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Abstract: Adipose tissue is a primary site of meta-inflammation. Diet composition
influences adipose tissue metabolism and a single meal can drive an inflammatory response
in postprandial period. This study aimed to examine the effect lipid and carbohydrate
ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three
healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass
index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage
groups; placebo (water), carbohydrate (maltodextrin) or lipid (dairy-cream). Subcutaneous,
abdominal adipose tissue biopsies and serum samples were collected prior to (0 h), as well
as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels
of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis
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factor-α (TNF-α) increased in all three groups, without an increase in circulating TNF-α.
Serum leptin (0.6-fold, p = 0.03) and adipose tissue leptin gene expression levels (0.6-fold,
p = 0.001) decreased in the hours following the placebo beverage, but not the nutrient
beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with
all beverages, suggesting a confounding effect of the repeated biopsy method, differences
in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and
carbohydrate beverages were observed.
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1. Introduction

Dysregulated metabolism and inflammation in adipose tissue, a major metabolic tissue and destination
of ingested nutrients [1,2], is a core feature of chronic metabolic diseases such as cardiovascular
disease and Type 2 Diabetes. Upon entering adipocytes, macronutrients are likely to impact on the
metabolic state of the adipose tissue, including modulating expression levels of genes and the synthesis
of adipokines, which are implicated in whole body energy homeostatic and immune regulation [3–6].

Adipokine expression levels, in response to meals, are regulated by both the composition of
the meal and the metabolic state of the individual. Ingestion of either fat or carbohydrate meals
mitigate the decline of circulating leptin that occurs during fasting in both in healthy and obese
humans [7,8]. Whereas increased interleukin-6 (IL-6) secretion from adipose tissue positively correlates
with insulin-resistance in obese subjects [9]. One study demonstrated that adipose tissue adiponectin
gene expression levels were reduced post-meal ingestion in type 2 diabetics, yet remain unaltered in
non-diabetic weight-matched individuals [10]. Postprandial inflammatory responses in adipose tissue
have also been demonstrated in individuals with metabolic syndrome regardless of background diet and
meal composition [11], as well middle-aged adults, irrespective of fat type [12]. However, repeated
biopsy procedures have been demonstrated to influence inflammatory responses in skeletal muscle [13],
yet have not been investigated in adipose tissue or postprandial studies.

Aside from these studies addressing the impact of obesity and metabolic disease on the postprandial
inflammatory response of adipose tissue, there is no clinical data examining the usual response of
adipose tissue to differing macronutrients in reference to a healthy population compared to a non-caloric
placebo. This study aimed to examine the impact of lipids and carbohydrates during the postprandial
period and to further elucidate the effect of the repeated biopsy method on inflammatory markers in
healthy adipose tissue using the non-caloric placebo. In the present study healthy, young-adults were
recruited to consume a beverage containing lipid, carbohydrate or a placebo (water). Adipose tissue
gene expression levels in biopsied subcutaneous adipose tissue and circulating levels of adipokines were
measured at 2 and 4 h as adipose tissue adaptations to nutrient ingestion have been previously observed
during these times ( [11], unpublished data [14]). It was hypothesised that lipid ingestion would elicit a
higher inflammatory response in adipose tissue than carbohydrate consumption.
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2. Experimental Section

2.1. Participants

Healthy adults aged 18 to 30 years were recruited for the study. Thirty-three male and female adults
(24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2) were
randomly assigned to one of three parallel beverage groups, placebo, lipid or carbohydrate. Informed,
written consent was obtained from each participant prior to participation in the study, after the nature,
purpose and risks of the study as well as their right to withdraw from the study at any time were
explained. All experimental procedures were formally approved by the Deakin University Human
Research Ethics Committee (2011-027) according to the Declaration of Helsinki. Exclusion criteria
included past or present cardiovascular disease, diagnosed diabetes, BMI < 18.5 or >27 kg/m2, or
hypertension, use of anti-inflammatory medications or supplements (e.g., fish oil).

2.2. Experimental Design

Participants were provided with a meal to consume on the evening prior to the day of the trial, in order
to standardise nutrient intake, and were instructed to abstain from alcohol, caffeine, tobacco and exercise
for 24 h before the test day. On the morning of the trial, participants arrived in a fasted state. Height,
weight and waist circumference were measured, then following 30 min of supine resting, an adipose
tissue sample was collected from the lateral periumbilical region of the subcutaneous abdominal under
local anaesthesia (Xylocaine 1%) by percutaneous needle biopsy technique [15] modified to include
suction [16]. Tissue samples were washed in ice cold Phosphate Buffered Saline (PBS) to eliminate
blood, then immediately frozen and stored in liquid nitrogen for later analysis. Participants were then
fitted with a cannula in the anti-brachial vein of the non-dominant arm and a (0 h) blood sample was
taken for serum. All serum samples were stored at −80 ◦C until analysis for insulin and metabolites
including amino acids and fatty acids by mass spectrometry and adipokine analysis via multiplex array.

Participants were randomised to consume either lipid, carbohydrate or placebo beverages (Table S1)
as a bolus, in a time period not exceeding 15 min. Subsequent adipose tissue and blood samples were
collected at 2 h and 4 h following the meal ingestion. To avoid additional regional inflammation, on each
occasion the biopsy needle was angled away 90◦ from the previous biopsy site.

