Next Article in Journal / Special Issue
Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells
Previous Article in Journal
A Mixed Flavonoid-Fish Oil Supplement Induces Immune-Enhancing and Anti-Inflammatory Transcriptomic Changes in Adult Obese and Overweight Women—A Randomized Controlled Trial
Previous Article in Special Issue
Resveratrol and Cardiovascular Diseases
Article Menu

Export Article

Open AccessArticle
Nutrients 2016, 8(5), 280; doi:10.3390/nu8050280

Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages

1
Laboratoire de Lipides, Nutrition, Cancer, Université de Bourgogne-Franche Comté, Dijon F21000, France
2
Laboratoire de Biochimie du Peroxysome, Inflammation et Métabolisme des Lipides (BioPeroxIL EA 7270), Faculté des Sciences Gabriel, Dijon F21000, France
3
“Chemotherapy, Lipid Metabolism and Antitumoral Immune Response” Team, Faculty of Health Sciences, INSERM (Institut National de la Santé et de la recherché Médicale) Research Center U866, Dijon F21000, France
*
Author to whom correspondence should be addressed.
Received: 1 February 2016 / Revised: 6 May 2016 / Accepted: 6 May 2016 / Published: 11 May 2016
(This article belongs to the Special Issue Selected Papers from Resveratrol Regional Meeting 2015)
View Full-Text   |   Download PDF [2224 KB, uploaded 11 May 2016]   |  

Abstract

State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. View Full-Text
Keywords: IL1-β; chondrocyte; macrophage; NF-κB; STAT3; resveratrol IL1-β; chondrocyte; macrophage; NF-κB; STAT3; resveratrol
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Limagne, E.; Lançon, A.; Delmas, D.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages. Nutrients 2016, 8, 280.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top