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Abstract: Short chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced
during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we
applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA
in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day
during which a primed continuous intravenous infusion with [1-*Clacetate, [1-'*C]propionate and
[1-13C]butyrate (12, 1.2 and 0.6 umol- kg~!- min~!, respectively) was applied. They consumed 15 g
of inulin with a standard breakfast. Breath and blood samples were collected at regular times
during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and
butyrate was 13.3 + 4.8,0.27 + 0.09, and 0.28 + 0.12 umol- kg ~!- min~!, respectively. Colonic inulin
fermentation was estimated to be 137 + 75 mmol acetate, 11 + 9 mmol propionate, and 20 + 17 mmol
butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and
butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and,
to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the
production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent
and pattern of SCFA production.
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1. Introduction

Short chain fatty acids (SCFA), such as acetate, propionate and butyrate, are produced in the
colon during bacterial fermentation of undigested carbohydrates and to a lesser extent of proteins.
Carbohydrate fermentation predominates in the proximal colon where substrates are abundantly
available for fermentation, which explains the decline in levels of luminal SCFA when progressing
towards the distal colon [1]. SCFA production from undigested carbohydrates involves different
steps. First, the undigested carbohydrates are broken down into monosaccharides via microbial
hydrolysis. Secondly, the monosaccharides are fermented to phosphoenolpyruvate (PEP) via the
Embden-Meyerhof-Parnas pathway. Finally, acetate, propionate and butyrate are produced from PEP
via different reactions. Propionate is mainly produced via the succinate pathway and the acrylate
pathway. The most important pathway is the succinate pathway utilized by Bacteriodetes and
Negativicutes [2]. Production of acetate and butyrate require PEP conversion into acetyl-coenzyme A
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(acetyl-CoA). Acetate is formed directly from acetyl-CoA by many Firmicutes. Butyrate can be
produced via either butyrate kinase or butyryl-CoA:acetate CoA-transferase. The latter is considered
the most important route and is only possible in the presence of acetate [3]. Well-known bacteria
using this pathway are Firmicutes belonging to Clostridium clusters IV and XIVa [4].

After production in the colon, SCFA are rapidly and almost completely absorbed by the
colonocytes (only 5%-10% is excreted in feces) where part of them, in particular butyrate, are
oxidized. In this way, SCFA are important energy substrates which contribute to up to 70% of the
energy requirements of the colonocytes [5]. The remaining SCFA are transported through the portal
vein into the liver. Measurement of fluxes of SCFA across the gut and liver in humans undergoing
abdominal surgery indicated a significant uptake of propionate and butyrate (but not of acetate) by
the liver which counterbalanced the release by the gut. In particular acetate and to a minor extent
propionate were released into the systemic circulation whereas no splanchnic release of butyrate
was observed [6].

Several in vitro studies as well as experiments in different laboratory and production animals
have demonstrated the impact of SCFA on mammalian physiology. In addition, it has become
evident that each of the individual SCFA affects health differently. For example, whereas acetate
acts as a precursor for lipogenesis and cholesterol synthesis [7-9], propionate has been reported to
inhibit acetate incorporation into cholesterol. Indeed, acetate incorporation in cholesterol was lower
in healthy humans when acetate was rectally infused in combination with propionate than when
it was infused alone [10]. Similarly, anti-inflammatory effects of the SCFA depend on the type of
acid. Butyrate and propionate, but not acetate, inhibit histone deacetylases (HDACs) and affect in
this way the expression of various genes [11]. Inhibition of HDACs prevents activation of NF-«B,
which is one of the key transcription factors that regulate the expression of genes implicated in innate
immunity, cell cycle control and apoptosis [12], and in the release of inflammatory cytokines [13].
A recent cell-based screening assay based on analysis of the activity of the NF-kB pathway showed
that SCFA reduce NF-«B activity in the order butyrate > propionate >> acetate [14]. More recently,
it was shown that inhibition of HDACs by butyrate and propionate induces the immunosuppressive
enzymes indoleamine-2,3-dioxygenase (IDO1) and aldehyde dehydrogenase 2 (Ald1A2) in dendritic
cells. This potentiates their ability to convert naive T cells into FoxP3+ regulatory T cells and to
suppress the conversion of naive T cells into INF-y + T cells [15]. In addition, the interaction of SCFA
with G-protein coupled receptor (GPR) 43, also known as free fatty acid receptor (FFAR) 2, profoundly
affects inflammatory processes which might explain the anti-inflammatory effect of acetate. In mice,
stimulation of GPR43 by SCFAs was necessary for the normal resolution of inflammatory responses,
as GPR43-deficient (Gpr43_/ ~) mice showed exacerbated or unresolving inflammation in models of
colitis, arthritis, and asthma [16].

