mass). These data lead us to speculate that
leucine may also have the potential to improve outcomes in a clinical setting, although confirmatory
clinical trials are certainly needed. In particular, it is questionable if the beneficial anabolic effects of
leucine can be maintained for a prolonged period. For example, during the final seven-day of our
two-week bed rest protocol, the loss of lean leg mass in leucine supplemented and control subjects was
similar [7].

β-Hydroxy β-Methylbutyrate (HMB), a leucine metabolite, has also been used to protect muscle
mass during bed rest. HMB supplementation (3 g HMB/day) during bed rest had a positive effect
on lean mass HMB: ´1.2% ˘ 0.9% vs. control (CON): ´4.6% ˘ 1.4%) and knee extensor strength in
older volunteers [30]. These data were broadly consistent with the protective effect observed following
leucine supplementation during 14 days of bed rest in middle-aged adults.

4. Translating Acute Research Studies: Concept to Practice?

While data from acute metabolic studies may be compelling, logical and reproducible, their value
often lies in the establishment or support of a concept or theory and not a specific or immediately
translatable recommendation. For example, in a series of acute studies, our laboratory and others have
highlighted the potential benefits of evenly distributing protein intake across three daily meals, instead
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of the more common practice of skewing protein and energy intake towards the evening meal [29,31].
Specifically, we demonstrated that in healthy, ambulatory, young adults, an even distribution of protein
(30 g breakfast, 30 g lunch, 30 g dinner) promoted a 25% greater 24 h muscle protein synthetic response
than the same total amount of protein consumed in a skewed pattern (10 g breakfast, 15 g lunch, 65 g
dinner) [31]. While consuming approximately 30 g protein/meal may be challenging or impractical
for some and insufficient for others [13,15,32], the general “even protein distribution concept” may
have the potential to benefit individuals exposed to the anabolic resistance and catabolic stress of
disuse [24,31]. If the benefits of the protein distribution concept can be demonstrated in longer duration
trials and outcome studies, it may represent an incremental positive step. However, in a generally
healthy population, the magnitude and rapidity of potential benefits associated with simply moving
from a “heavily skewed” to “evenly distributed” protein intake should not be overestimated. For
example, in a free-living aging population, sarcopenia accounts for approximately 0.8%–1.0% loss
of lean body mass each year. Over a three-month period, a common duration for many nutrition
intervention studies, a 70 kg older adult could expect to lose ~175 g of lean mass. Even if the habitual
consumption of a skewed protein diet were wholly responsible for this loss, would it be reasonable
to expect a meaningful improvement associated with simply moving to an “evenly distributed”
protein intake? Although dual energy X-ray absorptiometry (DXA) is typically used to determine
body composition, small-to-modest changes in lean body mass (e.g., ˘250 g) may not reliably meet
the detection threshold for current whole body measures [33,34]. Researchers, clinicians and the
media need to be more aware of the conceptual differences and realistic outcomes associated with
nutrition-based strategies designed to preserve muscle mass/function over the long term vs. strategies
designed to build muscle or counter accelerated catabolism (Figure 1).

For individuals experiencing difficulties consuming a sufficient quantity or quality of protein
at each meal, amino acid or protein supplementation may be a beneficial option. Whey protein is
generally considered to be the “gold standard” protein supplement. It is has a favorable essential amino
acids profile and is widely used in research studies and clinical and athletic environments [15,35–37].
More recently, researchers have noted that leucine or the leucine metabolite, HMB, supplementation
(3–4 g/meal) can provide an “anabolic boost” to smaller protein meals (10–15 g protein), through their
ability to directly and indirectly activate the mammalian target of rapamycin complex 1 (mTORC1)
signaling pathway, the major molecular activator of muscle protein synthesis in the cell. The
comparatively smaller pathway serving size (3–4 g/meal) of leucine and HMB may therefore be
more easily tolerated than traditional higher-volume supplements (Table 2) [26,30,38]. For individuals
with reduced energy requirements, moderating the quantity of protein and leucine consumed at each
meal could also help control total energy intake and ensure other micro-and macronutrient needs
are met.

Table 2. Quantity of supplemental protein (powdered form) required to provide 3 g of
leucine. Nutrition information from the USDA National Nutrient Database or peer-reviewed
publications. Estimates of protein content for micellar casein and whey hydrolysate are based on
90% protein concentration.

Protein Supplement Product (g) Protein (g) Leucine (g) Energy (kcal)

Collagen Hydrolysate/Gelatin [39,40] 122.2 104.6 3 409
Pea Isolate [41] 46.9 27.8 3 182
Soy Isolate [39] 44.2 39.0 3 148
Micellar Casein [42] 36.5 32.9 3 167
Whey Hydrolysate [42] 27.9 25.1 3 130
Leucine 3 3 3 12

While most acute metabolic studies examining leucine’s effect of skeletal muscle are
positive [7,26,27,38,43], the potential of longer-term supplementation to influence phenotypic or
functional outcomes is less certain. For example, while a sustained increase in skeletal muscle
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protein synthesis can be achieved by adding leucine to meals (4 g leucine/meal, three meals) over a
two-week period [26], there may also be concomitant time-course or saturation effect that needs to be
considered [44,45]. In a recent 14 day bed rest study in middle-aged adults, leucine supplementation
(0.06 g/kg/meal) had a robust protective effect on lean body mass during the initial seven-day of
inactivity. However, during the final days of bed rest, the rate of loss in leucine-supplemented subjects
was the same as the control condition [7]. Clearly, there are many potential areas of disconnect between
acute and longer-term nutrition trials that extend beyond the inherent heterogeneity and variability in
study populations.

