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Abstract: Among all cellular life on earth, with the exception of yeasts, fungi, and
some prokaryotes, VKOR family homologs are ubiquitously encoded in nuclear genomes,
suggesting ancient and important biological roles for these enzymes. Despite single gene
and whole genome duplications on the largest evolutionary timescales, and the fact that
most gene duplications eventually result in loss of one copy, it is surprising that all
jawed vertebrates (gnathostomes) have retained two paralogous VKOR genes. Both VKOR
paralogs function as entry points for nutritionally acquired and recycled K vitamers in the
vitamin K cycle. Here we present phylogenetic evidence that the human paralogs likely
arose earlier than gnathostomes, possibly in the ancestor of crown chordates. We ask why
gnathostomes have maintained these paralogs throughout evolution and present a current
summary of what we know. In particular, we look to published studies about tissue- and
developmental stage-specific expression, enzymatic function, phylogeny, biological roles
and associated pathways that together suggest subfunctionalization as a major influence in
evolutionary fixation of both paralogs. Additionally, we investigate on what evolutionary
timescale the paralogs arose and under what circumstances in order to gain insight into the
biological raison d’être for both VKOR paralogs in gnathostomes.
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1. Introduction

Genomes of higher vertebrates possess two paralog genes, VKORC1 and VKORC1L1 (see Note 1 [1]),
that encode enzymes unique in catalyzing de-epoxidation of vitamin K 2,3-epoxide (K>O), a product
of post-translational modification of vitamin K-dependent (VKD) proteins [2,3]. VKD proteins are
known to be essential for diverse physiological functions including hemostasis and coagulation [4,5];
bone development and homeostasis [6–8]; vascular homeostasis, remodeling and calcification [9–13];
cellular growth, survival, and signaling [14,15]; metabolic homeostasis [16,17]; and fertility [18].
While the respective VKORC1 and VKORC1L1 protein primary sequences share „50% identity and
highly homologous function (Figure 1), it is surprising that both genes have been maintained with high
fidelity throughout over 400 million years of vertebrate evolution [3,19] (See also Bevans et al. [20]
in this Special Issue). In the following review, we point out structural and functional similarities and
differences between both paralog enzymes and explore phylogenetic relationships in order to construct
a hypothesis that addresses the question “Why do vertebrates have two vitamin K 2,3-epoxide reductase
(VKOR) enzymes?”.
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homologs appear to have evolved very early in vertebrate evolutionary history and apparently carry out 
critical functions for most species, given their ubiquity and high degree of evolutionary conservation. 
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1.1.1. VKOR Enzymes Can Catalyze Multiple Reactions

Although the VKOR family is named for the first confirmed function of the human, rat and
mouse orthologs [2,24], biochemical characterizations of non-vertebrate homologs reported to-date
have indicated that they cannot catalyze VKOR activity, but alternatively catalyze vitamin K quinone
reductase (VKR) or ubiquinone reductase activities [25–28]. To date, only one prokaryotic VKOR
homolog from Mycobacterium tuberculosis has been demonstrated to possess VKOR activity in vitro
when expressed in HEK 293 cells [27]. However, the native M. tuberculosis lipidome has been
shown to possess only quinone and hydroquinone forms of menaquinones, but not menaquinone
2,3-epoxides [29], so it is not likely that the VKOR homolog of this bacterium catalyzes physiological
VKOR activity in vivo. Subsequent to the initial reports identifying human VKORC1 by virtue of
its VKOR de-epoxidase activity, the same enzyme was shown to additionally catalyze in vitro VKR
activity that reduces vitamin K quinone (K) to vitamin K hydroquinone (KH2) [30]. More recently,
human VKORC1L1 was also confirmed to catalyze VKOR and VKR activities in vitro [31]. Thus, both
vertebrate VKOR paralogs catalyze both VKOR and VKR enzymatic activities.

Four cysteine residues (human VKORC1 sequence numbering: Cys43, Cys51, Cys132,
Cys135) are completely conserved among VKORC1 orthologs and are required for in vivo VKOR
catalysis [27,32,33]. Only one in vitro study has investigated VKR enzymatic activity for VKORC1
and confirmed that Cys132 and Cys135 are required [30]. Additionally, a conserved serine or threonine
(human VKORC1 sequence numbering: Ser57) has been shown to be essential for VKOR catalytic
activity in vitro [32,34]. Based on sequence homology to the bacterial VKOR enzyme structure, the four
redox-active cysteines are widely believed to be arranged in a double disulfide relay that shuttles reducing
equivalents from ER-resident oxidoreductases, responsible for de novo oxidative protein folding (OPF),
to membrane-soluble K>O [30,33–36]. Thus, VKORC1 accepts reducing equivalents from cysteine
thiol groups of soluble oxidoreductase proteins in the ER lumen. Protein disulfide isomerase (PDI),
TMX, TMX4 and ERp18, all with thioredoxin-like protein folds, have been implicated as physiological
oxidoreductase partners by their ability to form intermolecular disulfide bonds with VKORC1 in cell
culture experiments [36,37]. These ER-resident accessory oxidoreductases serve as the primary enzymes
that interact with proteins and peptides undergoing oxidative folding by de novo disulfide formation [38].
Additionally, VKOR enzymes are the only OPF oxidoreductases that do not ultimately require molecular
oxygen as the terminal electron acceptor by downstream enzymatic pathways, suggesting that the origin
of these eukaryotic proteins may be very ancient, possibly having evolved before earth’s atmosphere
was substantially aerobic, and might predate the evolution of other enzymes involved in OPF in the ER
including members of the Ero1, peroxiredoxin, and QSOX families [31,39].

1.1.2. Known Biological Roles for VKOR Family Enzymes

The first biological function attributed to VKORC1 was VKOR catalysis—the rate-limiting step
in the classical vitamin K cycle [2,24,40,41]. In humans and other vertebrates, the vitamin K cycle
drives post-translational modification of glutamic acid residues to form γ-carboxyglutamyl residues
required for proper function of VKD proteins [42,43]. VKORC1 is the sole enzyme in vertebrates
capable of sustaining sufficient VKOR activity to maintain hemostasis [42,44]. VKORC1L1 is
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apparently responsible for other functions as it cannot rescue VKORC1-specific production of VKD
clotting factors in vkorc1´{´ knock-out mice [44]. Newborn vkorc1´{´ mice typically died within
several days due to internal hemorrhage due to severe deficiency of γ-glutamyl carboxylated clotting
factors. The lethal phenotype could be rescued by administration of large doses of vitamin K, similar
to the rescue of the human VKCFD2 phenotype in patients homozygous for a VKORC1:Arg98Trp
mutation [45]. Interestingly, with respect to hemostatic phenotype, heterozygous vkorc1`{´ mice
were indistinguishable from homozygous wild-type mice, suggesting that one wild-type vkorc1 allele
is sufficient for producing adequate levels of γ-glutamyl carboxylated VKD clotting factors to sustain
normal development and growth. In contrast, with respect to bone morphology, eight-day old vkorc1´{´