2.3. Beverage Preparation (Table S1)

All beverages contained 35 mg non-caloric sweetener (aspartame) and 185 µL vanilla essence for
palatability and to mask macro-nutrient composition. Participants remained blinded to the composition
of their beverage throughout the experimental period. The placebo beverage contained the sweetener
and flavouring in 350 mL water (0 kJ). The carbohydrate beverage, containing 1856 kJ, was prepared
with 116 g maltodextrin (a high glycaemic-index carbohydrate made up of glucose units and is easily
metabolised), dissolved in water up to a total volume of 350 mL. The lipid beverage had 1988 kJ and
was an emulsion of 143 mL full-fat dairy cream and water prepared to a total volume of 350 mL.
Macronutrient composition of the beverages are shown in Supplemental Table S1.
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2.4. Serum Insulin and Adipokine Analysis

Serum insulin was determined using the Human Insulin Specific RIA kit HI-14K (Merck Millipore,
Billerica, MA, USA) according to manufacturer’s instructions. Briefly, serum was incubated overnight
with 125I-insulin and human insulin antibody at room temperature. Cold precipitating reagent was added
to the sample, vortexed and incubated for 20 m at 4 ◦C. Tubes were centrifuged at 3000 g, and 4 ◦C for
a further 20 m then read on a Cobra II Auto Gamma Counter.

Serum leptin, adiponectin and tumor necrosis factor-α (TNF-α). were measured using the Human
Adipokine Kit (Adiponectin HADK1-61K-A, Leptin & TNF-α HADK2-61K-B, Millipore, Billerica,
MA, USA) according to manufacturer’s instructions. Briefly 25 µL of each sample was added to wells
containing reaction beads and incubated with agitation on a plate shaker overnight at 2–8 ◦C. The wells
were washed; detection antibodies and streptavidin-phycoerythrin were added to each well and incubated
with agitation for 30 min at room temperature, then washed again. The beads were resuspended with 100
µL sheath fluid and read on the Bio-Plex array reader (Bio-Rad Laboratories, Sydney, NSW, Australia).
All samples were run in duplicate and the coefficient of variation (CV) was calculated; the mean CVs
were between 5% and 7%. Participants acted as their own controls (0 h) and adipokine levels are
presented as fold change from baseline values.

2.5. Metabolomics Analysis

Metabolites were extracted from serum using cold methanol water and freeze-thaw cycles. The
internal standard 2,3,3,3-d4-alanine (0.3 µmol/sample) was added, samples freeze-dried (BenchTop K
manifold freeze dryer, VirTis, SP Scientific, Warminster, PA, USA) and re-suspended in 80% (v/v)
cold methanol-water. Metabolite extraction and derivatisation was performed as described by Smart
et al. [17]. Briefly, the samples were re-suspended in sodium hydroxide solution (1 M (mol/L)) and
mixed with methanol and pyridine. Methyl chloroformate (MCF) was added twice and derivatives were
separated with chloroform. Sodium bicarbonate solution (50 mM (mmol/L)), was added, the aqueous
layer removed and dehydrated with anhydrous sodium sulphate. MCF derivatives were analysed in an
Agilent GC7890 system coupled to a MSD5975 mass selective detector (EI) operating at 70 eV. The
ZB-1701 gas chromatography (GC) capillary column (30 m × 250 µm id × 0.15 µm with 5 m guard
column, Phenomenex, Lane Cove, NSW, Australia).

AMDIS software was used for identifying metabolites using an in-house MCF mass spectra library.
The relative abundance of metabolites was determined by ChemStation (Agilent Technologies, Santa
Clara, CA, USA) by using the GC base-peak value of a selected reference ion. Values were normalised
using an internal standard (2,3,3,3-d4-alanine). The data mining and normalisation were automated in R
software as described in Smart et al. [17] and Aggio et al. [18].

2.6. RNA Extraction

RNA was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen Inc., Hilden, Germany)
following the manufacturer’s protocol. Briefly, frozen tissue samples (30–100 mg) were homogenised
using the Next Advance Bullet Blender tissue homogeniser (Lomb Scientific, Taren Point, NSW,
Australia) and 1 mm zirconia/silica beads (Daintree Scientific, St. Helens, Tasmania, Australia) in Qiazol
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reagent and then incubated for 2–3 min at room temperature with chloroform then centrifuged at 8000 g
for 15 min at 4 ◦C. The appropriate RNA phase was collected and ethanol was added prior to washing
and elution through the column. On-column DNase treatment (Qiagen) was performed. Total RNA
quality and concentration was determined using the Nanodrop ND-1000 (Nanodrop Technologies, DE,
USA). The ratio of absorbance at 260 nm and 280 nm was used to assess the purity of the RNA samples.
A 260/280 ratio of >1.9 was considered acceptable.

2.7. Reverse Transcription and Real-Time-PCR

First strand cDNA was generated from 0.1 µg total RNA using the High Capacity RNA-to-cDNA
kit (Applied Biosystems, Foster City, CA, USA). Analysis of gene expression was performed using the
CFX384™ Real-Time polymerase chain reaction (PCR) Detection System (Bio Rad Laboratories) using
gene specific primers (Supplemental Table S2) designed using Primer Express 3.0 (Applied Biosystems)
software. Primer sequence specificity was confirmed using Basic Local Alignment Search Tool (BLAST)
and melt curve analysis was performed on each run to confirm the amplification of a single product. Each
sample was analysed in duplicate and negative, positive and no template controls were included.

To compensate for variations in input cDNA amounts and efficiency of reverse transcription, results
were normalised to human ribosomal 18S mRNA. 18S expression was unaltered across all time-points
(data not shown) hence it was considered an appropriate endogenous control to correct for any variation
in cDNA concentrations.

