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Abstract: The aim of this study was to evaluate the effect of strenuous exercise on the functions of
peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA)
supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male
Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with
one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with
1 week to recover. All rats except those of the sedentary control were subjected to four weeks of
strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal
macrophages functions were also determined at the same time. The data showed that hemoglobin,
testosterone, BCAA levels, and body weight in group E decreased significantly as compared with
that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen
species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%,
p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group
C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA
supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise
(increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum
testosterone and the function of peritoneal macrophages in group ES did not change significantly
as compared with group E. These results suggest that long-term intensive exercise impairs the
function of macrophages, which is essential for microbicidal capability. This may represent a novel
mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function
of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation
in the dosing and timing used for this study.
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1. Introduction

Exercise enhances or reduces immune functions depending on its frequency, duration and
intensity. Regular physical activity is known to enhance immune functions leading to a decrease in the
occurrence of infections. On the other hand, heavy or exhaustive exercise increases the susceptibility
to infections [1–3]. Exercise increases or decreases the occurrence of infections that may be related
to the changes of macrophage functions [4,5]. Monocytes/macrophages are considered to be the
frontline of immunological defense against pathogens. These cells have prominent roles such as Ag
presentation, chemotaxis, phagocytic, microbicidal, tumoricidal and secretory functions, as well as,
innate immunity, by initiating inflammatory and immune responses [6]. Although some studies focus
on the relationship between exercise and macrophages, little attention has been paid to the effects of
long-term intensive exercise on macrophage functions.
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Branched-chain amino acid (BCAA) participates in skeletal muscle protein synthesis and
can be used as energy substrates during physical exercise [7,8]. Therefore, since the 1980s,
there has been high interest in BCAA by sports nutrition scientists. And now BCAA has been
commonly used by Chinese athletes as nutritional supplements. What benefits can we get from
the BCAA supplementation? Studies have shown that BCAA supplementation before and after
exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting
muscle-protein synthesis [9,10]. However, many researchers have not been able to confirm that BCAA
supplementation can enhance sports performance [11]. BCAAs act as donors of nitrogen and carbon
skeleton for the synthesis of other amino acids, e.g., glutamine that are important in supporting
immune cell function [12,13]. Thus, in recent years investigators have changed their research target
and focused on the effects of BCAA on immune system. Cell culture and animal feeding studies
indicate that an adequate supply of BCAA is necessary to support efficient immune function [14,15].
Conversely, insufficient availability of BCAA impairs some aspects of immune function, including
killer-cell activity and lymphocyte proliferation [14,15]. However, many aspects of BCAAs and their
effect on immune function have received little or no attention. For instance, we still do not know the
effect of BCAA supplementation on the macrophage functions of rats from strenuous exercise.

Consequently, the aim of this study is to evaluate the effect of strenuous exercise on the functions
of peritoneal macrophages in rats, and to test the hypothesis that BCAA supplementation will be
beneficial to the macrophages of rats from strenuous exercise.

2. Materials and Methods

2.1. Animals

Forty male Wistar rats (mean weight 207 ˘ 10.6 g) were purchased from Shanghai SLAC
laboratory animal center and were fed for one week acclimatization phase (environmental
temperature 20–25 ˝C with a 12 h light/dark cycle and free access to standard pellets and drinking
water). The rats were randomly divided into 5 groups (n = 8): (C) Control, (E) Exercise, (E1) Exercise
with 1 week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with
1 week to recover. All groups except group C were subjected to 4 weeks of strenuous exercise. In
order to avoid the acute effect of exercise, the rats of group E and ES were killed at 36 h after the last
training. The schematic representation of the experimental program is shown in Figure 1.