mice were found to have a pathological phenotype, whereby long bones were all found to be significantly
shorter compared to those of homozygous wild-type vkorc1 mice. In its fully γ-glutamyl carboxylated
form, the VKD protein osteocalcin, secreted by osteoblast cells, has long been implicated in bone
calcification and homeostasis [46]. Intriguingly, a recent study by Ferron et al. (2015) found that
VKORC1L1 could not functionally substitute for VKORC1 in cultured osteoblast cells where VKORC1
expression level correlates with γ-glutamyl carboxylation of osteocalcin and modulation of its endocrine
functions [47]. Thus, it appears that osteocalcin mediation of bone formation is a second example where
VKORC1L1 cannot substitute for VKORC1-mediated biological function of a secreted VKD protein.

In addition to hemostatic functions of VKD clotting factors, other VKD proteins play crucial roles
in bone growth and homeostasis [7,13], and recently were demonstrated to be necessary for inhibition
of calcification in vasculature [9,10,12,48,49]. Vitamin K and VKD proteins have also been shown
to protect oligodendrocytes and neurons from oxidative injury [50], function in cell signaling and
growth [15,51], and support sphingomyelin synthesis and metabolism in nervous tissues [14].

A second important biological function was recently confirmed for VKORC1 as an acceptor of
reducing equivalents from cysteines during oxidative protein folding in the ER [39]. This was
independently confirmed by both siRNA silencing and warfarin knock-down of VKOR enzymatic
activity in human hepatoma HepG2 cells after Ero1 α/β isoforms and peroxiredoxin IV (PRDX4) were
first functionally silenced, demonstrating that VKORC1 alone can facilitate OPF.

That both vertebrate VKOR paralogs catalyze both VKOR and VKR reactions suggests that
neofunctionalization of one of the evolved paralog enzymes, relative to the other retaining an ancestral
function, has not occurred—at least with respect to catalytic reactions and substrates. Thus, further
elucidation of biological functions for both enzymes may give clues to heretofore-unknown functional
differences that might be the basis for selective pressure to conserve their otherwise redundant
enzymatic activities in vertebrates. For example, there might be paralog-specific differences in which
partner oxidoreductases pass reducing equivalents to each paralog or differences in tissue-specific or
developmental stage-specific expression.

As a corollary to the above examples where VKORC1L1 cannot substitute for some of the biological
functions of VKORC1 in vivo, we ask the question: Are there biological functions mediated by
VKORC1L1 that VKORC1 cannot fulfill? Unfortunately, this question has not yet been experimentally
addressed as it necessarily requires knock-down or knock-out of VKORC1L1 in cells or animal models
that can be used to investigate its biological function. Recently, however, two lines of investigation have
begun to focus on details of VKORC1L1 function.
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First, a study by Westhofen et al. (2011) provided evidence from a number of different experimental
perspectives. Expression of VKORC1L1 in HEK 293 T cells in the presence of vitamin K was found
to promote vitamin K-dependent cell viability, elimination of intracellular reactive oxygen species and
prevented oxidative damage to membrane proteins [31].

Second, a recent comprehensive study by Hammed et al. (2013) further measured and compared
differential expression of vkorc1 and vkorc1l1 paralogs and tissue-specific VKOR activity of both
paralogs in wild-type mice and the vkorc1´{´ mouse line originally reported by Spohn et al.
(2009) [44,52]. Expression levels of vkorc1l1 in all tissues investigated were not different in vkorc1´{´

mice compared to mice with homozygous wild-type vkorc1. Thus, it appears that regulation of vkorc1l1
expression in mice is not sensitive to the level of vkorc1 expression, suggesting that the regulation
of expression for both paralogs involves independent regulatory pathways. Furthermore, in vitro
investigation of VKOR enzymatics for mouse and human VKOR paralog enzymes heterologously
expressed in Pichia pastoris yielded surprising and unexpected results. While the Michaelis–Menton
constants for K1 > O were determined to be similar for human VKORC1L1 and VKORC1 and for rat
vkorc1l1 and vkorc1 (Table 1), the warfarin inhibition constants (Ki) for human VKORC1L1 and rat
vkorc1l1 were found to be, respectively, 29-fold and 54-fold greater than for the respective VKORC1
and vkorc1 paralogs. Thus, it appears that both human and rat VKORC1L1 paralogs are „1.5 orders
of magnitude less warfarin sensitive than the respective VKORC1 paralogs. Based on these results, the
study went on to show that tissue-specific expression of both paralogs contributes to overall level of
VKOR activity (i.e., tissue-specific VKOR activities of both paralogs are additive) and that the degree of
warfarin sensitivity in various tissues is a function of the relative paralog expression ratio. Interestingly,
by use of c-myc tagged expression constructs in Pichia pastoris cells, the authors were able to determine
that the relative VKOR catalytic efficiency of rat vkorc1 is 30-fold greater than for rat vkorc1l1, while
the VKOR catalytic efficiency of human VKORC1 is two-fold lower than that of human VKORC1L1.
In summary, the study by Hammed et al. has demonstrated that VKORC1L1 is able to support VKOR
activity and may constitute an alternative pathway that is able to substitute or partially complement for
loss of VKORC1 function in various non-hepatic tissues of vkorc1´{´ mice.

