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Abstract: Fish oil dietary supplements and complementary medicines are pitched to play a 

role of increasing strategic importance in meeting daily requirements of essential nutrients, 

such as long-chain (≥C20, LC) omega-3 polyunsaturated fatty acids and vitamin D. 

Recently a new product category, derived from Antarctic krill, has been launched on the 

omega-3 nutriceutical market. Antarctic krill oil is marketed as demonstrating a greater 

ease of absorption due to higher phospholipid content, as being sourced through sustainable 

fisheries and being free of toxins and pollutants; however, limited data is available on the 

latter component. Persistent Organic Pollutants (POP) encompass a range of toxic,  

man-made contaminants that accumulate preferentially in marine ecosystems and in the 

lipid reserves of organisms. Extraction and concentration of fish oils therefore represents 

an inherent nutritional-toxicological conflict. This study aimed to provide the first 

quantitative comparison of the nutritional (EPA and DHA) versus the toxicological profiles 

of Antarctic krill oil products, relative to various fish oil categories available on the 

Australian market. Krill oil products were found to adhere closely to EPA and DHA 

manufacturer specifications and overall were ranked as containing intermediate levels of 

POP contaminants when compared to the other products analysed. Monitoring of the 

pollutant content of fish and krill oil products will become increasingly important with 

expanding regulatory specifications for chemical thresholds. 
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1. Introduction 

Fish are a nutrient-dense food source. The role of marine-derived, long-chain (LC) (>C20) omega-3 

(ω3) polyunsaturated fatty acids (LC-PUFA), in the promotion of health is well established. Since 

early observations that Greenland Eskimos who subsisted on large amounts of fish suffered low levels 

of cardiovascular disease related mortality, epidemiological and experimental evidence has confidently 

shown the protective role of sufficient ω3 LC-PUFA intake against cardiovascular disease and certain 

types of cancer, e.g., [1,2]. In particular docosahexaenoic acid (DHA, 22:6ω3) and eicosapentaenoic 

acid (EPA, 20:5ω3), each with distinct roles in disease prevention, have been credited for their 

contribution to a healthy diet. In addition to serving as energy stores, ω3 LC-PUFA form integral 

structural components of cellular membranes [3]. For example, ω3 LC-PUFA are highly concentrated 

in the cellular membranes of the retina and brain and accumulate there rapidly in the third trimester of 

foetal development. Gestational ω3 LC-PUFA restrictive studies have shown significant deleterious 

impact to off-spring visual acuity and cognitive function [4]. Finally, symptomatic alleviation with  

ω3 LC-PUFA intake has been reported for a broad range of health conditions. Anti-inflammatory 

properties of ω3 LC-PUFA provide a molecular basis for symptomatic alleviation of inflammatory 

disease such as rheumatoid arthritis, lupus and asthma [5–7]. More recently improvements in 

psychiatric disorders such as depression and schizophrenia with ω3 LC-PUFA administration have 

been observed [8]. 

Fish oil is also a rich source of lipid-soluble micronutrients such as vitamin D, which plays a 

fundamental role in bone health [9]. Consequently, The National Heart Foundation of Australia, in 

accordance with a host of international agencies, recommends consumption of fish at least twice a 

week. Paradoxically, modern diets in developed nations are characterised by severe ω3 LC-PUFA 

deficiency, reflecting low seafood intake. This was exemplified in a recent study which found 78% of 

the Australian population did not meet their daily recommended intake of ω3 LC-PUFA [10]. In fact, it 

must be considered that meeting health targets for seafood intake is not economically nor ecologically 

attainable for large fractions of the global population [11]. 

Effectively tackling dietary deficiency of seafood micronutrients would carry significant bearing on 

both the social and economic burden of disease. Increasing the dietary status of vitamin D alone in 

Western Europe has been estimated to alleviate the economic burden of disease by $293 billion per 

year [12]. In the absence of sufficient high quality, affordable seafood sources, dietary supplements 

and complementary medicines are pitched to play a role of increasing strategic importance. 