Activation of GPR43 (FFAR?2) as well as of GPR41 (FFAR3) by SCFA has also been postulated
as a mechanism by which SCFA regulate energy homeostasis. The selectivity of the SCFA for
both receptors depends on their chain length. This explains the differential effects of each SCFA,
with butyrate being more selective for GPR41, acetate more selective for GPR43, and propionate
binding to both receptors [17]. In addition, propionate and butyrate, but not acetate, may activate
intestinal gluconeogenesis (IGN), albeit by a different mechanism, leading to increased glucose levels
in the portal vein. Butyrate acts through a cAMP-dependent mechanism, whereas propionate, itself
a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving GPR41. The
increased glucose levels are sensed by a glucose sensor that transmits the signal to the brain by the
peripheral nervous system to promote beneficial effects on food intake and glucose metabolism [18].
In contrast, propionate is the only SCFA that can be used as a precursor for gluconeogenesis in
the liver [19,20]. Recently, a GPR-independent mechanism, common to each of the SCFA has
been revealed. SCFA supplementation in mice down regulated peroxisome proliferator-activated
receptor-y (PPAR-y) activity, resulting ultimately in a shift of the metabolism in adipose and liver
tissue from lipogenesis to fatty acid oxidation [21].
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In humans, evidence for the beneficial physiological effects of SCFA is more scarce. A major
reason is the lack of reliable information on in vivo production and absorption kinetics of the
individual SCFA. In view of the different mechanisms by which individual SCFA exert their
physiological effects, it might well be important to not only know the total amount of SCFA
formed, but also their relative proportions. Quantification of the in vivo colonic SCFA production
is rather difficult due to the inaccessibility of the production site and the rapid absorption by the
colonocytes. An elegant strategy to circumvent these difficulties is the use of stable isotope dilution.
In this technique, a constant intravenous infusion of *C-labeled SCFA is applied which results in
a constant 1*C-SCFA enrichment in blood. During fermentation of an undigestible carbohydrate in
the colon unlabeled SCFA are produced that enter the circulation and dilute the 3C-SCFA, resulting in
a decreased '3C-SCFA enrichment. In the present study we used stable isotope dilution to quantify
acetate, propionate, and butyrate production in vivo in the human colon during fermentation of inulin
as a model substrate.

2. Materials and Methods

2.1. Study Population

Twelve healthy men and women aged 18-65 year were included in the study. Inclusion criteria
included a body mass index between 18.5 and 28.5 kg/m? and a regular diet with three meals
a day, at least five times a week. Exclusion criteria were a history of metabolic or gastrointestinal
disease or former abdominal surgery (except for appendectomy), the use of antibiotics or any
other medical treatment influencing gut transit or intestinal microbiota for at least three months,
consumption of a low calorie or other special diet during the last month prior to the study, pregnancy
or breastfeeding, diabetes (type 1 and 2), and hemoglobin (Hb) levels below reference values. The
study protocol complied with the Helsinki Declaration and was approved by the Ethics Committee
of the University of Leuven. All participants gave written informed consent. The study was registered
at ClinicalTrial.gov (clinical trial number: NCT01757379).

2.2. Study Design

During the three days prior to the test day the subjects consumed a low fiber diet (consisting
of maximum one piece of fruit and 100 g vegetables a day, and white flour instead of wholemeal
products) and avoided alcohol consumption. On the evening before the test day a completely
digestible and non-fermentable meal (lasagna) was consumed. After an overnight fast, the subjects
presented at the laboratory and provided two basal breath samples for measurement of Hy and
14C0O,. In both arms a catheter was introduced into an antecubital vein. One catheter was used
to collect blood samples and via the second catheter a primed continuous infusion of *C-labeled
SCFA (sodium [1-13CJacetate: 6 pmol- l<g_1 + 12 umol- kg_l- h™1; sodium [1—13C]propionate:
0.6 umol- kg=! + 1.2 umol- kg~ !- h~!; sodium [1-1*C]butyrate: 0.3 umol-kg~! + 0.6 pmol- kg=!-h~1)
(99% 13C enrichment, Euriso-top, St. Aubin, Cédex, France) was administered. After collection
of a basal blood sample, the infusion was started and the subjects received a standard breakfast
(pancake; 8.4 g protein, 26.7 g carbohydrate, 11.2 g fat, 244 kcal) together with 15 g inulin (Raftilin HP
(degree of polymerisation ranging from 2 to 60 with an average of 23) Beneo-Orafti, Mannheim,
Germany) dissolved in 200 mL of water. To determine the time of arrival of the meal in the colon,
inulin-”C-carboxylic acid (74 kBg, ARC, St. Louis, MO, USA) was added to the breakfast. After
breakfast, breath samples were collected every 20 min for up to 10 h. Blood samples were collected
every hour during the first 4 h, every 20 min from 4 to 9 h and every 40 min from 9 to 12 h. After
4 h and 8 h, the subjects received a standard, completely digestible meal (white bread with ham or
cheese). Finally, all subjects delivered a fecal sample that was stored at 4 °C at home until it could be
delivered in the laboratory where it was frozen at —80 °C within 10 h after collection until analysis.
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2.3. Analytical Procedures