2.2. Exercise Program

The exercise program was based on a previously validated protocol [16]. All rats except those
in group C underwent daily running training sessions on a treadmill. The treadmill had different
lanes to serve as corridors for each animal. In order to avoid the stimulation of the immune system,
electric shock was not used in this study. We used our hands to ensure the animals ran effectively.
The protocol included a 2-week progressive training program, starting with a 10-min running session
at 6 m/min and increasing gradually to steady-state 60-min running at 36 m/min. Thereafter, animals
were trained at this level 5 days a week for 4 weeks. At the same time, the sedentary control group was
handled and exposed to the treadmill to control for stress of treadmill environment. The experimental
protocol was approved by the Ethics Review Committee for Animal Experimentation of Shanghai
University of Sports (Code number: 2014025).

2.3. BCAA Supplementation

The diet of rats was elaborated according to the recommendations of the American Institute of
Nutrition (AIN-93M) for the maintenance of adult rodents (Research Diets, Inc., New Brunswick,
USA) [17]. The composition of the experimental diets is shown in Table 1. Rats were fed with
BCAA mixture (600 mg/kg body weight/day, consist of 46% leucine, 28% valine, and 23% isoleucine,
Ajinomoto, Tokyo, Japan) (group ES and ES1) or saline (group C, E and E1) by gavage administration
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post-exercise and maintained for 4 weeks. The dose and delivery method of BCAA was determined
based on previous studies [18,19].
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Figure 1. Schematic representation of the experimental program. Group C, Control; E, Exercise; 
E1,Exercise with 1 week to recover; ES, Exercise + Supplementation; ES1, Exercise + Supplementation 
with 1 week to recover. T, testosterone; W, weight; Hb, hemoglobin; BCAA, branched-chain amino 
acid; ROS, Reactive oxygen species; AP, antigen presentation. 

Table 1. Composition of the experimental diets * (g/kg). 

Ingredients g kcal 
Casein 140.000 560 

L-Cystine 1.800 7.2 
Corn Starch 495.692 1983 

Maltodextrin 125 500 
Sucrose 100.000 400 

Cellulose 50.000 0 
Soybean Oil 40.000 360 

t-Butylhydroquinone 0.008 0 
Mineral mix 35.000 0 
Vitamin mix 10.000 40 

Choline bitartrate 2.500 0 
Total 1000 3850 

* The diet was elaborated according to the recommendations of the American; Institute of Nutrition 
(AIN-93M) for the maintenance of adult rodents [17]. 
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2.4. Biochemical Analyses

Blood sample (3 mL) was taken from the fossa orbitalis venous plexus of rats. Blood hemoglobin,
serum testosterone and serum BCAA level were determined. Blood hemoglobin was measured by
hematology analyzer (Sysmex, Japan). Serum testosterone level was assessed using a commercial
ELISA kit (AssayPro, St. Charles, MO, USA) according to the manufacturer’s instructions. All
samples and standards were measured in duplicate. BCAA levels in the serum were measured
using high-performance liquid chromatography (HPLC, Hitachi, Ltd., Tokyo, Japan) according to
the method by Deyl et al. [20].

2.5. Peritoneal Macrophages Preparation

As reported in our previous study [5], the MΦs (peritoneal macrophages) were removed
by peritoneal lavage using RPMI 1640 (GIBCO, Carlsbad, CA, USA). The cells were washed by
centrifugation, resuspended in RPMI 1640 with 10% fetal bovine serum (GIBCO, Carlsbad, CA,
USA), plus 1% penicillin-streptomycin solution, and then placed in 6-well tissue culture microplates.
Plates were incubated for 2 h at 37 ˝C in a humidified atmosphere of 5% CO2. After the removal of
non-adherent cells, the adherent cells were detached by treatment with 0.25% Trypsin and suspended
in RPMI 1640 at a concentration of 2 ˆ 106 cells/mL. Cell viability was checked with the Trypan blue
dye and was >96%. Cell purity checked by the Giemsa dye test was >98%.