2.8. Statistical Analysis

Statistical analysis was conducted using SPSS version 17.0 for Windows (SPSS Inc., Chicago, IL,
USA). Data is expressed as mean ± SD or standard error of the mean (SEM), as reported. Participant
characteristics were compared using a one-way analysis of variance (ANOVA). Data were analysed
by repeated measures two-way ANOVA with beverage as the between-subjects factor and time as
within-subjects repeated factor. Where interaction was found, post hoc comparisons were performed
as t-tests with Bonferroni adjustment for multiple comparisons. The number of participants included
was estimated to allow an 80% power to detect a difference in postprandial monocyte chemoattractant
protein-1 (MCP-1) gene expression levels in adipose tissue between 0 and 4 h as that had been observed
in our previous studies (unpublished data, [14]) at a significance level of p < 0.05.

3. Results

3.1. Participants’ Baseline Characteristics

No differences existed between groups with regard to age, height (171.2 ± 12.1 cm), weight
(71.0 ± 12.2 kg), BMI, or waist to hip ratio (WHR) (0.85 ± 0.06) (Table 1). Baseline serum levels
of the adipokines leptin, adiponectin and TNF-α were not different between groups (Table 1).
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Table 1. Participants’ baseline characteristics.

Total Placebo Carbohydrate Lipid p-value

Male 12 3 4 5

Female 21 8 7 6

Age (year) 24.5 ± 3.3 24.8 ± 3.1 23.9 ± 2.9 24.6 ± 3.9

Height (cm) 171.2 ± 12.1 170.7 ± 10.3 168.3 ± 9.2 174.6 ± 15.6 0.802

Weight (cm) 71.0 ± 12.2 70.4 ± 11.5 67.8 ± 11.5 74.9 ± 12.9 0.476

BMI (kg/m2) 24.1 ± 2.7 24.0 ± 1.8 23.8 ± 3.0 24.6 ± 3.2 0.390

Waist (cm) 80.3 ± 7.9 79.7 ± 6.3 79.7 ± 10.2 81.4 ± 7.1 0.802

Hip (cm) 95.0 ± 7.5 95.8 ± 6.3 93.4 ± 7.3 95.6 ± 9.0 0.859

WHR 0.85 ± 0.06 0.83 ± 0.05 0.85 ± 0.08 0.85 ± 0.06 0.715

Serum Adipokines
Leptin (ng/mL) 11.1 ± 10.6 9.8 ± 2.5 12.6 ± 4.5 12.4 ± 4.4 0.854

Adiponectin (µg/mL) 7.1 ± 3.5 8.4 ± 4.0 5.4 ± 2.6 7.6 ± 3.4 0.203

TNF-α (pg/mL) 2.7 ± 1.1 2.3 ± 1.3 3.0 ± 0.9 2.7 ± 1.2 0.514

Data are presented at mean ± SD; BMI = Body mass index; WHR = waist to hip ratio; TNF-α = tumor necrosis
factor-α; Participant baseline characteristics were compared using a one-way ANOVA.

3.2. Serum Analytes Respond Differently to Beverages Differing in Macronutrient Content

Baseline serum insulin levels did not significantly differ between groups. Postprandial insulin levels
increased 3.6-fold in response to carbohydrate ingestion at 2 h compared with baseline (p < 0.0001). The
placebo and lipid beverages had no impact on circulating insulin concentrations at 2 and 4 h (Figure 1).
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Figure 1. Postprandial response of insulin following consumption of a placebo, carbohydrate
or lipid beverage. Levels of insulin were measured in serum at baseline (0 h) and at 2 h and 4
h post ingestion of either a placebo, carbohydrate or lipid beverage. Insulin was determined
by Human Insulin Radioimmunoassay (RIA). Data are presented as mean ± standard error
of the mean (SEM) (n = 11). Interaction; *** p < 0.001 versus placebo, ### p < 0.001
versus lipid.

Serum leptin levels were lower in the placebo group at 4 h compared with the carbohydrate and
lipid groups (0.6 to 0.7-fold, p = 0.03; Figure 2A). Main effects showed that serum adiponectin levels
decreased at 2 h in all groups (p = 0.003), but levels were 15% lower in the placebo group compared
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with the lipid group (p = 0.007; Figure 2B). Serum TNF-α levels were unchanged in the postprandial
period for all three beverages (Figure 2C).

 

Figure 2. Serum levels of leptin (A); adiponectin (B) and TNF-α (C) were measured at
baseline (0 h—set to 1; dotted line) and at 2 h (black bars) and 4 h (open bars) post ingestion
of either a placebo, carbohydrate or lipid beverage. Serum adipokine levels were determined
using a multiplex array system. Data are presented as mean fold change from baseline (set
at 1) ± standard error of the mean (SEM) (n = 11). Interaction; * p < 0.05; *** p < 0.001
versus placebo. Main effects across total sample (indicated by black line); TT = time effect
p < 0.01; BB = beverage effect p < 0.01.