5. Cellular Mechanisms of Inactivity-Induced Muscle Loss

Protein kinase B (Akt/PKB) is an important molecular switch that positively regulates skeletal
muscle mass [46–48] in response to exercise and nutrition by enhancing protein synthesis and inhibiting
protein degradation pathways. mTORC1 is the primary downstream target of Akt that modulates
muscle protein synthesis. mTORC1 is a serine/threonine kinase responsible for initiating protein
translation by directly phosphorylating its downstream targets p70-S6K (RPS6KB1) and 4E-BP1
(EIF4EBP1) [49,50]. Leucine stimulates insulin release and indirectly activate the Akt pathway, while
also acting at the mTORC1 level through an insulin independent pathway that may involve the
Ras-related GTPase (Rag), Vps34 or MAP4K3. These direct and indirect mechanisms converge to
activate mTOR signaling and increase protein synthesis in the muscle [43]. Akt also inhibits muscle
proteolysis by repressing the action of the Forkhead box FOXO proteins and their targets, the muscle
specific E3-ubiquitin ligases Muscle Atrophy F-Box (MAFbx-atrogin) and muscle Really Interesting
New Gene (RING)-finger protein 1 (MuRF1) [51,52]. As a result, changes in gene and protein levels
of the members of the Akt signaling pathways often parallel functional outcomes in response to
anabolic and catabolic stimulation. While these markers only provide a temporal snapshot of chronic
physiological processes, they are often used to decipher more complex metabolic interactions such as
the combination of an anabolic and a catabolic stimulus.

Muscle disuse typically induces anabolic resistance and blunts the protein synthesis response
to acute amino acid ingestion. Postprandial muscle protein synthesis decreases 45%–50% following
14 days of bed rest in older adults [53] or five days of full leg cast immobilization in young adults [54].
This relative attenuation in muscle protein synthesis rate is often paralleled by changes in the activation
pattern of the members of the Akt signaling pathway. However, snapshot measures of signaling are
not always consistent with expected translational outcomes and may be an artifact of the study design
or time course of sampling rather than a physiological phenomenon. For example, in response to a
standardized essential amino acid meal following seven days of bed rest, older adults experienced
decreases in: (i) muscle protein synthesis; (ii) mTORC1 signaling (i.e., decreased phosphorylation of
protein kinase B (Akt), mTOR, ribosomal protein S6 kinase 1 [50], ribosomal protein S6 (rpS6)); and
(iii) amino acid transporters (reduced protein content of L-type amino acid transporter 1 (LAT1) and
sodium-coupled neutral amino acid transporter (SNAT2) [20]. However, others have reported no
changes in phosphorylation levels of mTOR and its downstream signaling proteins following five days
of immobilization [54].

Muscle protein breakdown may also contribute to the negative effects of disuse [55]. Unfortunately,
obtaining definitive results is hampered by methodological constraints. Specifically, this includes
difficulties modeling muscle protein breakdown in the non-steady state (e.g., in association with meals
or exercise) and the limitation associated with obtaining blood or muscle samples during a narrow
assessment window (3–5 h). In one of the few studies where synthesis and breakdown were assessed
concurrently, volunteers were subjected to 21 days of bed rest with a six head-down-tilt [22]. Mixed
muscle protein synthesis decreased by 48.5%, while muscle protein breakdown remained unchanged.
Markers of muscle protein breakdown calpain 1, calpain 3, calpastatin, MuRF1, and MuRF2 are also
unresponsive to bed rest [56]. However, others have reported increases in transcript abundance of
atrophic initiators in response to limb immobilization/suspension [54,57] and bed rest [10], especially
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following the first 2–4 days of disuse [58]. These data suggested that an acute activation of the protein
degradation pathways may be the earliest contributor to disuse-induced muscle atrophy.

6. Inactivity and Glucose Regulation

Extended periods of reduced activity can contribute to glucose dysregulation and insulin
resistance in young and older adults [11,59–61]. In healthy volunteers, insulin action is impaired during
inactivity despite rigorous control of energy intake [2,57]. While limb immobilization/suspension
induces localized insulin resistance [54], the more generalized nature of bed rest is associated with
greater peripheral and whole body insulin resistance [55,56]. Some data suggest that inactivity-induced
insulin resistance is primarily linked to impaired peripheral insulin action (i.e., in the muscle) rather
than an inability to shut down endogenous glucose production [62].