A new product category has been launched on the omega-3 nutriceutical market and is currently 

gaining significant market share. A nutriceutical oil derived from Antarctic krill (Euphausia superba), 

a Euphausiid crustacean forming the basis of the Antarctic food web, has been marketed since 2002 

and has recently become broadly available in Australia [13]. Marketing of krill oil centres on three 

characteristic properties of the oil. Krill oil contains the essential nutrient, choline and an antioxidant, 
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astaxanthin. In addition, it is posed that Antarctic krill oil derived ω3 LC-PUFA is more bioavailable 

compared to fish oils. A higher fraction of ω3 LC-PUFA is associated with phospholipids in krill oil, 

compared to triacylglycerols in fish oils. This property has been theorised to improve absorption and 

bioavailability of ω3 LC-PUFA [14], based upon independent liposome carrier research [15]. 

Secondly, one major krill oil manufacturer has achieved Marine Stewardship Council certification of 

sustainability and, as a whole, the industry is often viewed as being sustainable due to the fact that the 

worldwide harvest constitutes only a minor fraction of established fishing quotas, e.g., [14,16]. It 

should be noted, however, that uncertainty surrounds the distribution and density of circumpolar krill 

stocks and therefore the robustness of fishery quotas remains debated [17]. Finally, krill oil is cited as 

being naturally free of toxins and pollutants [6]. Persistent Organic Pollutants (POPs) are toxic 

contaminants that bioaccumulate, and have been introduced to the environment since the mid-1900s. 

Their extreme persistence and effective environmental dispersal mechanisms have resulted in 

ubiquitous contamination of all environmental matrices. POPs are considered a substantial risk to human 

health [18] and are subject to the Stockholm Convention, a legally binding treaty signed by over  

100 nations, and ratified by Australia in 2004 [19]. 

Within an ecosystem, lower trophic level species such as zooplankton, are often found to 

accumulate lower levels of POP contaminant burdens due to shorter life-spans. However, this cannot 

be assumed when comparing species from different ecosystems. Polar species are characterised by 

large body size and long life spans. Antarctic krill live to 5–7 years which is comparable to, or longer 

than, source species commonly used in fish oil production [13]. Similarly, Antarctic krill have 

demonstrated highly adaptable feeding, and in addition to their herbivorous feeding, have been 

observed to rely on cannibalism and detritivory to endure food deprivation [20]. This dietary flexibility 

also confounds their trophic placement and thus the POP bioaccumulation patterns of the species. 

Historical or “legacy” POPs are chlorinated compounds. Their common molecular structures predict 

similar environmental behaviour. In the physical environment they are semi-volatile. Volatilized 

fractions will undergo progressive movement towards colder and colder climates experiencing  

“cold-trapping” at the poles of the earth [21]. In the particulate phase they will adhere strongly to 

organic matter representing an effective mechanism for transfer from the terrestrial to the aquatic 

environment and assimilation into food-webs. Consequently, the vast majority of human exposure to 

POPs occurs via seafood consumption [22,23]. This clear nutritional-toxicological conflict associated 

with seafood intake has urged the Codex Alimentarious Commission for Contaminants in Food to 

convene an expert consultancy on the risks and benefits of fish consumption [18]. In the case of fish oil 

dietary supplements, the scenario is even more acute. Legacy POPs are extremely lipophilic and 

accumulate in the fat reserves of animals. When the lipid fractions of seafood are selectively isolated 

and concentrated for administration as dietary supplements or complementary medicines, the seafood 

micronutrient:POP burden conflict is exacerbated. Indeed, repeated incidences of fish oil product 

recalls due to exceedance of POP safety guideline have occurred and are only likely to rise as the 

market expands and authorities pursue greater regulatory overview [24,25]. 