2.3.1. Analysis of Breath Samples

Breath samples for hydrogen analysis were collected in Exetainers (Labco Ltd., Ceredigion,
UK) and analyzed using a hydrogen monitor (M.E.C., Brussels, Belgium). Hydrogen excretion
was expressed in parts per million (ppm). A significant increase in H in breath was defined as
an increase of 2.5 times the standard deviation of all previous points above the running average of
all previous points [22]. Breath samples for analysis of 1*CO, were collected by blowing through
a pipette into a vial containing 2 mmol hyamine hydroxide until discoloration of the thymolphtaleine
indicator, corresponding to the capture of 2 mmol CO,. The amount of *CO, was measured using
B-scintillation counting (Packard Tricarb Liquid Scintillation Spectrometer, model 3375; Packard
Instruments, Downers Grove, IL, USA) after addition of 10 mL of Hionic fluor (Perkin Elmer, Boston,
MA, USA) and expressed as disintegrations per minute (dpm). The time of arrival of the meal in the
colon was defined as the time at which a significant increase in 1*CO, was observed in the breath and
was determined in a similar way as for H.

2.3.2. Analysis of 13C Enrichment in Plasma Samples

Venous blood was sampled into EDTA tubes (BD Vacutainer®, Erembodegem, Belgium) and
centrifuged to obtain plasma which was aliquoted and frozen at —80 °C. Plasma samples were
thawed prior to analysis and prepared as described by Morrison et al. [23]. The *C/12C ratio of
SCFA was measured on a Delta plus-XP isotope ratio mass spectrometer (GC-C-IRMS, Thermo Fisher,
Bremen, Germany) equipped with a trace gas chromatograph (Interscience, Breda, The Netherlands)
and a combustion interface type 3 (Thermo Fisher). Separation of the SCFA was achieved with an
AT-Aquawax-DA column (30 m x 0.53 mm, i.d., 1.00 pm, Grace, Lokeren, Belgium) on which 4 pL
was injected splitless with the injector temperature at 240 °C. Helium 5.0 was used as carrier gas, at
a constant flow of 2.5 mL/min. The oven temperature was first kept at 80 °C for 3 min, then ramped to
140 °C at 4 °C/min, further increased to 240 °C at 16 °C/min and then held for 1 min. The separated
GC-effluents were online combusted to NO,, CO,, SO,, (5iO,),, and H,O in an oxidation furnace
(CuO/NiO/Pt) at 940 °C. NO, was reduced to N, and, in addition, O, bleed from the oxidation
oven was removed by the reduction reactor operating at 640 °C. The produced water was removed
by an online Nafion capillary (Thermo Fisher). The delta (5!3PDB) values were calculated using
Isodat 2.0 software (Thermo Fisher) and expressed as atom percentage (AP). At any time point t, the
measured AP was corrected for the baseline AP by subtracting it with the enrichment measured in
the baseline sample which results in the atom per cent excess (APE) [24].