In the hours following ingestion, the availability of metabolites was different for each beverage.
Serum free fatty acids levels were increased at 2 and 4 h following the consumption of the (dairy) lipid
beverage; myristate (1.7 to 2.1-fold, p < 0.0001), dodecanoate (laurate) (2.2 to 2.5-fold, p < 0.0001),
decanoate (5.9 to 6.1-fold, p < 0.05) and octanoate (3.3 to 4.7-fold, p < 0.05). These medium to shorter
chain fatty acids are typical of dairy fats. No changes were found in the free fatty acid levels measured
for the placebo and carbohydrate beverage groups (Figure 3).
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Figure 3. Relative metabolite concentrations extracted from human serum following the
consumption of carbohydrate and lipid beverages across 4 h. Metabolite concentrations are
given relative to the placebo group, using a log2 scale. Deeper red colours (positive values)
indicate that metabolite concentrations were increased in response to different beverage
types while green shades (negative values) indicate decreased concentrations. The colour
key on the top left is superimposed with a histogram that counts the relative concentrations
of all the metabolites. Only the metabolites for which there was a statistically significant
change in concentration between beverage types (2-way ANOVA: p-value < 0.05) are shown.
* Indicate significant interactions between beverage and time, * p < 0.05, ** p < 0.01,
*** p < 0.001.

Serum amino acid levels (Figure 3) decreased at 2 and 4 h after the carbohydrate beverage compared
with the placebo group, indicating insulin-induced amino acid uptake by tissues; lysine (0.6 to 0.7-fold,
p < 0.05), leucine (0.7 to 0.8-fold, p < 0.001), isoleucine (0.8-fold, p < 0.0001), phenylalanine (0.7 to
0.8-fold, p < 0.05), tyrosine (0.7 to 0.9-fold, p < 0.05) and valine (0.7-fold, p < 0.0001). Serum amino
acid levels remained unchanged in the lipid group. The levels of serum hydroxybutyric acid, a keto-acid
and marker of fasting, were increased at 4 h in the placebo (1.7-fold, p < 0.001) and lipid groups (1.8-fold,
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p < 0.01), yet were unchanged at 4 h in the carbohydrate group compared with baseline values. Thus,
reduced levels of serum hydroxybutyric acid were observed in the carbohydrate group compared with
the placebo and lipid groups at 4 h (Figure 3).

3.3. Subcutaneous Adipose Tissue Inflammatory Gene Expression Levels Were Equally Increased after
Placebo, Carbohydrate and Lipid Beverages

Adipose tissue inflammatory mRNA expression levels were increased in adipose tissue with the
placebo, carbohydrate and lipid beverages, with no differences between beverage groups; MCP-1 (27 to
80-fold, p < 0.0001), TNF-α (2 to 3.7-fold, p < 0.0001) and IL-6 (83 to 360-fold, p < 0.0001) (Table 2).
Gene expression levels of cluster of differentiation 68 (CD68) were decreased by at least 0.73-fold at
2 h in all groups compared with baseline (p = 0.042) (Table 2). Visfatin levels increased over time in all
beverage groups (p < 0.0001) (Table 2).

Table 2. Adipose tissue reverse transcription polymerase chain reaction (RT-PCR)—Fold
change from baseline.

Placebo Carbohydrate Lipid P1 P2 P3

Adipokines
Leptin 2 h 0.69 ± 0.09 1.01 ± 0.12 1.03 ± 0.13 0.129 0.001 0.027

4 h 0.57 ± 0.07 0.85 ± 0.10 0.86 ± 0.11
Adiponectin 2 h 0.86 ± 0.08 0.69 ± 0.08 0.88 ± 0.17 0.658 0.007 0.389

4 h 0.84 ± 0.09 0.67 ± 0.07 0.90 ± 0.20
Resistin 2 h 1.07 ± 0.08 1.39 ± 0.20 1.17 ± 0.15 0.716 0.079 0.328

4 h 0.90 ± 0.08 1.13 ± 0.21 1.04 ± 0.18
Chemerin 2 h 0.90 ± 0.07 1.09 ± 0.08 0.89 ± 0.09 0.424 0.105 0.291

4 h 0.80 ± 0.06 0.92 ± 0.10 0.91 ± 0.12
Visfatin 2 h 3.59 ± 0.73 4.19 ± 1.10 4.74 ± 1.04 0.803 <0.0001 0.718

4 h 6.51 ± 1.29 5.41 ± 1.43 7.10 ± 1.45
PAI-1 2 h 1.16 ± 0.15 1.08 ± 0.14 1.09 ± 0.20 0.830 0.064 0.978

4 h 0.83 ± 0.11 0.96 ± 0.11 0.97 ± 0.13
Inflammatory Molecules

MCP1 2 h 27.1 ± 6.6 34.7 ± 11.8 47.3 ± 12.7 0.886 <0.0001 0.832
4 h 80.8 ± 20.8 69.0 ± 21.6 78.8 ± 22.6

TNF-α 2 h 3.65 ± 1.04 3.31 ± 0.74 2.89 ± 0.47 0.565 <0.0001 0.701
4 h 2.05 ± 0.46 3.14 ± 0.54 2.35 ± 0.37

IL-6 2 h 83.3 ± 28.9 241.9 ± 106.4 258.0 ± 101.3 0.414 <0.0001 0.602
4 h 259.7 ± 65.3 359.7 ± 138.4 241.7 ± 80.5

CD68 2 h 0.87 ± 0.15 0.73 ± 0.10 0.73 ± 0.10 0.243 0.042 0.280
4 h 1.06 ± 0.19 0.98 ± 0.18 0.63 ± 0.12

Values are mean ± standard error of the mean (SEM) fold change mRNA expression at 2 h and 4 h compared
with baseline (0 h). Expression is relative to ribosomal 18S. Repeated measures ANOVA was performed with
beverage as a between subjects factor and time as the repeated factor. P1 = time × beverage interaction;
P2 = main time effect; P3 = main beverage effect; PAI-1 = plasminogen activator inhibitor-1, MCP-1 =
monocyte chemoattractant protein-1, TNF-α = tumor necrosis factor-α, IL-6 = interleukin-6, CD68 = cluster
of differentiation 68.