Recently we conducted the most comprehensive analytical survey of POPs in any Antarctic 

environmental matrix to date [26]. Our study centred on Antarctic krill, as POP vectors to the 

remainder of the Antarctic food-web, and extended across almost a quarter of the Antarctic continent. 

Our findings highlighted that Antarctic krill POP profiles were distinct from those typical of northern 
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hemisphere species, but that they were not insubstantial. Indeed, for some compounds such as 

hexachlorobenzene (HCB), levels were comparable to or greater than those of similar trophic level 

species in other global regions. This work has prompted the following strategic examination of 

commercial krill oil products. Here we will assess krill oil POP burdens, as well as product nutritional 

lipid class and fatty acid profiles. These will be compared to those of other categories of commercial 

fish oil dietary supplements available on the Australian market. 

2. Experimental Section 

2.1. Product Selection 

Four categories of seafood-oil dietary supplements were selected for analysis, namely, (i) krill oil; 

(ii) enriched (in terms of EPA + DHA) fish oil; (iii) nutriceutical formulations containing fish oil; and 

(iv) standard or budget grade 18:12 (EPA + DHA) fish oil (Table 1). Products representative of the two 

major krill oil manufacturers were selected under the krill oil category. For the other remaining 

categories, three representative and readily available brands were selected. Efforts were made to 

combine capsules from two separate batches of each product for each POP and FA analysis. This was 

achieved for all products except Blackmores Omega Liquid Fish Oil for which only a single batch 

number could be sourced. Full details of selected products and batch numbers are listed in Table 1. 

2.2. Sample Analysis 

2.2.1. Lipid Extraction and Class Determination 

Pre-weighed (c.a. 0.03 g) oil samples were used for lipid analyses. Individual capsule or liquid oil 

samples were cut open and dissolved in CHCl3. A known aliquot of total lipid (achieving a final 

concentration of approximately 10 mg lipid/mL CHCl3) was transferred into separate vials and made 

up to 1.5 mL of CHCl3. 

2.2.2. Fatty Acid (FA) Determination 

An aliquot of the total lipid extract was trans-methylated by addition of MeOH/HCl/CHCl3  

(3 mL 10:1:1, v/v/v, 80 °C/2h) to produce fatty acid methyl esters (FAME). After cooling the mixture 

and addition of 1 mL of water, FAME were extracted (3×) with 4:1 hexane/dichloromethane. A C19 

FAME internal injection standard was added prior to analysis by gas chromatography (GC) using a GC 

(Agilent Technologies 7890A) equipped with a Supelco Equity™-1 fused silica capillary column  

(15 m × 0.1 mm internal diameter, 0.1 μm film thickness) [27]. GC-mass spectrometry (GC-MS) 

confirmed FAME identifications and was performed on a Finnigan Thermoquest GCQ GC-mass 

spectrometer fitted with a column of similar polarity to that described above, an on-column injector 

and using Thermoquest Xcalibur software (Austin, TX, USA). Helium was used as carrier gas and 

other operating conditions were as previously described [27]. The relative levels of individual FA were 

expressed as percent of total FA area. A catalogue of quantified FA is presented in Table 2. FA present 

at less than 0.5% of total FA in all products are grouped as Other FA; this FA group comprised  

1.6%–4.2% of the total FA across the products analysed. 
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Table 1. Selected fish and krill oil nutriceutical products compared in this study. Capsules or subsamples from two separate batches of each 

product were pooled for each fatty acids (FA) analysis, except for Blackmores Omega Liquid Fish Oil for which only a single batch number 

could be sourced. 