1.1.3. Evolutionary Origins of the VKORC1 and VKORC1L1 Paralogs

Robertson (2004) previously suggested that an ancestral VKOR gene duplication likely occurred
in early vertebrates and resulted in the extant human and other gnathostome VKOR paralogs [3].
This would be in agreement with the divergence of the common ancestor of the jawed vertebrates
(gnathostomes) from urochordates and cephalochordates, as has been suggested for many other
vertebrate protein paralog pairs [53]. In the article by Bevans et al. [20] in this special issue, a broad
phylogenetic study of VKOR family homologs yielded strong support for distinct monophyletic clades
comprising vertebrate VKORC1 and VKORC1L1 homologs. Thus, it is likely that the paralogs arose
one time and quickly became fixed in the genomes of subsequently diverged early (crown) vertebrate
lineages. That all extant gnathostome genomes sequenced to date include both paralog genes suggests
that the functions of both paralogs are indispensable to vertebrate life. In order to more accurately
confirm the divergence point of the last common ancestor of modern vertebrates with two VKOR family
paralogs, we chose a series of index genomes sampling various evolutionary groupings that diverged
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before, during and after the last universal common ancestor of gnathostomes, many only very recently
sequenced in draft form, to reconstruct a likely metazoan VKOR phylogeny (Figure 2).
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As expected, we found high phylogenetic support for monophyletic VKORC1 and VKORC1L1
clades, which split uniformly for extant ganthostomes. Branch lengths for the VKORC1L1 clade (cyan)
are relatively shorter than those for the VKORC1 clade (red), in agreement with earlier reports that
primary sequences among VKORC1L1 orthologs are more highly conserved than for those among
VKORC1 orthologs [2,3]. Reptilian VKORC1L1 orthologs appear on mixed branches with VKORC1L1
orthologs of amphibian, fish and bird as branch support for the VKORC1L1 clade is significantly weaker
than for the VKORC1 clade. Surprisingly, for single genomes representing three non-gnathostome
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groups (Figure 2, indicated in blue, orange and green), we found pairs of VKOR paralogs where one
paralog in each genome is inferred to be more similar to the gnathostome VKORs and the second
paralogs for each genome are clustered together on a deeper-lying branch. However, inference support
for the lower-lying branches (Figure 2, black lines) is considerably lower than the relatively high support
for the gnathostome paralog clades. This is evident in the scrambled placement of representative
non-gnathostome species in the tree that does not correlate well with the current consensus groupings
on the Tree of Life (e.g., Echinodermata is placed on a low branch parallel to Placozoa, and chordate
paralogs (Figure 2, blue and orange) are mixed with invertebrate VKOR sequences on a single, deep
branch (includes fourth through ninth sequences from the top). Notable results of our phylogenetic
analysis include the VKOR paralog pairs of two invertebrate genomes (acorn worm, Saccoglossus
kowalevskii; lancelet, Branchiostoma floridae) that are placed as basal deuterostomes, far deeper in
the Tree of Life than vertebrates. This begs consideration that VKOR gene duplications may have
occurred in these ancient invertebrate branches independent of the first whole genome duplication in
gnathostomes, which, consistent with our inferred VKOR phylogeny, is the likeliest single event that
resulted in the gnathostome paralogs. Similarly, the VKOR paralogs found in the Cnidarian sea anemone
(Nematostella vectensis) may have arisen by a gene duplication unrelated to the gnathostome event.
Whether these invertebrate genomes with VKOR paralog pairs represent isolated exceptions, or are
evidence for deeper-rooted single gene duplication/loss events, will require more whole genome data
from current and future sequencing efforts. In summary, our phylogenetic results suggest that the extant
human VKOR paralogs VKORC1 and VKORC1L1 likely arose in an older common metazoan ancestor
than the last universal common ancestor of gnathostomes, likely as early as the common ancestor of
crown chordate groups.

2. Common Aspects of VKORC1 and VKORC1L1 Structure and Function

2.1. Gene and Protein Structural Organization

Parsing vertebrate VKORC1 and VKORC1L1 sequences in the NCBI Gene database confirmed both
paralogs are organized into three exons of very similar lengths. Intron lengths vary considerably
between the two paralogs with entire VKORC1L1 genes being typically 17–25 times longer than
the respective VKORC1 paralogs (e.g., VKORC1: 2.3 kb mouse—human 3.5 kb; VKORC1L1:
40 kb mouse—86 kb human). In contrast, Robertson (2004) noted that three kinetoplast VKOR
homologs, Trypanosoma cruzi, T. brucei, and Leishmania major, are encoded by single exon genes [3].
Pseudogenes found in the human, mouse and rat genomes have been previously reviewed in detail [3].

Inspection of vertebrate VKORC1 and VKORC1L1 full-length (isoform 1) protein sequences in the
NCBI Proteins database revealed that most vertebrate VKORC1 orthologs are about 161–163 residues
(Figure 3, yellow bars; range 160–163 residues), whereas VKORC1L1 sequences are predominantly
174–176 residues (Figure 3, cyan bars; range 161–190 residues). Most vertebrate VKORC1 ortholog
primary sequences encompass a core domain of 153 residues (Figure 1, human VKORC1 residues
Met1-Val153) with a C-terminus of variable length (7–14 residues). All VKORC1L1 sequences include
an additional 3-residue insertion between corresponding human VKORC1 residues 10 and 11 (Figure 1,
human VKORC1L1 residues Arg19-Tyr20-Ala21), effectively extending the length of the predicted 1st
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TMH by one α-helical turn and resulting in a core domain length of 152 residues (Figure 1, human
VKORC1L1 residues Pro12-Leu163). The variable length N-termini of VKORC1L1 orthologs are
1–63 residues with the majority of orthologs having an N-terminal length of 11 residues. C-termini
of VKORC1L1 orthologs are 8–13 residues with the majority having a length of 13 residues. Both
VKORC1 and VKORC1L1 are localized to and retained in the ER [2,31], likely by a COP I-mediated
mechanism of the cis-Golgi that recognizes known ER retention recognition sequences with adjacent
pairs of positively charged amino acids in the C-termini of membrane-intrinsic proteins [56]. Recently,
an additional ER retention motif in the short cytoplasmic loop connecting TMH2 and TMH3 of human
VKORC1 has been identified [57].
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Although the first detailed enzymatic studies of VKOR activity in liver microsomes prepared
from mice and rats commenced in 1984 [58–60], more recent studies, since 2011, characterizing the
enzymatics of recombinantly produced human and rat VKORC1 and VKORC1L1 are just now gaining
momentum among several active, independent research groups [31,52,61–68]. In order to form a
comprehensive picture of our current understanding of VKOR enzymatics, we have summarized the
basic results of these studies (Table 1). Of the dozen studies specifically addressing VKOR enzymatics,
the initial three relied on rodent liver microsomal preparations as enzyme sources which, during
preparation, substantially lose the ER lumenal oxidoreductases that are required for physiological VKOR
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activity in vivo [58]. In order to supply reducing equivalents to drive VKOR activity in vitro, DTT has
been widely used since it was found to support VKOR activity (for a historical review of the DTT-driven
in vitro VKOR assay, see [68]). Thus, in the DTT-driven VKOR assay, VKORC1 or VKORC1L1
catalyze reduction of K>O with concomitant oxidation of DTT. To achieve this, the enzymes function
by a kinetic mechanism that alternates between two states where the active site CXXC motif cysteines
are either oxidized (in the form of a disulfide bridge between them) or reduced [58,63,65,69]. Two
different enzyme kinetic models have thus far been applied to VKOR studies—the “ping-pong”
model takes enzymatic conversion of both substrates into account [58,63,65,68], while a simpler
Michaelis–Menton single substrate kinetic model is based on enzymatic conversion of only the K>O
substrate [31,52,59–62,64,66,67]. For the K>O single substrate model to be valid, the DTT substrate
must be at saturating concentration in the VKOR assay a requisite condition for pseudo first-order
kinetics [70]. Both kinetic models can yield valid enzymatic parameters (e.g., Km, Vmax, kcat) from
DTT-driven VKOR assay data. However, due to the fact that DTT competes with warfarin for binding
to the enzymes, interpretation of warfarin dose-response data obtained using the DTT-driven VKOR
assay has been extremely problematic [63,65,71,72]. For example, VKORC1 variants with single amino
acid mutations that cause warfarin resistance in humans and rodents show dose-response data indicating
warfarin susceptibility identical to wild-type VKORC1 [2,73]. This problem in in vitro assessment of
resistance phenotypes for known VKORC1 warfarin-resistant variants has been recently overcome by
use of alternative cell culture-based VKOR activity assays (see below) which yield warfarin resistance
dose-response data in agreement with human and rodent resistance phenotypes. However, an advantage
in continuing use of non-physiological reductant-driven VKOR assays lies in their ability to provide
data suitable for detailed enzymatics and catalysis mechanism studies since, unlike in cell culture-based
assays, the assay conditions can be strictly defined.