Nutrients 2015, 7 5356

3.4. Subcutaneous Adipose Tissue Adipokine Gene Expression Levels Differed in Response to
Energy/Nutrient-Containing Beverages Compared with the Placebo

Main effects were observed for time and beverage for adipose tissue leptin mRNA expression
(Table 2). Main effects showed that leptin levels decreased over time, but the beverage effect
demonstrated levels were lower in the placebo group. While a statistically significant interaction effect
was not observed, the placebo group appeared to be the main contributor to the reduced expression of
leptin observed in the main effects and the trends were similar to the effects seen in serum leptin levels
(Table 2). Adiponectin mRNA expression levels decreased 0.8-fold in adipose tissue at 2 h (p = 0.026)
and 4 h (p = 0.045) compared with baseline in all beverage groups (Table 2). There were no changes in
adipose tissue resistin, chemerin or plasminogen activator inhibitor-1 (PAI-1) gene expression levels.

4. Discussion

Single meals differing in macronutrient composition are likely to generate a tailored transcriptional
and translational response within adipose tissue. This enables the adipocyte to process and regulate
the storage of the available macronutrients, whilst adapting the expression of secreted adipokines
that are necessary for local and systemic regulation of metabolism and immune function [3–6].
Despite the importance of these fundamental processes as regulators of adipose tissue triacylglycerol
storage [1,19] and chronic disease risk [9,10], few studies have addressed how adipose tissue
inflammation are regulated by a single meal. In the present study, healthy volunteers were randomised
to consume one of three beverages, placebo (water), carbohydrate or lipid. The subsequent impact on
adipose tissue gene expression levels was measured in serial needle aspirated biopsy samples harvested
from abdominal subcutaneous adipose tissue at 2- and 4-h post meal ingestion.

Increased inflammatory gene expression levels in adipose tissue were found, without an increase in
circulating TNF-α levels in each beverage group. Circulating TNF-α levels increased in healthy, obese
and diabetic individuals following a high-fat meal, but not following a high carbohydrate meal [20–22].
In contrast, the present study observed no change after 4 h in serum TNF-α level in any of the beverage
groups, despite increased adipose tissue TNF-α mRNA levels. However the population sample in the
current study was consistent with another study in young healthy adults; where postprandial TNF-α was
unchanged [23]. The discordance between adipose tissue and serum TNF-α levels suggests that this
might be due to a biopsy-induced, local inflammation in the adipose tissue, rather than a postprandial
effect. However, further studies that investigate repeated biopsies from multiple incision sites are
required to assess whether this result is a true impact of the biopsy effect or a lack of translation from
RNA expression levels to a secreted protein response.

Meneses et al. [11] reported increased adipose tissue inflammatory gene expression levels (including
MCP-1, IL-6, interleukin-1β (IL-1β)) in adipose tissue 4 h following both a high fat and a low-fat, high
carbohydrate meal, in individuals with metabolic syndrome (MetS) using repeated biopsies. However,
the actual sites from which the repeat biopsies were taken from were not reported. Additionally,
Pietraszek et al. [12] also detected inflammatory changes following consumption of meals combined
with either coconut oil (rich in saturated fatty acids, (SFA)) or macadamia oil (rich in monounsaturated
fatty acids (MUFA)) in adipose tissue of middle aged adults, who were either relatives of people with
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type 2 diabetes (median years (95% confidence interval (CI)); 55.0 (48.0–62.0)) or age-matched controls
(46.0 (37.5–57.5)). However, no placebo or non-nutrient treatment was utilised to test the effect of the
procedure. Similar to the present study, the biopsies were reported to be taken through a 1 cm incision
with 5 cm between pre and post meal biopsy sites. However, a recent study by Kruse et al. [24] showed
increased inflammatory gene expression levels in adipose tissue at 4 h following a meal rich in rapeseed
oil but not olive oil in moderately obese men aged 39 to 63 years. Biopsy sites and techniques were not
reported. The biopsies in the current study were taken from the same incision, but each at a 90◦ angle
from the previous biopsy, and approximately 4–5 cm from the incision site (see Figure S1). A recent
study in skeletal muscle, with a similar biopsy protocol to the present study, showed increased gene
expression levels of inflammatory markers IL-6 and IL-6 receptor (IL-6R), with the repeated biopsies
from the same incision site [13]. Therefore, while precautions were taken to reduce the influence
of biopsy-induced local inflammation, the biopsy technique used in the current study may not have
been adequate for differentiating between biopsy-induced inflammation and possible acute inflammatory
responses to nutrients in adipose tissue.

Contrary to the findings with the acute inflammatory markers, levels of the adipokine leptin were
differentially impacted by the nutrient beverages compared with the placebo. Adipose tissue leptin
mRNA expression levels were reduced in the placebo group, compared with both nutrient beverage
groups, which was consistent with the effect observed in serum. Circulating leptin levels were 42%
lower at 4 h compared with baseline in the placebo beverage group. Human serum leptin levels decrease
during fasting in both normal weight and obese individuals [7,8,25]. Adipose tissue adiponectin mRNA
expression remained unchanged after all beverages, which is consistent with other findings in healthy
and non-diabetic obese people [10]. However, main time and beverage effects were observed for serum
adiponectin. Protein levels of adiponectin were lowered over time, and were particularly influenced by
the placebo group when compared with the lipid group; an effect that has also been recently demonstrated
in middle-aged males with metabolic syndrome after a cream-based oral fat-load [26].