Overweight, older volunteers subjected to 10 days of bed rest experienced a 15% decline in
insulin-stimulated glucose disposal (ISGD) and an increase in fasting glucose [60]. Similarly, young
men who underwent nine days of bed rest displayed a 25% decrease in ISGD [59,63]. Although the
young cohort experienced a greater absolute decrement in ISGD, the post-bed rest rate of disposal of
the younger and older adults was comparable (~10 mg/kg FFM/min). These observations parallel
findings that younger participants experienced a greater absolute decline in postprandial insulin
sensitivity in response to a mixed meal than older participants following 14 days of bed rest, but
the post-bed rest values were similar [11]. While these data describe the contribution of muscle to
inactivity-induced insulin resistance, the underlying mechanisms driving the changes in insulin and
glucose have only been partly uncovered. In a cohort of young men, seven days of bed rest decreased
(i) GLUT4 abundance (glucose transport capacity); (ii) hexokinase II levels (glucose phosphorylation);
and (iii) the propagation of insulin signaling to phosphorylate glycogen synthase (reduced glucose
storage) [61]. Nine days of bed rest in young men decreased expression of several transcripts in
muscle associated with the oxygen phosphorylation pathway, including PGC1α [63]. The decrease
in expression of genes associated with oxidative capacity indicates that the health of skeletal muscle
mitochondria may be compromised during bed rest and contribute to inactivity-induced insulin
resistance [64,65]. It is unknown if the reduction in skeletal muscle glucose transport and storage and
oxidative capacity following bed rest that contribute to insulin resistance observed in young adults is
the same mechanism that occurs in older adults.

Acute periods of low or reduced physical activity levels also disrupt insulin action. Young,
non-exercising men asked to reduce step count to ~1500/day displayed peripheral insulin resistance
following two weeks of reduced activity [66]. Insulin action (as measured by rate of glucose
disappearance) was reduced by 39% in healthy young adults following a single extended bout (~16 h)
of sitting [67]. These data highlight the rapidity and easily inducible nature of inactivity- induced
insulin resistance.

In individuals with preexisting comorbidities, it is difficult to determine the extent to which
intervals of inactivity due to illness or hospitalization exacerbate insulin resistance. However, in clinical
populations, poorly controlled blood glucose is associated with an increase in mortality and length of
stay, even if there is no history of diabetes [68–70]. Aggressive pharmacological interventions are often
implemented to control blood glucose in older adults, increasing the risk of hypoglycemic events [70,71].
It is highly desirable to develop nutritional strategies that complement the pharmacological care needed
to modulate glucose control in clinical populations.

Future studies will be useful in understanding any advantages to leveraging protein, and, in
particular, leucine, to maintain the relationship between muscle health and insulin signaling during
disuse. As noted earlier, leucine supplementation, may partially protect muscle mass during brief
periods of inactivity [7]. Given the fact that skeletal muscle accounts for approximately 75% of
insulin-mediated glucose uptake [72], protecting muscle mass during inactivity using leucine or
branch-chained amino acids may offer some beneficial effect on glucose regulation [73]. In addition,
replacing the traditional high-carbohydrate breakfast with a moderate amount of protein through the
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adoption of an evenly distributed approach to protein consumption may also help regulate insulin by
reducing large glucose excursions [74].

7. Conclusions

Habitual dietary protein consumption practices can play an important role in muscle metabolism.
However, simply increasing dietary intake to preserve muscle mass may not be the most effective or
suitable approach. The primary concern associated with bluntly increasing protein intake is exceeding
energy requirements via a concomitant increase in carbohydrate and fat consumption. Targeted
lower-volume supplementation may be a more effective alternative than simply increasing protein
intake in some populations. Leucine supplementation has been shown to protect skeletal muscle
by mitigating the loss of muscle mass, strength, and endurance associated with disuse. Leucine is a
promising candidate to counter the negative effects of disuse in clinical environments; however, more
research is needed to link the mechanisms of action with clinically relevant translational/functional
outcomes. Moving forward, we must continue to critique and challenge our understanding of how
protein intake can be optimized to combat the negative effects of disuse on body composition and
muscle health for various populations and in different circumstances.
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The following abbreviations are used in this manuscript:

4E-BP1 Eukaryotic Translation Initiation Factor 4E-Binding Protein 1
Akt/PKB Protein Kinase B
DXA Dual Energy X-ray Absorptiometry
EAR Estimated Average Requirement
FOXO Forkhead box
GLUT4 Glucose Transporter 4
HMB Beta-Hydroxy-beta-Methylbutyrate
ISGD Insulin-Stimulated Glucose Disposal
IOM Institute of Medicine
LAT1 L-type Amino Acid Transporter 1
MAFbx Muscle Atrophy F-Box
MAP4K3 Mitogen-Activated Protein Kinase Kinase Kinase Kinase 3
miRNA micro RNA
mTORC1 Mammalian Target of Rapamycin Complex 1
MuRF Muscle Really Interesting New Gene (RING)-Finger
p70-S6K Ribosomal Protein S6 Kinase beta-1
RDA Recommended Dietary Allowance
rpS6 Ribosomal Protein S6
SNAT2 Sodium-coupled Neutral Amino Acid Transporter
Vps34 Vacuolar Protein Sorting 34
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