2.3.3. Analysis of Butyrate Producing Capacity in Fecal Samples

Quantitative PCR (qPCR) was used to quantify the abundance of Clostridium cluster 1V,
Clostridium cluster XIV, butyryl-CoA:acetate-CoA transferase and butyrate kinase genes in fecal
samples using primers described elsewhere [25-28]. DNA was extracted from fecal samples using the
CTAB (cetyltrimethylammonium bromide) method, as previously described by Griffiths et al. [29]. To
200 mg of fecal sample, 0.5 g of unwashed glass beads (Sigma-Aldrich, St. Louis, MO, USA), 0.5 mL of
CTAB buffer (5.0% (w/v), 0.35 M NaCl, 120 mM K;HPO,) and 0.5 mL of phenol-chloroform-isoamyl
alcohol (25:24:1) (Sigma-Aldrich, St. Louis, MO, USA) were added, followed by homogenization
in a 2 mL destruction tube using a beadbeater (MagnaLyser, Roche, Basel, Switzerland). After
centrifugation (10 min, 5900 g), 300 uL of the supernatant was transferred to a new Eppendorf tube.
For a second time, 0.25 mL of CTAB buffer was added to the original DNA sample and 300 uL of the
supernatant was added to the first 300 pL. The phenol was removed by mixing with an equal volume
of chloroform-isoamyl alcohol (24:1) (Sigma-Aldrich, St. Louis, MO, USA) followed by centrifugation
(10's, 11,700 g) at room temperature. Total nucleic acids were subsequently precipitated from the
extracted aqueous layer with two volumes of PEG-6000 solution (polyethyleenglycol 30% (w/v),
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1.6 M NaCl) (Fluka BioChemika, Sigma-Aldrich, Bornem, Belgium) for 2 h at room temperature.
After centrifugation (20 min, 9500 g), the pellet was rinsed with 1 mL of ice-cold 70% (v/v) ethanol
and air dried prior to suspension in 100 uL RNase free water (VWR, Leuven, Belgium).

Amplification and detection (CFX96 Biorad Detection System, Biorad, Nazareth-Eke, Belgium)
were carried out using 2 x Sensimix™ SYBR No-ROX mix (Bioline, Kampenhout, Belgium). Each
reaction was done in triplicate in a 12.0 pL total reaction mixture using 2.0 uL of appropriate
dilutions of the DNA sample and 0.5 pM (Clostridium cluster IV), 0.2 uM (Clostridium cluster XIV),
2.5 uM (butyryl-CoA:acetate-CoA transferase), 0.4 pM (butyrate kinase) final quantitative PCR primer
concentration. The amplification program consisted of 1 cycle of 95 °C for 10 min, followed by
40 cycles of 95 °C for 30 s, 60 °C for 1 min (Clostridium cluster IV), 40 cycles of 95 °C for 30 s,
52 °C for 1 min (Clostridium cluster XIV), 40 cycles of 95 °C for 30 s, 53 °C for 30 s, 72 °C for 30 s
(butyryl-CoA:acetate-CoA transferase), and 40 cycles of 95 °C for 30 s, 60 °C for 1 min, 72 °C for 30 s
(butyrate kinase). A stepwise increase of the temperature from 55 to 95 °C (at 5s/0.5 °C) was added
to analyze melting curve data to confirm the specificity of the reactions.

PCR primers and DNA used for construction of the standard curves are listed in Table 1. After
purification and determination of the DNA concentration, the volume of the linear double-stranded
DNA standard was adjusted to 6.04 x 10 copies- mL~! assuming an average molecular weight of
660 per nucleotide pair. This stock solution was 10-fold serially-diluted to obtain a standard series
from 6.04 x 107 t0 6.04 x 10! copies- mL~!. The copy numbers of samples were determined by reading
off the standard series with the Ct values of the samples. Gene copy numbers were expressed as
log1p values per gram wet weight of feces.

Table 1. Primers used for construction of standard curves for quantification of the butyrate producing
capacity present in fecal samples.

Standard Curve DNA Source Oligonucleotide Sequence (5'-3)
Clostridium Cl v Butyricicoccus Forward primer =~ AGTACGGCCGCAAGGTTGAAA
ostridium Cluster pullicaecorum Reverse primer CTGCCATTGTAGTACGTGTG
Clostridium Cl XIV Butyricicoccus Forward primer = TGACCGGCCACATTGGGACTG
ostridium (luster pullicaecorum Reverse primer TCATCCCCACCTTCCTCCAG
Butyryl-CoA:acetate-CoA Butyricicoccus Forward primer AATCCGGAGACTGGGTAGAT
transferase pullicaecorum Reverse primer GGACAGATAAGCTCCGAGC
Butvrate kinase Clostridium Forward primer TGGGGGAGGAAAGTTATATGGC
y perfringens Reverse primer CTCCTACTGAAACTCCGCCC

2.4. Calculations

In this study, it was assumed that the rate of SCFA appearance and that of the infusion of
13C-labeled SCFA enter into a single, homogenous, instantly-mixing pool from which sampling
occurs. The rate of appearance (R,; umol- kg body weight~!- min~') of acetate, propionate, and
butyrate at each time point was calculated using the rate of infusion of 1>3C-SCFA (i), the isotopic
enrichment of the infused SCFA (tracer enrichment), and the isotopic enrichment of the SCFA
measured in plasma (plasma enrichment) according to Equation (1) [30]:

R, —ix [( Tracer enrichment > B 1] 1)

Plasma enrichment

with tracer and plasma enrichment expressed in atom percent excess (APE).