Expression levels of metabolic genes previously identified to be altered in adipose tissue during the
postprandial period (unpublished data, [14]) were also measured to test whether the biopsy effect was
consistent for all adipose tissue responses. Levels of the metabolic genes were decreased in adipose
tissue following the carbohydrate and lipid beverages and were unchanged in the placebo group; further
indicating that some adipose tissue responses were unaffected by the biopsy procedure (insulin receptor
substrate (IRS2), pyruvate dehydrogenase kinase, isozyme 4 (PDK4) and phosphoinositide-3-kinase
interacting protein 1 (PIK3IP1) (data not shown)).

Availability of nutrients and insulin levels are important determinants of a postprandial response.
While metabolomic parameters can be variable between healthy young adults [27], the present study
observed increased serum insulin levels in the carbohydrate group that were associated with serum amino
acid clearance, indicating uptake of nutrients by the tissues in the postprandial period. Whereas, the lipid
beverage group exhibited increased serum fatty acids in the postprandial period, but not insulin-induced
clearance of amino acids. The placebo beverage increased serum 2-hydroxybutyric acid, a metabolite of
ketosis and an indicator of fasting [28]. Despite the obvious differences in the available metabolites after
each of the nutrient beverages, no inflammatory changes were observed beyond those that were induced
by the biopsy as detected in the water beverage group.
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Investigating the response of adipose tissue to different nutrients should give insight to how it regulates
metabolic homeostasis but due consideration needs to be given to methodology. One limitation is that it
is not possible to sample different/many different adipose tissue sites in human studies and in the case
of the current study, we have highlighted a technical matter of repeated biopsy from the same site. The
increased levels of inflammatory genes in adipose tissue measured in all beverage groups, suggest that
the repeated biopsy method induced this effect, rather than being induced by nutrient ingestion.

5. Conclusions

It was hypothesised that the lipid meal would result in heightened inflammation compared with
carbohydrate or placebo. However, the inflammation elicited by the biopsy method is likely to have
interfered with the identification of whether an inflammatory response exists in adipose tissue as a
consequence of nutrient ingestion. It is recommended for all future studies of this nature to report
biopsy sites and techniques in order to differentiate biopsy-induced inflammation from nutrient-induced
inflammation. Despite this apparent technical limitation, the present study showed differences in adipose
tissue gene expression levels that appeared to be unaffected by the biopsy, indicating that adipose tissue
does acutely respond to nutrient ingestion, and this response is somewhat differential and dependent on
insulin levels and metabolite availability. The findings of this study warrants further investigation into
the acute metabolic adaptations of adipose tissue and of the comparison of these results with responses
in metabolically compromised individuals.

Acknowledgments

Funding was received from the Molecular & Medical Research Strategic Research Centre and the
School of Exercise & Nutrition Sciences, Deakin University and the Liggins Institute, University of
Auckland. The authors would like to acknowledge Andrew Garnham for performing the adipose tissue
biopsy procedure and Paul Della Gatta for assistance with performing the Bioplex serum analysis.

Author Contributions

Aimee L. Dordevic designed research, conducted research, analysed data, wrote paper and had
primary responsibility for final content. Felicity J. Pendergast conducted research, analysed data and
wrote paper. Han Morgan and Silas Villas-Boas conducted research and analysed data. Marissa K.
Caldow conducted research and wrote paper Amy E. Larsen designed research and conducted research.
Andrew J. Sinclair analysed data and wrote paper. David Cameron-Smith designed research, analysed
data and wrote paper. All authors read and approved the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Frayn, K.N. Adipose tissue as a buffer for daily lipid flux. Diabetologia 2002, 45, 1201–1210.
[CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00125-002-0873-y
http://www.ncbi.nlm.nih.gov/pubmed/12242452


Nutrients 2015, 7 5359

2. Baum, J.I.; Layman, D.K.; Freund, G.G.; Rahn, K.A.; Nakamura, M.T.; Yudell, B.E. A reduced
carbohydrate, increased protein diet stabilizes glycemic control and minimizes adipose tissue
glucose disposal in rats. J. Nutr. 2006, 136, 1855–1861. [PubMed]

3. Redinger, R.N. Fat storage and the biology of energy expenditure. Transl. Res. 2009, 154, 52–60.
[CrossRef] [PubMed]

4. Feve, B. Adipogenesis: Cellular and molecular aspects. Best Pract. Res. Clin. Endocrinol. Metab.
2005, 19, 483–499. [CrossRef] [PubMed]

5. Lee, D.E.; Kehlenbrink, S.; Lee, H.; Hawkins, M.; Yudkin, J.S. Getting the message across:
Mechanisms of physiological cross talk by adipose tissue. Am. J. Physiol. Endocrinol. Metab.
2009, 296, E1210–E1229. [CrossRef] [PubMed]

6. Wrann, C.D.; Laue, T.; Hubner, L.; Kuhlmann, S.; Jacobs, R.; Goudeva, L.; Nave, H. Short-term
and long-term leptin exposure differentially affect human natural killer cell immune functions. Am.
J. Physiol. Endocrinol. Metab. 2012, 302, E108–E116. [CrossRef] [PubMed]

7. Romon, M.; Lebel, P.; Fruchart, J.C.; Dallongeville, J. Postprandial leptin response to carbohydrate
and fat meals in obese women. J. Am. Coll. Nutr. 2003, 22, 247–251. [CrossRef] [PubMed]