What we can generally conclude from VKOR enzymatics studies to-date includes (referring to
Table 1): (1) wild-type VKORC1 and VKORC1L1 Michaelis-Menton constant (Km) values determined
for K>O substrates are in the low micromolar („1–35 µM) range, while Km for DTT and THPP
reducing substrates are approximately millimolar (Vmax values are not comparable between studies as
they reflect a convolution of intrinsic enzyme turnover rate with the quantitative amount of enzyme used
in the assay); (2) the enzymes to not appear to significantly discriminate between phylloquinone- and
menaquinone-2,3-epoxide substrates; (3) for all warfarin resistance mutations studied, except for Tyr139
position mutations in rats, measured Km values for K>O are considerably greater than for the respective
wild-type enzymes, implying K>O substrate binding affinity is diminished by nearly all mutations;
(4) the DTT-driven VKOR assay reveals warfarin-resistant in vitro phenotypes only for a very few
mutations investigated (Table 1; last column, Ki values indicated in bold-face type are significantly
increased with respect to the wild-type Ki in each study); and (5) both human and rat VKORC1L1
enzymes appear to be considerably less warfarin-sensitive than the respective VKORC1 enzymes.
To-date, enzymatic studies of VKR catalytic function for VKORC1 and VKORC1L1 have not been
reported. From enzymatic study of VKOR catalysis available so far for both VKORC1 and VKORC1L1,
we are nudged towards the conclusion that there is no major difference in enzymatic function or substrate
specificity between the vertebrate VKORC1 and VKORC1L1 paralogs.
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Table 1. Summary of results from published VKORC1 and VKORC1L1 enzymatics studies.

Study Enzyme Species Km (K1 > O) (µM) Km (K2 > O) (µM) Km (DTT) (mM) pH Km (THPPTotal) (µM) Ki (warfarin) (µM)

Krettler et al. 2015 [65] r VKORC1 human 1.20 7.4 431

Goulois et al. 2015 [64]
r vkorc1 R. rattus 15.9 ˘ 4.5 7.4 0.32 ˘ 0.07
r vkorc1 R. norvegicus 7.4 0.50 ˘ 0.01
r vkorc1:Y25F R. rattus 15.9 ˘ 4.5 7.4 1.99

Matagrin et al.
2014 [63]

r VKORC1 human 7.4 1.65

Hammed et al.
2013 [51]

r VKORC1 human 21.5 ˘ 4.2 7.4 1.8 ˘ 0.2
r vkorc1 rat 19.6 ˘ 1.6 7.4 0.6 ˘ 0.04
r VKORC1L1 human 24.1 ˘ 3.0 7.4 52.0 ˘ 3.0
r vkorc1l11 rat 35.0 ˘ 3.0 7.4 32.6 ˘ 1.9

Matagrin et al.
2013 [61]

r vkorc1 rat 7.2 ˘ 2.5 7.4
r vkorc1:L120Q rat 25.0 ˘ 4.0 7.4
r vkorc1:L128Q rat 12.1 ˘ 1.0 7.4
r vkorc1:Y139C rat 60.0 ˘ 6.0 7.4
r vkorc1:Y139F rat 17.8 ˘ 4.5 7.4
r vkorc1:Y139S rat 13.1 ˘ 1.3 7.4

Bevans et al. 2013 [60]
r VKORC1 human 1.24 8.38 7.5 2.481

7.5 2.633
7.5 5.786

Hodroge et al.
2012 [59]

r VKORC1 human 19.8 ˘ 4.5 7.4 1.65 ˘ 0.79
r VKORC1:A26P human 57.4 ˘ 10.1 7.4 18.43 ˘ 5.82
r VKORC1:A26T human 18.7 ˘ 1.4 7.4 2.13 ˘ 0.56
r VKORC1:L27V human 22.8 ˘ 2.9 7.4 1.83 ˘ 0.62
r VKORC1:H28Q human 29.8 ˘ 4.6 7.4 0.65 ˘ 0.42
r VKORC1:D36G human 43.8 ˘ 0.2 7.4 0.74 ˘ 0.25
r VKORC1:D36Y human 23.6 ˘ 0.2 7.4 1.82 ˘ 0.70
r VKORC1:A41S human 65.9 ˘ 5.4 7.4 1.78 ˘ 0.02
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Table 1. Cont.

Hodroge et al.
2012 [59]

r VKORC1:V45A human 26.9 ˘ 2.3 7.4 1.10 ˘ 0.04
r VKORC1V54L human 102.5 ˘ 28.6 7.4 7.95 ˘ 1.32
r VKORC1:S56F human 23.2 ˘ 6.2 7.4 1.05 ˘ 0.82
r VKORC1:R58G human 71.0 ˘ 10.9 7.4 1.50 ˘ 0.36
r VKORC1:W59C human 179.7 ˘ 12.5 7.4 1.16 ˘ 0.20
r VKORC1:H68Y human 16.9 ˘ 2.8 7.4 6.21 ˘ 0.85
r VKORC1:I123N human 27.0 ˘ 2.1 7.4 4.01 ˘ 1.01
r VKORC1:Y139H human 9.2 ˘ 3.0 7.4 5.91 ˘ 1.77

Hodroge et al.
2011 [58]

r vkorc1 rat 7.20 ˘ 2.50 7.4 0.50 ˘ 0.05
vkorc1wt{wt rat 8.40 ˘ 0.90 7.4 0.72 ˘ 0.01
r vkorc1:L120Q rat 7.4 >100
r vkorc1:L128Q rat 7.4 4.0 ˘ 0.7
r vkorc1:Y139C rat 7.4 >100
r vkorc1:Y139F rat 17.8 ˘ 4.5 7.4 >100
vkorc1:Y139F`{` rat 19.5 ˘ 4.0 7.4 29.0 ˘ 4.1
r vkorc1:Y139S rat 7.4 >100