The endogenous R, reflects the rate of SCFA appearance in the absence of colonic fermentation
from the administered substrate. It was calculated from the mean plateau enrichment obtained
during the first 3 h of the infusion. Endogenous R, was subtracted from the whole body R, to obtain
the increase in SCFA originating from colonic fermentation of inulin (exogenous SCFA production).
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The cumulative recovery during the 12 h observation period was determined by calculating the area
under the curve (AUC) of the exogenous R, of the SCFA-time curve using the trapezoidal method
and was multiplied by the body weight to yield total amount of SCFA recovered (in pmol) in plasma.

To estimate colonic production, total amounts of SCFA recovered in plasma during the 12 h
observation period were multiplied by a bioavailability index that accounts for the extraction of
the SCFA in the splanchnic bed [31]. Based on literature data, we assumed mean bioavailability
indices of 40% [30], 10% [32] and 5% [6,33] for acetate, propionate, and butyrate, respectively.
The bioavailability index of butyrate was based on the observation that the colonocytes remove
approximately 90% [33,34] of butyrate and that subsequently more than 50% of the remaining
butyrate is extracted by the liver [6].

2.5. Statistics

Statistical analyses were performed by using SPSS, version 22.0 (IBM, Brussels, Belgium).
All results are presented as mean + standard deviation. Normality was checked with the
Shapiro-Wilk protocol. All analyses were performed using linear mixed models, paired t-tests or
Pearson’s product-moment correlation coefficients, except for correlations including colonic butyrate
production, whole-body R, of propionate, and butyrate, which were analyzed using Spearman’s rho
correlation coefficients. Pairwise comparisons using paired samples ¢-tests were corrected with false

discovery rate (FDR) for multiple testing.
3. Results

3.1. Study Population

In total, 17 interested subjects attended a screening examination that included assessment
of height and body weight, plasma hemoglobin levels, medical history and filling out a dietary
questionnaire. Three subjects dropped out due to lack of time and two candidates were excluded
because of hemoglobin levels below the reference values. Thus, 12 subjects performed the test day
according to the protocol. Baseline characteristics are presented in Table 2.

Table 2. Baseline characteristics of the 12 healthy subjects who completed the study.

Men Women p Value

N 5 7

Age (year) 27 £ 8 24 +4 0.530
Length (m) 1.82 +£0.09 1.65 + 0.06 0.003
Weight (kg) 78 £8 57+ 4 0.005
Body mass index (kg/m?) 24 +4 21+2 0.149
log butyrate kinase (copies/g feces) 3.83 +£0.79 3.97 £ 0.80 % 0.792
log butyryl-CoA:acetate-CoA transferase (copies/g feces) 8.14 + 0.49 7.85 + 0.66 * 0.429
log Clostridium cluster IV (copies/g feces) 8.80 + 0.58 8.67 + 0.60 * 0.662
log Clostridium cluster XIV (copies/g feces) 9.72 + 0.31 9.52 +047* 0.537

* 1 = 6, one female subject was not able to deliver a sample.

3.2. Steady-State Characteristics

At baseline, hydrogen excretion in breath was lower than 15 ppm in all subjects and remained
unchanged up to about 240 min after breakfast. Endogenous R, of SCFA was determined based on
the plasma enrichments measured during the first three hours after inulin ingestion. No fermentation
of inulin was observed during this period based on the breath hydrogen results implicating that
no SCFA were produced in the colon and no SCFA were entering the plasma. Endogenous R, was
significantly higher for acetate compared to propionate and butyrate (p < 0.001, Table 3).
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Table 3. The enrichments and rate of appearances (R,) of acetate, propionate, and butyrate in plasma
in healthy subjects before and during inulin fermentation. (APE: atom percent excess).

Acetate Propionate Butyrate p-Value
. . Before inulin fermentation 0.86 +£0.36 7 2534074 1.034+047%  <0.001
Isot: hment (APE -
sotopic enrichment ( ) Minimum during fermentation 048 +£0.20¢ 1.60 + 0599  0.61£027° <0.001
1 Before inulin fermentation 13.26 +4.82¢  027+009f 028+0.12f <0.001

ko1 min—1
Ra (umol- kg™ min™") Maximum during fermentation ~ 24.98 +10.708  0.47 + 0.23 h 050+ 029h < 0.001
All values expressed as mean (£SD), n = 12. Measurements were statistically evaluated using linear mixed
models and p-values refer to overall significance of the linear mixed model. Different letters in superscript
indicate significant differences after pairwise comparisons using paired samples t-tests with false discovery

rate (FDR) correction for multiple testing, p < 0.01.