Krill Oil Enriched Fish Oil Formulations Containing Fish Oil Standard 18:20 Grade Fish Oil 

 

BIO organics Super Liquid Fish Oil  

EPA 1.6 g; DHA 810 mg  

5 mL serve  

(Batch 11448A and 11815A) 

Blackmores Omega Joint  

“Mercury, PCB and dioxin tested”  

EPA 550 mg; DHA 120 mg  

1000 mg capsule 

(Batch 252505 and 252076) 

Nature’s Own Odourless Fish Oil 1000 mg 

EPA 180 mg; DHA 120 mg  

1000 mg capsule 

(Batch 650566 and 652769) 

Swisse Wild Krill Oil (NKO)  

EPA 47 mg; DHA 28 mg  

333 mg capsule  

(Batch 022537 and 022538) 

Blackmores Omega Liquid Fish Oil  

EPA 1.7g; DHA 1.1g  

5 mL serve 

(Batch 10709101) 

Nature’s Way Kids Smart  

EPA 28 mg; DHA 133 mg  

1000 mg capsule 

(Batch B8514-1 and Batch C4401) 

Blackmores Odourless Fish Oil 1000 mg 

EPA 180 mg; DHA 120 mg  

1000 mg capsule 

(Batch 252461 and 253417) 

Norkrill (Aker BioMarine)  

EPA 60 mg; DHA 28mg  

500 mg capsule 

(Batch 390048 and 443003) 

Bioceuticals OmegaSure Liquid Fish Oil 

EPA 1050 mg; DHA 750 mg  

5 mL serve 

(Batch 26764 B L80 and 26764 C L80) 

Blackmores Pregnancy and Breastfeeding Gold 

EPA 25 mg; DHA 125 mg  

1000 mg serve 

(Batch 252025 and 250973) 

Cenovis Fish oil 1000 mg 

EPA 180mg; DHA 120 mg  

1000 mg capsule 

(Batch 650588 and 649319) 
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2.2.3. Quality Control 

For lipid class and FA profiling, commercial (Nuchek) and laboratory standards (e.g., tuna oil) of 

known composition were routinely analysed to both confirm component identifications and ensure  

data quality. 

2.2.4. Chemical Analysis 

Oil samples were analysed for chlorobenzenes (hexa- and penta-chlorobenzene); chlorinated 

pesticides; hexachlorocyclohexanes (α-, β-, γ- HCH); the dichlorodiphenyltrichloroethane (DDT) group 

(o,p’-DDE, p,p’-DDE, o,p’-DDD, p,p’-DDD, o,p’-DDT, p,p’-DDT); toxaphene (Tox-26, 32, 40 + 41, 

42a, 44, 50, 62); polychlorinated cyclodienes (endosulfan-I , endosulfan-II, endosulfan-sulphate, 

heptachlor-exo-epoxide, heptachlor-endo-epoxide, trans-chlordane, cis-chlordane, oxychlordane, 

chlordene, heptachlor, trans-nonachlor, cis-nonachlor, dieldrin, aldrin, isodrin, endrin) and the 

individual compounds mirex and trifluralin. In addition, samples were analysed for the polychlorinated 

biphenyl (PCB) congeners, 18, 28, 31, 33, 37, 47, 52, 66, 74, 77, 81, 99, 101, 105, 114, 118, 122, 123, 

126, 128, 138, 141, 149, 153, 156, 157, 167, 169, 170, 180, 183, 187, 189, 194, 206 and 209 (IUPAC 

numbers) and polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners; 2,3,7,8-TCDD, 1,2,3,7, 

8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, 

OCDD, 2,3,7,8-TCDF, 1,2,3,7,8/1,2,3,4,8-PeCDF, 2,3,4,7,8-PeCDF, 1,2,3,4,7,8/1,2,3,4,7,9-HxCDF, 

1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2,3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,  

9-HpCDF and OCDF. 

2.2.5. Sample Preparation and Clean-up 

The extraction and clean-up methods for POP have previously been described in full [26]. In brief, 

dioxin, furan and non-ortho PCB sample extraction and clean-up was performed on a semi-automated  

3 column system (first column, Na2SO4, activated silica and potassium silicate; second column, single 

use Fluid Management Systems (FMS) silica column; third column, single use FMS activated carbon 

column). The sample portion containing PCDD/Fs and non-ortho PCBs was eluted from column 3 with 

toluene, reduced and exchanged to hexane before undergoing further clean-up by sulphuric acid coated 

silica column followed by potassium hydroxide coated silica column. 