Westhofen et al.
2011 [30]

r VKORC1 human 1.88 ˘ 0.13 1.55 ˘ 0.55 7.6
r VKORC1L1 human 4.15 ˘ 0.10 11.24 ˘ 0.23 7.6

Lasseur et al. 2006 [57]
vkorc1wt{wt mouse 12.73 ˘ 0.93 7.4 5.97 ˘ 0.38
vkorc1W59G{W59G mouse 15.31 ˘ 4.92 7.4 3.5 ˘ 0.27

Lasseur et al. 2005 [56]
vkorc1wt{wt rat 57.7 ˘ 12.5 7.4 0.72 ˘ 0.06
vkorc1Y139F{Y139F rat 19.5 ˘ 4 7.4 29 ˘ 4.1

Hildebrandt et al.
1984 [55]

vkorc1wt{wt rat 10.0 ˘ 0.7 * 0.60 ˘ 0.03 8.8
vkorc1wt{wt rat 9.1 ˘ 0.13 * 0.54 ˘ 0.04 8.8
vkorc1:Y139S{Y139S rat 4 * 0.16 8.8
vkorc1wt{wt rat 9 0.43 7.2
vkorc1:Y139S{Y139S rat 6 0.29 7.2

Symbols: r, (Enzyme column) recombinantly produced enzyme; * (Km (K1 > O) column), sodium cholate-solubilized and partially purified enzyme. All enzymes
are wild-type unless indicated by a colon followed by a specific mutation; samples prepared from liver microsomes are indicated with a superscript where individual
VKORC1 alleles (separated by a slash) are indicated as (wild-type) or a specific mutation. Bold-face type in columns for Michaelis–Menton constants (Km values)
indicates values for wild-type enzymes. Bold-face type in the column for warfarin inhibition constants (Ki) indicates warfarin resistance phenotypes confirmed by
in vitro measurement.
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2.3. In Vitro Cell Culture-Based Assays of VKOR Activity

Recent studies have confirmed in vitro warfarin resistance phenotypes for known human VKORC1
mutations that are in agreement with reported in vivo resistance phenotypes [74]. Compared to warfarin
IC50 values for wild-type warfarin-sensitive and warfarin-resistant human VKORC1 variants determined
by Fregin et al. (2013) [75] and Czogalla et al. (2013) [76], warfarin IC50 values determined in
the study of Tie et al. (2013) are all about an order of magnitude lower, but all of these studies
ranked in vitro phenotype severity, with respect to specific mutations, identically [77]. Although the
purpose of the study by Haque et al. (2014) was to investigate dose-response for warfarin and its
hydroxylated metabolites, and did not investigate warfarin-resistant VKORC1 variants, the warfarin
IC50 value obtained for wild-type human VKORC1 is greater than the values obtained in all of the other
studies [78]. Directly compared, warfarin IC50 values reported by Fregin et al. (2013) and Haque et al.
(2014) are 6.9-fold and 18.3- to 35.4-fold greater than the value reported by Tie et al. (2013) [75,77,78].
Variations in assay conditions between the studies that could account for the differences in warfarin
dose-response have not yet been identified. One important difference between the non-physiological
reductant-driven VKOR assays and the more physiological cell culture-based assays is that the former
directly assess enzyme function, while the latter are actually indirect assays of enzyme function in that
they each rely on the rate-limiting function of VKOR enzymes in the vitamin K cycle to ultimately
enable intracellular γ-gutamyl carboxylation of VKD proteins heterologously coexpressed by the cells
and secreted into the culture medium. Thus, while the effects of warfarin inhibition on the read-out
VKD protein status can be directly attributed to warfarin’s localized interaction with VKORC1 or
VKORC1L1, there are likely many other influences on the secreted VKD status (e.g., due to choices of
cell line, specific VKD reporter protein, expression vector, and variability in culture medium constituents
especially in amounts of warfarin-binding serum albumin, etc.) that could have profound influence on the
correspondence between applied warfarin dosage and secreted VKD protein response. Balancing these
possible uncertainties are the opportunities to use these cell culture-based assays to explore the nature
of the enzymes’ biological functions. Thus, identification of native partner oxidoreductases that provide
the physiological reducing equivalents to drive VKOR activity and characterizing their interactions with
VKORC1 and VKORC1L1 in the ER lumen could be experimentally addressed. Similarly, studies could
be designed to elucidate regulation of the respective gene transcription and protein expression for VKOR
paralogs in cell lines representative of various native tissues and developmental stages. Cultured cell
assays would also be useful in identification and assessment of new pharmacological lead compounds
based on vitamin K or intended for use as oral anticoagulants with desired qualities superior to currently
available warfarin and other 4-hydroxycoumarin derivatives.

3. Differences between VKORC1 and VKORC1L1 Paralogs

3.1. Tissue- and Developmental Stage-Specific Expression

It has been known for a long time that liver is the primary location of VKOR enzymatic activity
essential to the vitamin K cycle and production and secretion of VKD coagulation factors [35,71].
In 2000, before the identification of the VKORC1 and VKORC1L1 genes, a study by Itoh and Onishi
investigated developmental changes in VKOR enzymatic activity of human liver sampled from autopsied



Nutrients 2015, 7 6262

samples representing individuals from 12 weeks post-fertilization to 18 years of age [79]. They found
hepatic VKOR activity was low (mean 100 nmol/15 min/gliver) and possibly declined through prenatal
week 30, then increased abruptly by prenatal week 35 (mean 200 nmol/15 min/gliver) and thereafter
remained constant through age 18. With the identification of both VKOR paralogs in 2004, recent
discoveries of biological roles for non-coagulation factor VKD proteins, and elucidation of what cells
and tissues are their primary sites of expression, an increasing number of studies have been focused on
assessing tissue-specific expression distributions for both VKORC1 and VKORC1L1 (Table 2). With
respect to developmental expression of vkorc1 in mouse, two studies provided some early insight. Ko
et al. (1998) constructed a cDNA library from total mRNA prepared from 7.5-day post-conception
mouse embryonic and extraembryonic cells and found no evidence of vkorc1 expression by RT-PCR
analysis [80]. A subsequent mouse tissue expression study by Diez-Roux et al. (2011) used in situ
RNA hybridization on whole embryo sections and found diffuse, weak expression of vkorc1 by 14.5 day
post-fertilization embryos [81].