2.6. Chemotaxis Assay

Following Yang et al. [21] and Novak et al. [22], with little modification, the macrophages were
washed twice in serum-free RPMI 1640 and resuspended at 1 ˆ 106 cells/mL. 100 µL cells were
added into the upper chambers of a 24-well transwell plate with 8-µm pore size polycarbonate filters
(Costar, Corning, NY, USA). The plate was equilibrated at 37 ˝C in a 5% CO2 cell culture incubator
for 30 min. 600 µL of the serum-free RPMI 1640 (MCP-1, 10 ng/mL, Sigma-Aldrich, St. Louis, MO,
USA) was added into the lower chambers of the transwells to induce migration. After 2 h at 37 ˝C
in a 5% CO2 cell culture incubator, the cells remaining in the upper chambers were wiped off with a
cotton swab. Migrated cells attached to the lower surface of the filters were fixed with 75% ethanol for
30 min, washed with water, and stained with hematoxylin. The number of migrated cells was counted
under microscope. For each sample, cells in 5 randomly picked fields under 200ˆ magnification were
counted. Data were expressed relative to control group cell migration.

2.7. Phagocytosis Assay

The uptake of the neutral red by macrophages was measured following Long et al. [23] with
the following modifications. The cell suspension (2 ˆ 106 cells/mL) was incubated in a 96-well
flat-bottomed microtiter plate 100 µL/well for 2 h at 37 ˝C in a 5% CO2 cell incubator. After one
wash with warm PBS (pH 7.2 to 7.4), 200 µL of 0.1% neutral red (Amersco, Solon, OH, USA) solution
in PBS was added. To minimize crystal formation during the neutral red assay, the dye solution
was incubated overnight at 37 ˝C and sterile filtered before use. After 30 min of incubation of the
culture plates at 37 ˝C, neutral red solution was aspirated, and each well was thrice carefully rinsed
with PBS. Finally, the intracellular dye was extracted with 200 µL of a mixture of 100% ethanol and
99.9% acetic acid (1:1 v/v). The mixtures were mixed fully and evaluated at a wavelength of 550 nm
on a Bio-Rad 550 microplate reader (Bio-Rad Laboratories, Hercules, CA, USA). The absorbance
represented phagocytosis by macrophages.

2.8. Reactive Oxygen Species Determination

Following Bae et al. [24], with little modification (no stimulus was added to the cell
suspension to induce macrophage activation), the macrophages (5 ˆ 105 cells) were incubated
with 21,71-dichlorofluorescein diacetate (DCFH-DA; Molecular Probes) for 20 min. The fluorescence
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intensity was analyzed by flow cytometry using a Coulter EPICS XLTM flow cytometer with the
System IITM software (Beckman Coulter, Fullerton, CA, USA). The level of ROS was expressed as
relative fluorescence intensities generated by counting 10,000 cells.

2.9. Real Time reverse-transcription polymerase chain reaction (Real Time RT-PCR)

Total RNA of macrophages was isolated using a modified guanidinium isothiocyanate-CsCl
method [25]. RNA was reverse transcribed into cDNA using the RevertaidTM First Strand cDNA
Synthesis Kit from Fermentas. Quantitative PCR was carried out in triplicates in reactions consisting
of 12.5 µL 2ˆMaxima SYBR Green/ROX qPCR Master mix (Thermo Scientific), 1 µL cDNA,
nuclease-free water and 300 nM of each primer [26]. Using Primer Express software (Applied
Biosystems), we designed the following primers for the present study: β-actin (forword: 5’-GGA
GAT TAC TGC CCT GGC TCC TA-3’; reverse: 5’-GAC TCA TCG TAC TCC TGC TTG CTG-3’) and
MHC II α chain (forword: 5’-AGA GAC CAT CTG GAG ACT TG-3’; reverse: 5’-CAT CTG GGG TGT
TGT TGG A-3’). Amplifications were performed on a StepOne Plus™ PCR-Cycler (Life Technologies)
with the following parameters: activation at 95 ˝C for 10 min, 40 cycles of denaturation at 95 ˝C for
15 s, and annealing/extension at 60 ˝C for 1 min. The threshold cycle (CT, the number of cycles to
reach threshold of detection) was determined for each reaction, and the levels of the target mRNAs
were quantified relatively to the level of the housekeeping gene β-actin using 2´∆∆CT method [27].