8. Romon, M.; Lebel, P.; Velly, C.; Marecaux, N.; Fruchart, J.C.; Dallongeville, J. Leptin response to
carbohydrate or fat meal and association with subsequent satiety and energy intake. Am. J. Physiol.
1999, 277, E855–E861. [PubMed]

9. Mitrou, P.; Lambadiari, V.; Maratou, E.; Boutati, E.; Komesidou, V.; Papakonstantinou, A.;
Raptis, S.A.; Dimitriadis, G. Skeletal muscle insulin resistance in morbid obesity: The role of
interleukin-6 and leptin. Exp. Clin. Endocrinol. Diabetes 2011, 119, 484–489. [CrossRef]
[PubMed]

10. Annuzzi, G.; Bozzetto, L.; Patti, L.; Santangelo, C.; Giacco, R.; di Marino, L.; de Natale, C.;
Masella, R.; Riccardi, G.; Rivellese, A.A. Type 2 diabetes mellitus is characterized by reduced
postprandial adiponectin response: A possible link with diabetic postprandial dyslipidemia.
Metabolism 2010, 59, 567–574. [CrossRef] [PubMed]

11. Meneses, M.E.; Camargo, A.; Perez-Martinez, P.; Delgado-Lista, J.; Cruz-Teno, C.;
Jimenez-Gomez, Y.; Paniagua, J.A.; Gutierrez-Mariscal, F.M.; Tinahones, F.J.;
Vidal-Puig, A.; et al. Postprandial inflammatory response in adipose tissue of patients with
metabolic syndrome after the intake of different dietary models. Mol. Nutr. Food Res. 2011, 55,
1759–1770. [CrossRef] [PubMed]

12. Pietraszek, A.; Gregersen, S.; Hermansen, K. Acute effects of dietary fat on inflammatory markers
and gene expression in first-degree relatives of type 2 diabetes patients. Rev. Diabet Stud. 2011, 8,
477–489. [CrossRef] [PubMed]

13. Friedmann-Bette, B.; Schwartz, F.R.; Eckhardt, H.; Billeter, R.; Bonaterra, G.; Kinscherf, R.
Similar changes of gene expression in human skeletal muscle after resistance exercise and multiple
fine needle biopsies. J. Appl. Physiol. 2012, 112, 289–295. [CrossRef] [PubMed]

14. Dordevic, A.L.; Bonham, M.P.; Larsen, A.E.; Gran, P.; Sinclair, A.J.; Jowett, J.B.;
Konstatopoulos, N.; Cameron-Smith, D. Global Transcriptomic Response in Subcutaneous
Abdominal Adipose to Saturated Versus Polyunsaturated Fatty Acid-Rich Meals in Men with
Metabolic Syndrome, Unpublished work, 2015.

http://www.ncbi.nlm.nih.gov/pubmed/16772449
http://dx.doi.org/10.1016/j.trsl.2009.05.003
http://www.ncbi.nlm.nih.gov/pubmed/19595436
http://dx.doi.org/10.1016/j.beem.2005.07.007
http://www.ncbi.nlm.nih.gov/pubmed/16311213
http://dx.doi.org/10.1152/ajpendo.00015.2009
http://www.ncbi.nlm.nih.gov/pubmed/19258492
http://dx.doi.org/10.1152/ajpendo.00057.2011
http://www.ncbi.nlm.nih.gov/pubmed/21952038
http://dx.doi.org/10.1080/07315724.2003.10719300
http://www.ncbi.nlm.nih.gov/pubmed/12805252
http://www.ncbi.nlm.nih.gov/pubmed/10567012
http://dx.doi.org/10.1055/s-0030-1269846
http://www.ncbi.nlm.nih.gov/pubmed/21811961
http://dx.doi.org/10.1016/j.metabol.2009.08.020
http://www.ncbi.nlm.nih.gov/pubmed/19922965
http://dx.doi.org/10.1002/mnfr.201100200
http://www.ncbi.nlm.nih.gov/pubmed/22144044
http://dx.doi.org/10.1900/RDS.2011.8.477
http://www.ncbi.nlm.nih.gov/pubmed/22580729
http://dx.doi.org/10.1152/japplphysiol.00959.2011
http://www.ncbi.nlm.nih.gov/pubmed/22052872


Nutrients 2015, 7 5360

15. Bergström, J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research.
Scand. J. Clin. Lab. Investig. 1975, 35, 609–616. [CrossRef]

16. Evans, W.; Phinney, S.; Ivy, J. Suction applied to a muscle biopsy maximises sample size. Med.
Sci. Sport Exerc. 1982, 14, 101–102.

17. Smart, K.F.; Aggio, R.B.M.; van Houtte, J.R.; Villas-Bôas, S.G. Analytical platform for
metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas
chromatography-mass spectrometry. Nat. Protoc. 2010, 5, 1709–1729. [CrossRef] [PubMed]

18. Aggio, R.B.M.; Ruggiero, K.; Villas-Bôas, S.G. Pathway activity profiling (PAPi): From the
metabolite profile to the metabolic pathway activity. Bioinformatics 2010, 26, 2969–2976.
[CrossRef] [PubMed]

19. Laclaustra, M.; Corella, D.; Ordovas, J.M. Metabolic syndrome pathophysiology: The role of
adipose tissue. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 125–139. [CrossRef] [PubMed]

20. Peairs, A.D.; Rankin, J.W.; Lee, Y.W. Effects of acute ingestion of different fats on oxidative stress
and inflammation in overweight and obese adults. Nutr. J. 2011, 10, 122. [CrossRef] [PubMed]