Two recent studies determined mouse VKOR paralog expression profiles for mouse tissues by
relative mRNA expression quantitation using qRT-PCR of cDNA prepared from tissue-specific mRNAs.
Hammed et al. (2013) measured vkorc1l1 expression in liver, lung, and testis of both C57BL/6 wild-type
and vkorc1´{´ mice and in wild-type nine week-old OFA-Sprague Dawley rat brain, kidney, liver, lung
and testis and rat osteosarcoma cell line ROS17/2.8 (Table 2) [52]. In mouse tissues, vkorc1l1 expression
levels were highly similar between wild-type and vkorc1´{´ strains, suggesting distinctly independent
regulation of expression for both VKOR paralogs. For all tissues investigated, vkorc1 expression was
also found, but most predominantly in liver (10-fold greater than for vkorc1l1), whereas brain had greater
vkorc1l1 expression relative to that for vkorc1. Other tissues had intermediate expression levels for both
paralogs. For expression levels in rat liver, lung, brain, kidney and testis assessed at three, six and
nine weeks post-partum, both paralogs showed minor variations that were not statistically significant
except for vkorc1 expression in liver which peaked significantly at six weeks before declining at nine
weeks. Taken together, these results explain why some extrahepatic tissues may have near physiological
VKOR activities and down-stream VKD protein function in the presence of warfarin concentrations
that effectively inhibit VKD clotting factor production in the liver. Another study by Caspers et al.
(2015) similarly investigated VKOR paralog expression levels in 29 different tissues of CD1 wild-type
mouse [82]. Expression levels for vkorc1 were found to be greatest in liver, lung and exocrine tissues
including mammary, salivary and prostate glands, whereas vkorc1l1 expression was greatest in brain
(Table 2). Taken together, results of both studies investigating rodent tissue expression patterns for both
VKOR paralogs strongly suggests an emerging picture of independent regulation of the vitamin K cycle
by differential expression of both VKOR paralog enzymes.

In zebrafish, Fernández et al. (2015) have assessed Vkorc1 and Vkorc1l1 expression by qPCR
analysis during larval development and in adult tissues [83]. Vkorc1l1 was expressed at highest levels
overall at the post-fertilization 4-cell stage and diminished by Prim-5 stage, remaining stable at later
stages. Vkorc1 expression was detectable at the 4-cell stage, but peaked at 72–96 h post-fertilization
followed by lower, stable levels at later stages. In adults, Vkorc1l1 was ubiquitously expressed in all
tissues investigated (Table 2) with greatest levels in brain, muscle and ovary, while Vkorc1 was only
detectable in about half of the surveyed tissues with elevated levels in brain, muscle and vertebra.
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Interestingly, no Vkorc1 expression could be detected in adult intestine, kidney, ovary, spleen and
stomach. Using the ZFB1 cell line developed in a previous study [84], the authors found Vkorc1
and Vkorc1l1 to be significantly overexpressed during differentiation, but not during induction of
extracellular matrix (ECM) mineralization, in cells cultured for 1 week. In cells cultured for three weeks,
there was no significant difference between differentiating cells or cells induced to mineralize ECM.
Taken together with results reported for ROS 17/2.8 osteoblast-like cells by Hammed et al. (2013), and
moderate expression levels of both VKOR paralogs in vertebral tissue, the authors suggest that osteoblast
differentiation may require increased vitamin K cycle turnover [51].

Since the initial draft of the human, mouse and rat genomes completed in 2000, 2002 and 2004,
respectively, whole genome and proteome investigations have enabled large-scale, high through-put
investigation of gene and protein expression levels in various tissues and cells [85]. Less than a
year after the identification of both VKOR paralogs in 2004, high-density nucleotide arrays including
VKORC1 and VKORC1L1 sequences were already being used to explore gene expression on a genomics
scale. CHiP-Seq mRNA quantification studies including data for VKORC1 and VKORC1L1 have been
published for frog, fruitfly, human, rat, mouse, pig, and zebrafish [86–90].

We recently recovered human and mouse VKOR paralog mRNA expression profiles based on
chromatin immunoprecipitation (ChIP-seq) technology from a large, high through-put transcriptomics
study by Su et al. (2004) available through the BioGPS database portal [86,91]. Their data includes
VKORC1 and VKORC1L1 expression levels for 79 human and 61 mouse tissues from pooled samples
of typically 1–10 individuals. For simplification, in Table 2 we summarize only results including tissues
with the 10 highest VKORC1 and VKORC1L1 expression levels above mean values for all tissues
(for comprehensive tissue data, see Figure S1, online Supplemental Material). For human and mouse,
VKORC1L1 is uniformly expressed at or near median value for most all tissues and cells surveyed.
From among those surveyed, only adipocytes, CD34+ cell lines (including monocytic lines) and B
lymphoblasts exhibit statistically significant higher levels of VKORC1L1 expression than the median.
Westhofen et al. (2011) previously pointed out that all three tissues/cell types generate intensely and
protractedly elevated levels of ROS under physiological conditions, suggesting a role for VKORC1L1
in redox homeostasis [31]. BioGPS tissue-specific expression levels for VKORC1 mRNA exhibit more
highly varied differences than for VKORC1L1. Among tissues with the highest expression levels are liver,
where most of the vitamin K-dependent blood-clotting factors are produced, and adipocytes, smooth
muscle, thyroid, lung and pineal body.

Data from the GTEx Portal [92], a large-scale, high through-put human genomics project published
earlier this year, has recently been mined for a study by Melé et al. (2015) on RNA-seq deep-sequenced
transcriptomes of 175 individuals that covers 29 solid organ tissues, 11 brain subregions, whole blood
and two standard cell lines [93]. We summarize the top six expressing tissues for each VKOR
paralog in this study (Figure S2, online Supplemental Material) for comparison with data from other
studies. Tissues with highest levels of VKORC1 (ENSG#167397) expression from the GTEx project
data included aorta and coronary artery, liver, pituitary and gland, while VKORC1L1 (ENSG#196715)
expression was found to be greatest in adipose tissue, mammary gland, lung and tibial nerve (Table 2).
Interestingly, the study results indicated that gene activity, in general, differed substantially more across
tissues than across individuals and expression patterns for both VKORC1 and VKORC1L1 follow this
trend. Genes that changed expression (FDR < 0.05) with age across all GTEx study tissues included
VKORC1L1, but not VKORC1 [94].
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Table 2. Summary of results from expression studies of human, mouse and rat VKORC1 and VKORC1L1.

Study
Itoh & Onishi
2000 [76] *

Su et al. 2004 [83]
*

Hammed et al.
2013 [51]

Kim et al.
2014 [93]

Wilhelm et al. 2014 [94]
Caspers et al.