Endogenous R; of propionate showed a significantly positive correlation with acetate (r = 0.652,
p =0.022). No correlation was observed between the endogenous R, of butyrate and acetate (r = 0.478,
p = 0.116) and between R, of butyrate and propionate (r = 0.551, p = 0.063). Propionate (r = —0.644,
p = 0.024) and butyrate (r = —0.729, p = 0.007) endogenous R, were significantly negatively correlated
with body mass index (BMI) (Figure 1).
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Figure 1. Correlation between acetate, propionate and butyrate endogenous rate of appearance (R,)
and body mass index (BMI). n = 12.

3.3. Impact of Inulin on Rate of Appearance of SCFA

3.3.1. Start of Fermentation

After arrival into the colon of the undigested part of the breakfast labeled with
inulin-*C-carboxylic acid, the latter is fermented resulting in the production of *CO, which is
excreted in breath. Arrival in the colon, thus indicated by the increased excretion of *CO, in
breath, occurred 364 + 87 min after consumption of the breakfast and was not significantly different
(p = 0.094) from the time point of increased hydrogen excretion in breath (338 + 94 min) indicating
the start of fermentation of the unlabeled inulin.
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3.3.2. SCFA Enrichment in Plasma and Rate of SCFA Appearance

The R, of SCFA increased significantly during fermentation of inulin (Table 3). A representative
example of the 13C enrichment of butyrate and whole body R, of butyrate in one subject is shown
in Figure 2. A positive correlation was observed between whole-body R, of propionate and butyrate
(r = 0.657, p = 0.020). No correlations were observed between butyrate and acetate whole-body R,
and between propionate and acetate whole-body R,.

@)
= 2
<z 1.0 g ~ 1.07
£ 03 A 2 € 0.8
g ./ B =
A 0.6 — 0.6
5 S "o
v AUC
g 0.4 2 % 0.41 N
[5) 2 = ~ Y
Z 02 2 Eoo
; < 3
: z 2
5 0.0 ‘ : ‘ = 00 : ; :
o 0 200 400 600 0 200 400 600
- time (min) time (min)
~ Butyrate APE in plasma -=- Whole-body Ra of Butyrate
--- Baseline Butyrate APE in plasma --- Endogenous Ra of Butyrate

Figure 2. Typical example that shows the 13C enrichment (APE) of butyrate in plasma over time and
the whole-body rate of appearance (Ra) of butyrate over time. n = 1.

3.3.3. Quantification of SCFA Production from Inulin

Twelve hours after consumption of the inulin, the SCFA R, of all subjects had returned to
the endogenous R, level. The cumulative amounts of exogenous SCFA production appearing in
plasma amounted to 55 + 30, 1.1 £ 0.9, and 1.0 £ 0.9 mmol for acetate, propionate, and butyrate,
respectively (Table 4). The estimated colonic production was 137 + 75 mmol for acetate, 11 + 9 mmol
for propionate, and 20 + 17 mmol for butyrate over the 12 h period after inulin ingestion (Table 4).
Production of SCFA was not related to the BMI of the subjects (p = 0.778, 0.749 and 0.633 for acetate,
propionate, and butyrate, respectively).

Table 4. Cumulative amount (AUC) of exogenous short chain fatty acid (SCFA) production, SCFA in
the peripheral circulation after consumption of 15 g of inulin in healthy subjects, and calculation of
the amounts produced in the colon.

Acetate Propionate Butyrate
Cumulative amount SCFA in plasma (umol/kg) 860 + 497 17+ 13 16 +15
Peripheral SCFA (mmol) 55 4+ 30 1.1+09 1.0+ 0.9
Colonic SCFA (mmol) * 137 + 75 11+9 20 +£17
Ratio (%) ** 82 6 12

* Calculated based on literature data assuming that a constant percentage of colonic derived acetate (40% [27]),
propionate (10% [29]), and butyrate (5% [3,30]) appear in plasma; ** The ratio indicates the contribution of
acetate, propionate and butyrate to the total amount of colonic produced SCFA expressed as molar ratio.