Samples for PCB and chlorinated pesticide analysis were extracted on a cold-column and cleaned by 

gel permeation chromatography, alumina and silica gel columns. 

2.2.6. Quantification 

The isomer identification and quantification was carried out with HRGC/HRMS using a  

Hewlett-Packard 5890II (1990–2003) or 6890N (2003–2006) gas chromatograph coupled to an 

AutoSpec mass spectrometer (Micromass Waters, Manchester, UK). Resolution of mass spectrometer 

was >10,000 with electron ionization mass spectrometry in the selected ion monitoring mode  

(GC/EI-HRMS-SIM). Two SIM values were monitored for each isomer group. The added 13C-labelled 

isomers were used as internal standard for each group. Additionally, the recovery rates of the added 

internal standard compounds were determined. 
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2.2.7. Quality Assurance 

The following quantification conditions were fulfilled for all data presented: (i) the retention time of 

the native compound was within three seconds of the corresponding 13C-labelled isomer; (ii) the isotope 

ratio of the two monitored masses was within +20% of the theoretical value; (iii) the signal/noise was 

>3/1 for quantification; (iv) the recovery of the added 13C-labelled internal standards was within  

40% to 120% and thereby in agreement with EU and US guidelines and official methods;  

(v) prior to each new series of samples the blank values of the complete clean-up and quantification 

procedures were determined. Clean-up of samples only commenced when a sufficiently low blank 

value was obtained. At least once a year the laboratory participates in an international laboratory  

inter-calibration exercise. 

2.3. Metrics 

2.3.1. Tolerable Daily Intake (TDI) 

Various regulatory bodies and food authorities have assessed the levels of chemicals that are safe for 

human consumption, based upon observed affect levels in animal models. The tolerable daily intake 

(TDI) refers to a threshold of a chemical which does not appear to carry an appreciable risk. In the 

current study we have used a variety of sources for our reference TDIs, namely Health Canada and the 

US EPA, The World Health Organisation and the International Panel on Chemical Safety (IPCS) as 

well as peer-reviewed literature. 

2.3.2. Toxicity Equivalency Factors (TEQs) 

Toxicity equivalency factors express the toxicity of similar acting, planar, dioxin, furan and certain 

PCBs relative to the most potent congener 2,3,7,8-TCDD which is assigned a value of 1.0. The TEQ 

values applied in the current study refer to Van den Berg et al.’s 2005 re-evaluation of TEQ values [28]. 

3. Results and Discussion 

3.1. Lipid and Fatty Acid Profiles 

The majority of categories and brands of seafood oil supplements matched or exceeded 

manufacturer EPA and DHA specifications, with the exception of three brands which fell slightly 

below (~10%–30%) the manufacturer specifications (Tables 1–3). These related to EPA levels in one 

enriched fish oil, namely Blackmores Omega liquid fish oil (1700 mg specified vs. 1500 mg observed) 

and DHA levels in Nature’s Way Kidsmart (133 mg specified vs. 95 mg observed) and Blackmores 

Pregnancy and Breastfeeding Gold (125 mg specified vs. 85 mg observed). It is noted, that for pure oil 

capsules it is possible to compensate for EPA and DHA batch variability through marginal capsule 

volume adjustments. This is however, less readily achievable for formulations, such as the latter two 

products, and uncontrollable for liquid formulations. A listing of all FA present at >0.5% of the total 

FA in each product analysed is shown in Table 2. 
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Table 2. A catalogue of fatty acids (FA) quantified, together with the composition (as percent of total FA) of all products. Abbreviations used 

for oil products are: Swisse Krill Oil (SW); Norkrill (Nor); Bio-organics (Bio-O); Blackmores Omega (B-Ω); Bioceuticals (BCT);  

Blackmores Joint (B-Joint); Nature’s Way Kidsmart (NWK); Blackmores Pregnancy (B-P); Nature’s Own 1000 mg (NO-1000);  

Blackmore’s 1000 mg (B-1000); Cenovis 1000 mg (C-1000). Capsules or subsamples from two separate batches of each product were pooled 

for each FA analysis, except for Blackmores Omega Liquid Fish Oil for which only a single batch number could be sourced. Other: denotes 

FA present at <0.5% in all products. 