2015 [79]
Melé et al. 2015 [90] *

Fernández et al.
2015 [80] *

Species Human Human, Mouse Mouse, Rat Human Human Mouse Human Zebrafish

Method
VKOR activity

assay
CHiP-Seq mRNA

Mass
Spectroscopy

Mass Spectroscopy mRNA mRNA mRNA

Tissue/cell
types

Liver (12 weeks
post-fertilization

to 18 years)

Adipocyte Adipocyte
Adipose-visceral

(omentum)
Adipose-subcutaneous

Adrenal gland Adrenal gland Adrenal gland
Aorta

Blood platelet
Bone Bone Operculum

Brain (whole) Brain Brain Brain Brain
Breast Mammary gland Breast-mammary

Caecum
Cerebral cortex

Colon Colon Colon Colon
Colonic epithelial cell

Coronary artery
Diaphragm
Duodenum

Esophagus
Eye Eye
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Table 2. Cont.

Tissue/cell
types

Liver (12 weeks
post-fertilization

to 18 years)

Fetal Brain
Fetal Gut

Fetal Heart
Fetal Liver
Fetal Ovary

Fetal Placenta
Fetal Testis

Frontal cortex
Gallbladder Gall bladder

Gills
Gut

Heart Heart Heart
Helper T-lymphocyte

Hematopoietic B
cells

Hematopoietic
CD4+ T cells
Hematopoietic
CD8+ T cells

CD34+
Hematopoietic

Monocytes Monocyte
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Table 2. Cont.

Tissue/cell
types

Liver (12 weeks
post-fertilization

to 18 years)

Hematopoietic
NK cells

Hematopoietic
Platelets

Ileum epithelial cell Intestine
Kidney Kidney Kidney Kidney Kidney

Liver Liver Liver Liver Liver Liver Liver
Lung Lung Lung Lung Lung Lung

721 B-ymphoblasts Lymph node
EBV transformed

lymphocytes
Masseter muscle

Mast-cells-IgE
Mast-cells-IgE+antigen-1 h
Mast-cells-IgE+antigen-6 h

Mega-erythrocyte-progenitor Milk
Muscle Muscle

Myometrium
Natural killer cell

Nerve-tibial
Oesophagus
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Table 2. Cont.

Tissue/cell
types

Liver (12 weeks
post-fertilization

to 18 years)

Osteoblast-day 14
Osteoblast-day 21
Osteoblast-day 5

Rat osteosarcoma
cell line ROS 17/2.8 Osteosarcoma cell

Ovary Ovary Ovary Ovary
Pancreas Pancreas Pancreas

Pancreatic islet
Pineal body

Pituitary Pituitary
Placenta

Prefrontal cortex
Prostate Prostate gland Prostate
Rectum Rectum
Retina Retina

Salivary gland
Skin Skin Skin

Smooth-muscle
Soft tissue

Spinal cord Spinal cord
Stomach Stomach Stomach

Spleen Spleen
Testis Testis Testis Testis

Thyroid
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Table 2. Cont.

Tissue/cell
types

Liver (12 weeks
post-fertilization

to 18 years)

Tongue
Transformed

fibroblasts
Umbilical-cord

Urinary bladder Urinary bladder
Uterus

Vertebra
Vessels

Symbols: * only cells and tissues shown with significantly greater expression than mean levels for all cells/tissues included in large-scale study; bold type indicates
cells/tissues with expression levels significantly above means for each study; yellow, high VKORC1 expression level; blue, high VKORC1L1 expression, green high
VKORC1 and VKORC1L1 coexpression.
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Whole proteome studies using mass spectroscopic (MS) technologies have recently provided an
opportunity to identify and quantitate intracellular pools of translated proteins across tissue types
and populations of individuals [95]. Two recent MS proteomics studies include informative protein
expression for human VKOR paralogs. Kim et al. (2014) systematically examined 30 different human
tissues, including seven fetal tissues and six hematopoietic cell types from rapidly acquired postmortem
samples from each of three donors [96]. Results for protein levels („84% coverage of total predicted
human proteome) of VKORC1 and VKORC1L1 from this study are available on the Human Proteome
Map server [96]. VKORC1 proteolytic peptides (six 6–18 residue peptides representing 31% primary
sequence coverage) were detected in six tissues including adrenal gland, monocytes, platelets, lung
ovary and testes, while VKORC1L1 peptides (eleven 7–19 residue peptides representing 41% primary
sequence coverage) were detected in fetal brain, placenta, testes and in adult lung (Table 2 lists all
tissues in which VKOR paralog peptides were detected by MS). A similar MS proteomics study by
Wilhelm et al. (2014) combined their own data from a similar number of tissues with >10,000 publicly
available MS raw data files to generate a database encompassing 60 human tissues, 147 cell lines and
13 body fluids [97]. This study achieved a record 92% coverage of human proteome ORFs. VKORC1
(four 11–30 residue peptides representing 41.1% primary sequence coverage) was detected at higher
than median expression levels only in monocytes, pancrease and retina, while VKORC1L1 (four 11–46
residue peptides representing 51.7% primary sequence coverage) was detected in higher than median
expression levels only in brain. Compared to the results of Kim et al. (2014), this study had a very low
detection efficiency for VKOR paralogs likely due to the much longer proteolytic fragments that were
initially generated from tissue samples [96,97]. Comparing both MS studies to ChIP-seq method results
(see above), it is clear that the MS-based techniques are still in their infancy as the number of tissues with
detectable VKOR paralogs is low compared to the results from transcriptome studies. However, looking
across all expression study results (Table 2), we find a general concurrence that VKORC1 is most highly
expressed in liver, while VKORC1L1 is most highly expressed in brain.