2.10. Statistical Analysis

All values are expressed as mean ˘ SD( Standard Deviation), and statistical significance was
set at p < 0.05. Mean values were compared between groups by ANOVA(Analysis of Variance) with
the LSD(Least Significant Difference) method as a post hoc test. Data were analyzed using SPSS 19.0
for windows.

3. Results

3.1. Body Weight, Hemoglobin and Testosterone Levels

The mean final body weight and the mean concentrations of blood hemoglobin and serum
testosterone are presented in Table 2. The weight of the rats of the strenuous exercise group was
significantly lower than that of the sedentary control group (decreased by 13.86%, p = 0.000). In
addition, blood assay showed that blood hemoglobin and serum testosterone in strenuous exercise
group decreased significantly as compared with the sedentary control group (decreased by 9.27%,
p = 0.005; 31.40%, p = 0.001; respectively). Furthermore, body weight, blood hemoglobin and serum
testosterone in group ES were still significantly lower than that of group C. There was no significant
difference between group ES and E (p > 0.05).

Table 2. Body Weight, Hemoglobin and Testosterone levels.

Group Body Weight (g) Hemoglobin (g/L) Testosterone (ng/mL)

C 318.25 ˘ 11.57 142.88 ˘ 4.16 4.49 ˘ 0.55
E 274.13 ˘ 17.68 ˚˚ 129.63 ˘ 10.56 ˚˚ 3.08 ˘ 0.80 ˚˚

ES 277.75 ˘ 14.48 ˚˚ 132.87 ˘ 9.50 ˚ 2.81 ˘ 0.73 ˚˚

Values are means˘ Standard Deviation (SD); * p < 0.05, ** p < 0.01 from control group. C, Control; E, Exercise;
ES, Exercise + Supplementation.

3.2. Serum BCAA Levels

Figure 2 shows changes in serum BCAA levels after strenuous exercise and BCAA
supplementation. The data showed that serum BCAA levels of rats from strenuous exercise group
decreased significantly as compared with the rats from the sedentary group (decreased by 11.71%,
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p = 0.007). On the other hand, BCAA supplementation could recover serum BCAA levels. There was
no significant difference between group ES and C. After seven days of recovery, no difference was
observed between group E1 and C.
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0.07; decreased by 19.51%, p = 0.018). Meanwhile, there was no significant difference in the 
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were incubated with 0.1% neutral red solution for 30 min, as described in “Materials and Methods”. 
The absorbance at a wavelength of 550 nm represented phagocytosis by macrophages. Data are means 
± SD of A550 nm. * p < 0.05. 

3.4. Chemotaxis 

Figure 4 shows changes in chemotaxis of MÔs after strenuous exercise and BCAA supplementation. 
In this study, we added MCP-1 into the lower chambers of the transwells to induce migration. Data 

6 

Figure 2. Effects of strenuous exercise and branched-chain amino acid (BCAA) supplementation on
the serum BCAA concentration. BCAA levels in the serum were measured using high-performance
liquid chromatography (HPLC). Data are means ˘ Standard Deviation (SD). ** p < 0.01. (C) Control;
(E) Exercise; (E1) Exercise with 1 week to recover; (ES) Exercise + Supplementation; ES1) Exercise +
Supplementation with 1 week to recover; the following are same.