3.3.4. Butyrate-Producing Capacity

To investigate whether the production of butyrate from inulin depended on the intestinal
microbiota composition of the subjects, the butyrate-producing capacity in a fecal sample obtained
from each subject was determined (Table 2). No correlation was observed between butyrate
production from inulin and butyrate butyryl-CoA:acetate CoA-transferase and Clostridium cluster
XIVa genes (Figure 3). In contrast, butyrate production was negatively correlated with butyrate kinase
(r=—0.788, p = 0.004) and Clostridium cluster IV genes (r = —0.615, p = 0.044) (Figure 3).
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Figure 3. Correlation between butyrate production from inulin and parameters of butyrate producing
capacity. n = 11, one subject was not able to deliver a sample.

4. Discussion

Much of the currently available information on SCFA production has been obtained from in vitro
experiments. The simplest experimental setups used fecal microbiota as inoculum in anaerobic
batch fermentations, whether or not pH controlled [35,36]. However, these conditions do not
adequately mimic the in vivo situation as fecal microbiota do not represent the microbiota in the
proximal colon [37]. In addition, fermentation products accumulate in the medium and may
affect ongoing reactions. More sophisticated models include the Simulator of the Human Intestinal
Microbial Ecosystem (SHIME®, University of Ghent, Gent, Belgium) [38,39] that harbors a microbial
community resembling that from the human colon both in fermentation activity and composition.
The TNO intestinal models TIM-1 and TIM-2 (TNO, Zeist, The Netherlands) consist of vessels
connected with flexible walls to allow simulation of peristalsis. In addition, the vessels are equipped
with a hollow fiber membrane to absorb water and SCFA [40]. In human intervention studies,
fecal SCFA concentrations have often been measured as an approximation of the in vivo SCFA
production [41]. However, this does not provide a true reflection of SCFA production since SCFA are
absorbed and utilized by the colon epithelial cells. Similarly, plasma SCFA concentrations are the net
result of production, absorption, and splanchnic extraction of the SCFA and do not adequately reflect
colonic generation either. The use of stable isotopes provides an attractive alternative to quantify
in vivo SCFA production. Stable isotope dilution techniques have been used in the past to study
acetate kinetics in animals and humans [30,42,43].

In this study, we have shown that such approaches can also be applied for quantifying
propionate and butyrate production. Indeed, they allow calculating total R, of SCFA which, in steady
state conditions, equals the rate of SCFA disappearance from the pool by either uptake in the tissues
or by excretion in urine or other routes [44]. The total R, of SCFA is composed of the amount of
SCFA that is produced in the human body (exogenous and endogenous) and the amount of SCFA
infused in a single pool. To determine the whole-body SCFA R,, as used in the present study, the
tracer infusion rate was subtracted from the total R, of SCFA. We assumed no contribution from
colonic fermentation to the whole-body SCFA R, to happen during the first 3—4 h of the test day, as
the subjects had consumed a low fiber diet for the three previous days and a fiber free dinner on
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the evening prior to the test. Indeed, breath hydrogen levels were below 15 ppm in all subjects for
upto4h.

Endogenous R, of acetate obtained in this study are slightly higher than in previously
published studies in humans (6.0-11.4 pmol- kg ~!- min—') [23,30,31,45]. Morrison et al. found higher
endogenous acetate R, (22.5 pumol-kg~!-min~!) in two subjects after repeated oral doses of a
tracer solution containing both [1-13CJacetate and [?Hj]acetate to mimic an intravenous infusion.
Only one study has previously reported endogenous R, of propionate. In four healthy subjects
after intravenous infusion of both 1-[13C]—propionate and [2H5]—propionate, they found values of
17.6 pmol- kg*1~ h~!and 17.5 umol- kgfl- ht, respectively [46]. Our results of 0.27 umol- kg*1~ min~! or
(expressed differently as) 16.2 umol-kg~!-h~! are in good agreement with those results. To our
knowledge, no information is available on the kinetics of butyrate in humans. Pouteau et al. measured
endogenous R, of acetate, propionate, and butyrate in rats and found a butyrate R, that was 96 times
lower than acetate and 13 times lower than propionate R, [47]. In our study, the R, of butyrate was
very similar to that of propionate and only 47 times lower than that of acetate.