3.2. Promoter Regions of VKORC1 and VKORC1L1 Genes

Since the coding regions of the VKORC1 and VKORC1L1 paralog genes are similarly organized
and the respective expressed proteins are so highly conserved that their core domain sequence lengths,
predicted folds, catalyzed reactions and substrate usage are essentially identical, we decided to survey
existing published data for differences in non-coding regions of the genes for clues to why both paralogs
have been preserved with complete fidelity in all extant (i.e., sequenced to-date) vertebrate genomes. In
a previously published study of human VKORC1L1 expression and function, we cited tissue-specific
ChIP-seq gene expression data for both VKOR paralogs from the Functional ANnoTation Of the
Mammalian genome phase 4 (FANTOM4) whole genome expression study [31,98]. For the purpose
of exploring similarities and differences of the promoter regions for both human VKOR paralogs, we
accessed deep-CAGE data using the FANTOM4 human genome viewer (Figure 4). FANTOM4 focused
on the dynamics of transcription start site (TSS) usage in the myeloid cell line THP-1 [99]. We retrieved
transcription start site (TSS) and predicted transcription factor binding site (TFBS) data for functionally
expressed human VKORC1 and VKORC1L1 genes. In summary, VKORC1 promoter organization is
distinctly different from and relatively simpler than that for VKORC1L1. VKORC1 uses four alternative
TSSs spanning „200 bp and 24 predicted TFBSs were identified around this region (Figure 4A, red
arrows), while VKORC1L1 uses seven alternative TSSs spanning „150 bp with 53 predicted nearby
TFBSs (Figure 4B, red arrows).
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To predict putative binding sites for known TFBS motifs, a window of ´300 to +100 bp flanking
each promoter region was extracted, multiply aligned and the MotEvo algorithm applied [100]. Of
the 52 predicted transcription regulators, 16 TFs were experimentally confirmed by systematic siRNA
knock-down for the VKORC1L1 promoter region, while only three TFs were found to bind the VKORC1
promoter region (see Note 4 [101]) [98]. Taken together, these data support the notion that expression of
each human VKOR paralog is apparently controlled by distinctly different transcriptional mechanisms,
in agreement with previous study results for combined tissue expression levels and respective VKOR
enzymatic activities in mice [52,82]. Furthermore, for VKORC1, there appear to be many predicted
TFBSs in common with other hepatically expressed proteins, while predicted TFBSs for VKORC1L1
are more similar to those from genes that express proteins with known house-keeping and homeostatic
functions [31].

3.3. Human Coding Region Mutations

Naturally occurring coding region mutations for human, rat and mouse VKORC1 genes mostly cause
in vivo warfarin resistance phenotypes [73,74,102], and one human mutation causes VKCFD2, a severe
deficiency in VKD clotting factors [2]. VKORC1 mutations have been comprehensively reviewed
elsewhere [103]. To gain insight into naturally occurring human VKORC1L1 coding region mutations,
we surveyed the NCBI dbVAR database, which includes combined whole genome sequence data for
thousands of individuals, and found evidence for 21 total coding region SNPs in living adult humans
of which seven are non-synonymous, one premature termination that shortens the C-terminus, and six
synonymous variants that do not alter translated VKORC1L1 protein sequence. To date, no human
in vivo phenotypes have been reported for VKORC1L1 non-wild type variants.

3.4. Commentary/Hypothesis: Why do Two VKOR Paralogs Persist in Vertebrates?

Here we summarize various conclusions drawn from the studies reviewed in this article and propose a
novel hypothesis to explain why two VKOR paralogs with apparently identical enzymatic functions
have persisted in vertebrates over „400 million years of evolution. Rost et al. (2004) first noted
that VKORC1L1 primary sequences are considerably more conserved among mammalian orthologs
than the respective VKORC1 sequences [2]. Robertson (2004) suggested that the extant paralog
genes likely arose in a common ancestor before the divergence of urochordates and vertebrates [3].
Phylogenetic analysis we present in this review suggests the last universal common ancestor (LUCA)
of all extant metazoans with both VKOR paralogs was likely a crown chordate older than the LUCA
of extant gnathostomes (Section 1.1.3. and Figure 2). Given aggregate evidence reviewed in this
article that VKORC1 and VKORC1L1 enzymatic functions are virtually identical, but that regulation
of developmental stage- and tissue-specific expression is the major notable difference between both
paralogs, we further contemplate what other functional differences, at either the protein or biological
pathway levels, could provide the required selection pressure to preserve both paralogs.
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Addressing this theme, Robertson (2004) commented, “...If this duplication follows the
neofunctionalization model of gene duplication (Ohno, 1970) [105], then the rapid divergence of
VKORC1 in vertebrates might suggest that its function related to vitamin K recycling might be
the derived function, in which case the unknown VKORC1L1 function might better reflect the role
of this protein in the other animals and trypanosomatids. Alternatively, if this duplication follows
the subfunctionalization model of Lynch & Force (2000) [106], then both proteins might still be
involved in vitamin K recycling; however, for some reason VKORC1 has been free to diverge
more rapidly in vertebrates than has VKORC1L1...” It is clear from the evidence we review
here that neofunctionalization cannot be the driving force for VKOR paralog maintenance, but that
subfunctionalization, not of enzymatic function, but of developmental- and tissue-specific expression
regulation, might be the basis for this unique preservation of paralogs. Furthermore, we can rationalize
a biological need for this beginning with the evolution of aerobic heterotrophic organisms as the
earth’s atmosphere became increasingly oxygen-rich through photosynthesis. This led to evolution of
multicellular animals and, eventually, vertebrates whose sizes increased over time [19,107]. Accordingly,
closed circulatory systems of ever increasing volume and requiring increased cardiac capacity evolved
leading to ever increasing circulatory pressure [108]. Parallel to these evolutionary developments in
early metazoans, there arose the need for a robust hemostatic system and clotting capability to stem off
bleeding through injury [109]. With all of this in mind, we propose that the regulatory mechanisms for
VKOR paralog gene expression needed to keep pace with evolutionarily increasing circulatory volume
and pressure, and so both VKOR paralogs were maintained in vertebrates due to selection pressure for
distinct regulation of expression in non-coding regions of the genes. Thus, VKORC1L1 orthologs may
have been maintained for more evolutionarily primitive housekeeping functions that might have included
intracellular redox homeostasis and oxidative protein folding under anaerobic growth conditions [31,39].
In contrast, VKORC1 expression regulation has possibly evolved separately to sustain high systemic
levels of secreted VKD proteins needed for maintaining large circulatory volume and pressure and also
for development and homeostasis of a robust, calcified skeleton.

4. Conclusions and Future Perspectives

In this review, we have attempted to comprehensively summarize published results concerning
structural and functional similarities and differences for VKORC1 and VKORC1L1 paralogs in extant
metazoan genomes and to relate these to a rationale that explains why these proteins are evolutionarily
maintained when their enzymatic functions are virtually identical. While it is presently clear that both
enzymes are responsible for de novo reduction of K vitamins acquired from dietary sources, in addition
to recycling oxidized forms of K vitamins to the respective reduced hydroquinone forms in the vitamin K
cycle, evolutionary selection pressure has apparently maintained unique physiological functions for both
paralogs by a tissue-specific “division of labor” under independent expression and regulatory controls.

In order to address important questions that remain about these paralogs, it will be necessary to more
deeply investigate regulation of their expression with respect to cell and tissue type and developmental
stage, to identify their functional intracellular protein partners, and to comprehensively identify and
characterize new VKD proteins and the extent of the VKD proteome in individual species. We hope
this review will stimulate discussion and cooperative investigation among researchers already engaged
in vitamin K-related research areas as well as encourage researchers new to the field with expertise in
complementary research methods.
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