3.3. Phagocytosis

Figure 3 shows changes in phagocytosis of MΦs after strenuous exercise and BCAA
supplementation. A decreased capacity for uptake of the neutral red (A550 nm) was observed in
MΦs from the strenuous exercise group as compared with the cells from the sedentary group (Control
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3.4. Chemotaxis

Figure 4 shows changes in chemotaxis of MΦs after strenuous exercise and BCAA
supplementation. In this study, we added MCP-1 into the lower chambers of the transwells to induce
migration. Data showed that the migration capacity of MΦs from the strenuous exercise group has
a tendency to increase as compared with the cells from the sedentary control. However, there was
no significant difference between the two groups. Furthermore, BCAA supplementation could not
change the chemotaxis of MΦs.

Nutrients 2015, 7, page–page 

showed that the migration capacity of MÔs from the strenuous exercise group has a tendency to 
increase as compared with the cells from the sedentary control. However, there was no significant 
difference between the two groups. Furthermore, BCAA supplementation could not change the 
chemotaxis of MÔs. 
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3.6. MHC II mRNA Level

Figure 6 shows changes in MHC II mRNA level of MΦs after strenuous exercise and BCAA
supplementation. Data showed that MHC II, the key molecule mediated macrophage antigen
presentation [28–31], decreased significantly in the MΦs of strenuous exercise rats (Control vs.
Strenuous exercise, 1.00 ˘ 0.19 vs. 0.78 ˘ 0.09; decreased by 22%, p = 0.041). After seven days of
recovery, MHC II mRNA of MΦs from group E1 was significantly higher than group E (p = 0.017),
and no difference was observed between group E1 and C. In addition, MHC II mRNA of MΦs from
group ES did not change as compared with that of group E. It was still significantly lower than that of
group C (p = 0.047). Similarly, MHC II mRNA of MΦs from group ES1 was significantly higher than
that of group ES (p = 0.003), and there was no difference as compared with group E1 or C (p > 0.05).
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Figure 6. Effects of strenuous exercise and BCAA supplementation on MHC II mRNA level of MΦs.
Total RNA of macrophages was isolated and reverse transcribed into cDNA. Quantitative PCR was
carried out using β-actin as the housekeeping gene. Data are means ˘ SD. * p < 0.05; ** p < 0.01.

4. Discussion

In order to investigate the effects of strenuous exercise and BCAA supplementation on blood
index of rats, blood hemoglobin and serum testosterone were tested. The data showed that blood
hemoglobin and serum testosterone in the strenuous exercise group decreased significantly as
compared with the control group. Furthermore, the body weight of the strenuous exercise group
reduced significantly than that of the sedentary control. In addition, most of experimental groups
could not keep up with the velocity of treadmill and had to be assisted by hand to complete
the job at the last week of training. This means that the high-intensity exercise induced them
to approach exhaustion. The data showed that the unbalanced condition was induced by four
weeks of high-intensity training. Moreover, BCAA supplementation could not change the body
weight, the blood hemoglobin and the serum testosterone as compared with group E, which
means that the unbalanced condition induced by strenuous exercise could not be improved by
BCAA supplementation.

Phagocytosis, chemotaxis and antigen presentation are very important for macrophages in
the removal of potentially pathogenic microorganisms [32]. Consequently, we tested the effects
of strenuous exercise on the functions of MΦs. The results indicated that phagocytosis capacity
(decreased by 17.07%, p < 0.05) and major histocompatibility complex (MHC) II antigen (decreased
by 22%, p < 0.05) of MΦs from the strenuous exercise group was significantly lower than that of
the control group. MHC II is a key molecule mediated macrophage antigen presentation [28–31];
meaning that MHC II mediated antigen presentation of MΦs will be inhibited by strenuous exercise.
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Our results are similar to others. For instance, it has been reported that the phagocytosis of pulmonary
alveolar macrophages (PAM) was impaired after seven weeks of strenuous exercise [33]. In the study
of Woods et al., exhaustive exercise can negatively affect macrophages expression of MHC II, which
may be detrimental to the ability of MΦs to present antigen to T lymphocytes [34]. In addition,
in a previous study we found that 11 weeks of overload training decreased the phagocytosis and
chemotaxis of MΦs [4]. However, in this study we did not find the decrease of chemotaxis of MΦs
after four weeks of strenuous exercise. The varying results may be influenced by the quality and/or
quantity of exercise applied in the studies.