21. Beisswenger, P.J.; Brown, W.V.; Ceriello, A.; Le, N.A.; Goldberg, R.B.; Cooke, J.P.; Robbins, D.C.;
Sarwat, S.; Yuan, H.; Jones, C.A. Meal-induced increases in c-reactive protein, interleukin-6 and
tumour necrosis factor alpha are attenuated by prandial + basal insulin in patients with type 2
diabetes. Diabet Med. 2011, 28, 1088–1095. [CrossRef] [PubMed]

22. Nappo, F.; Esposito, K.; Cioffi, M.; Giugliano, G.; Molinari, A.M.; Paolisso, G.; Marfella, R.;
Giugliano, D. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients:
Role of fat and carbohydrate meals. J. Am. Coll Cardiol. 2002, 39, 1145–1150. [CrossRef]

23. Masson, C.J.; Mensink, R.P. Exchanging saturated fatty acids for (n-6) polyunsaturated fatty acids
in a mixed meal may decrease postprandial lipemia and markers of inflammation and endothelial
activity in overweight men. J. Nutr. 2011, 141, 816–821. [CrossRef] [PubMed]

24. Kruse, M.; von Loeffelholz, C.; Hoffmann, D.; Pohlmann, A.; Seltmann, A.C.; Osterhoff, M.;
Hornemann, S.; Pivovarova, O.; Rohn, S.; Jahreis, G.; et al. Dietary rapeseed/canola oil
supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory
responses in adipose tissue compared to olive oil supplementation in obese men. Mol. Nutr. Food
Res. 2015, 59, 507–519. [CrossRef] [PubMed]

25. Bala, M.; Martin, J.; Kopp, A.; Hanses, F.; Buechler, C.; Schaffler, A. In vivo suppression of
visfatin by oral glucose uptake: Evidence for a novel incretin-like effect by glucagon-like peptide-1
(GLP-1). J. Clin. Endocrinol. Metab. 2011, 96, 2493–2501. [CrossRef] [PubMed]

26. Westerink, J.; Hajer, G.R.; Kranendonk, M.E.; Schipper, H.S.; Monajemi, H.; Kalkhoven, E.;
Visseren, F.L. An oral mixed fat load is followed by a modest anti-inflammatory adipocytokine
response in overweight patients with metabolic syndrome. Lipids 2014, 49, 247–254. [CrossRef]
[PubMed]

27. Krug, S.; Kastenmuller, G.; Stuckler, F.; Rist, M.J.; Skurk, T.; Sailer, M.; Raffler, J.;
Romisch-Margl, W.; Adamski, J.; Prehn, C.; et al. The dynamic range of the human metabolome
revealed by challenges. FASEB J. 2012, 26, 2607–2619. [CrossRef] [PubMed]

http://dx.doi.org/10.3109/00365517509095787
http://dx.doi.org/10.1038/nprot.2010.108
http://www.ncbi.nlm.nih.gov/pubmed/20885382
http://dx.doi.org/10.1093/bioinformatics/btq567
http://www.ncbi.nlm.nih.gov/pubmed/20929912
http://dx.doi.org/10.1016/j.numecd.2006.10.005
http://www.ncbi.nlm.nih.gov/pubmed/17270403
http://dx.doi.org/10.1186/1475-2891-10-122
http://www.ncbi.nlm.nih.gov/pubmed/22059644
http://dx.doi.org/10.1111/j.1464-5491.2011.03324.x
http://www.ncbi.nlm.nih.gov/pubmed/21517955
http://dx.doi.org/10.1016/S0735-1097(02)01741-2
http://dx.doi.org/10.3945/jn.110.136432
http://www.ncbi.nlm.nih.gov/pubmed/21430255
http://dx.doi.org/10.1002/mnfr.201400446
http://www.ncbi.nlm.nih.gov/pubmed/25403327
http://dx.doi.org/10.1210/jc.2011-0342
http://www.ncbi.nlm.nih.gov/pubmed/21677044
http://dx.doi.org/10.1007/s11745-014-3877-8
http://www.ncbi.nlm.nih.gov/pubmed/24445379
http://dx.doi.org/10.1096/fj.11-198093
http://www.ncbi.nlm.nih.gov/pubmed/22426117


Nutrients 2015, 7 5361

28. Boden, G.; Chen, X.; Mozzoli, M.; Ryan, I. Effect of fasting on serum leptin in normal human
subjects. J. Clin. Endocrinol. Metab. 1996, 81, 3419–3423. [PubMed]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/8784108

	1. Introduction
	2. Experimental Section
	2.1. Participants
	2.2. Experimental Design
	2.3. Beverage Preparation (Table S1)
	2.4. Serum Insulin and Adipokine Analysis
	2.5. Metabolomics Analysis
	2.6. RNA Extraction
	2.7. Reverse Transcription and Real-Time-PCR
	2.8. Statistical Analysis

	3. Results
	3.1. Participants' Baseline Characteristics
	3.2. Serum Analytes Respond Differently to Beverages Differing in Macronutrient Content
	3.3. Subcutaneous Adipose Tissue Inflammatory Gene Expression Levels Were Equally Increased after Placebo, Carbohydrate and Lipid Beverages
	3.4. Subcutaneous Adipose Tissue Adipokine Gene Expression Levels Differed in Response to Energy/Nutrient-Containing Beverages Compared with the Placebo

	4. Discussion
	5. Conclusions