To convert plasma R, of SCFA into the amount of SCFA produced in the colon, the exogenous R,
of SCFA versus time curves were integrated to yield total amounts of SCFA in plasma and multiplied
by a bioavailability index that accounts for the extraction of the SCFA in the splanchnic bed [31]. Based
on literature data, we used mean bioavailability indices of 40%, 10%, and 5% for acetate, propionate
and butyrate, respectively. In this way, we calculated that colonic fermentation of inulin per gram of
substrate yields 9.13 mmol of acetate, 0.72 mmol of propionate, and 1.31 mmol of butyrate which is
in the same range as results from previous in vitro studies. Yet, these in vitro studies showed a broad
range in amounts of SCFA produced from inulin ranging from 1.7 to 26.2 mmol/g carbohydrate
for acetate, 0.1-14.7 mmol/g carbohydrate for propionate, and 0.18-11.48 mmol/g carbohydrate for
butyrate [35,36,48-53]. Using the same bioavailability index for acetate, Pouteau ef al. calculated
a colonic production of 7 mmol of acetate per gram of administered lactulose [31].

Proportions of acetate:propionate:butyrate (82:6:12) confirm previous results indicating that
fermentation of inulin-type fructans results in a relatively higher production of acetate compared
to other indigestible carbohydrates, such as resistant starch, polydextrose, arabinogalactan, and
arabinoxylan [54,55]. Remarkably, most subjects (8 out of 12) favored butyrate production over
propionate production, whereas most in vitro studies report higher propionate than butyrate
levels [35,49,50,53]. Nevertheless, some in vitro batch fermentation studies with inulin showed
higher butyrate than propionate production [36,48]. In addition, fermentation of inulin (degree of
polymerization ranging from 2 to 60 with an average of 10) in the TIM-2 model also yielded a higher
proportion of butyrate compared to propionate [55].

We observed considerable inter-individual variation in the R, of SCFA which is in agreement
with other studies reporting large variability in plasma SCFA concentrations in humans [6,56]. A
factor that might explain this variability is the composition of the intestinal microbiota. In particular
butyrate production depends on cross-feeding, i.e. acetate conversion into butyrate, and the
presence of specific butyrate producing bacteria, mainly belonging to the Clostridium clusters IV and
XIVa [57]. In view of the high phylogenetic diversity in human butyrate producers, functionall-based
approaches have been developed. Genes involved in the pathways of butyrate production such as
the butyryl-CoA:acetate CoA transferase and butyrate kinase gene can be amplified using degenerate
primers that recognize multiple phylogenetic groups [26]. Surprisingly, the amount of butyrate
produced from inulin, as estimated from the R, of butyrate in plasma, was not positively correlated
to any of the parameters of butyrate producing capacity. The relatively low number of subjects might,
at least partially, explain the lack of positive correlation. However, these results may also indicate that
parameters other than microbiota composition, such as absorption and splanchnic extraction of the
SCFA, have a more profound impact on the R, of butyrate in plasma.

Some, but not all, studies report higher fecal SCFA levels in obese subjects compared to normal
weight persons [58-60]. Higher fecal SCFA levels have been related to higher colonic production and
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an increased energy harvest from undigested carbohydrates in the obese [61]. In contrast, several
animal studies indicate that treatment with SCFA can reduce or reverse gains in body weight and
adiposity [18,21,62]. In the present study, no increase in SCFA production in subjects with higher BMI
could be confirmed. However, we found a significant negative correlation between endogenous R, of
propionate and butyrate with BMI, indicating that the rate of appearance of those acids in plasma is
higher in subjects with lower BMI. Although plasma propionate and butyrate mainly originate from
colonic fermentation, this does not necessarily point at a higher colonic production of those SCFA in
low BMI subjects as also the absorption by the colonocytes and the splanchnic extraction may depend
on BMLI. R, of acetate, which is also produced endogenously during fatty acid oxidation and glucose
or amino acid metabolism, was not related to BMI. It needs to be mentioned that the BMI of the
participants varied between 18.5 and 28.5 with no obese subjects participating in the study.

The major limitation of this study is the uncertainty about the SCFA bioavailability, i.e., the
fraction of SCFA produced in the colon that reaches the systemic circulation. Due to a lack
of individual data, we relied on estimates for bioavailability reported in literature and used the
same value for each individual. Stable isotope studies might also be useful to quantify SCFA
bioavailabilities; for example, by introducing known amounts of labeled SCFA in the colon and
quantifying the resulting labeled SCFA in the plasma, and to evaluate the impact of possible
confounding factors as BMI and microbiota composition.

5. Conclusions

In the present study, we used a stable-isotope dilution technique to quantify the production
of the three major SCFA in the colon of healthy subjects after consumption of inulin as a model
substrate. However, the method is easily applicable to any other dietary fiber that is fermented into
SCFA. Quantification of the amounts of total SCFA and of the proportion of the individual SCFA
produced in vivo from different dietary fibers will facilitate the further evaluation of health benefits
attributed to SCFA.
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