In addition, we measured the production of intracellular reactive oxygen species (ROS) in
macrophages. To investigate the effect of strenuous exercise on the production of ROS, no stimulus
(e.g., Lipopolysaccharides) was added to the cell suspension to induce macrophage activation.
The data showed that the production of ROS in macrophages from strenuous exercise group was
significantly lower than that of the control group (decreased by 26%, p < 0.01). The result is similar
to our previous study, in which we found that ROS production of macrophages was inhibited by
11 weeks of overload training [4]. ROS are generally considered cytotoxic. However, intracellular
ROS also serves as important second messengers in cell signaling [35]. A number of studies have
shown that ROS play important roles in regulating macrophages’ survival [36], differentiation [37]
and secretion of inflammatory cytokines [38]. Therefore, the ROS level of macrophages from
strenuous exercise group was lower than physiological levels, which would impair the function of
macrophages mediated by ROS.

These results indicate that the functions (i.e., phagocytosis capacity, MHC II-mediated antigen
presentation and ROS generation) of macrophages were inhibited by four weeks of high-intensity
exercise, which could impair the removal capability of potentially pathogenic microorganisms. This
may be a mechanism that explains why long-term intensive exercise induces immunodepression and
increases the susceptibility to infections. Although the functions of macrophages were impaired
after strenuous exercise, these functions were nearly recovered after one week recovery. It means
that the hindering functions of macrophages induced by strenuous exercise, was non-permanent
and reversible.

Taking account of the good effect of BCAA supplementation on immune system [11,14,15],
we speculated that BCAA supplementation would be beneficial to the macrophages of rats from
strenuous exercise. The data showed that the phagocytosis, the ROS production and the MHC II
mRNA of MΦs from group ES was still significantly lower than that of group C. Moreover, there
was no significant difference between that of groups ES and E. It means that the hindering function
of MΦs induced by strenuous exercise could not be ameliorated by BCAA supplementation. The
results may be explained by the serum BCAA levels. In this study, we found that serum BCAA
level decreased significantly in the rats of strenuous exercise. BCAA supplementation could slightly
increase the serum BCAA level of rats from strenuous exercise; however, there was no significant
difference between groups ES and E (increased by 6.70%, p > 0.05). Few studies have evaluated
the roles of BCAA on macrophage function. For instance, Petro and Bhattacharjee reported that
the ability of peritoneal macrophages to phagocytose and to kill S. typhimurium was not affected by
BCAA restriction [39]. Kitagawa et al. also reported that BCAAs have protective effects on hepatic
ischemia-reperfusion-induced liver injury through the attenuation of Kupffer cell (macrophage)
activation [40]. In vitro experiments showed that high-BCAA medium increased IL-10 expression
and phagocytic activity of microglial cells (macrophages) but did not affect the migration ability
of these cells [41]. In spite of all these, our results are still difficult to compare with that of other
studies owing to the fact that little attention has been paid to the effects of BCAA supplementation
on peritoneal macrophage functions, especially in the model of strenuous exercise. If the data from
rats are similar to human beings, then our results suggest that dietary BCAA supplementation is not
useful to improving the macrophages function of people who engage in strenuous exercise. However,
the effects of BCAA supplementation may be affected by many factors such as the dosing and timing.
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It is currently unknown whether the observed results could be affected by BCAA supplementation in
the pre-workout period or at different doses.

5. Conclusions

Strenuous exercise impaired phagocytosis capacity, MHC II-mediated antigen presentation
and ROS generation of macrophages. This may be a mechanism that explains why strenuous
exercise induces immunodepression and increases the susceptibility to infections. Moreover, the
impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA
supplementation in the dosing and timing used for this study.
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