Product SW Nor Bio-O B-Ω BCT B-Joint NWK B-P NO-1000 B-1000 C-1000 
FA            

14:0 7.3 8 1.9 0.37 4.3 0.12 3.3 5.06 6.3 2.4 6.1 
15:0 0.33 0.33 0.15 0.02 0.3 0 0.64 0.46 0.58 0.2 0.44 
16:4 0.7 0.77 1.4 0.1 2.6 0.98 0.31 0.24 2.3 1.4 2.3 
16:3 0.22 0.23 1 0.05 2.2 0.53 0.27 0.2 1.6 0.9 1.6 

16:1ɷ7c 6.4 5.6 3.3 0.55 5.7 1.07 5.1 4.3 10 4.1 11 
16:1ɷ 5c 0.48 0.54 0.07 0 0.12 0.01 0.14 0.11 0.21 0.07 0.21 

16:0 19 23 5 3.2 11 0.18 19 20 17 5.6 15 
Br17:1 0.1 0.06 0.16 0.03 0.28 0.12 0.57 0.52 0.35 0.19 0.31 

17:1ɷ 8c + a17:0 0.27 0.25 0.18 0.1 0.3 0.06 0.7 0.6 0.41 0.18 0.41 
17:0 0.09 0.1 0.17 0.19 0.28 0.01 0.86 0.83 0.53 0.18 0.47 

18:4ɷ3 2.9 3.4 4.3 1.5 3.6 3.9 1.1 0.89 2.9 3.5 2.7 
18:2ɷ6 2.3 2 1.1 0.75 1.2 0.9 3.4 9.03 1.5 1.1 1.4 
18:3ɷ3 1 1.2 0.68 0.43 0.46 0.59 0.73 1.4 0.81 0.65 0.69 
18:1ɷ9c 11 9.8 5.6 6.5 6.5 1.37 11 13 9 3.9 8.6 
18:1ɷ7c 8.2 7.2 2.3 2.6 2.6 0.94 2.4 2.6 4 2 4.2 

18:0 1.01 1.1 1.7 3.6 2.9 0.11 14 7.8 3.6 1.2 3.4 
20:4ɷ6 0.19 0 3.4 0.29 0.5 0.15 1.3 1.3 0.63 0.23 0.41 
20:5ɷ3 20 21 37 35 24 62 6.9 5.7 18 47 19 
20:4ɷ3 0.49 0.52 1.3 1.7 1.1 2 0.48 0.43 0.89 1.6 0.9 
20:1ɷ9c 0.69 0.7 1 3.05 1.4 0.56 1.3 1 1.09 0.73 0.97 
20:1ɷ7c 0.38 0.4 0.26 0.72 0.5 0.07 0.17 0.15 0.45 0.2 0.47 
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Table 2. Cont. 

Product SW Nor Bio-O B-Ω BCT B-Joint NWK B-P NO-1000 B-1000 C-1000 

FA            

21:5ɷ3 0.48 0.63 1.3 1.6 1.1 2.4 0.22 0.19 0.68 1.8 0.71 
22:5ɷ6 0.01 0 0.25 0.46 0.17 0.29 0.71 1.1 0.27 0.27 0.22 
22:6ω3 12 9.8 20 25 18 16 20 18 11 14 12 
22:5ω3 0.46 0.57 2.7 4.8 3.4 4.4 1.3 1.2 2.3 3.7 2.6 

22:1ω11c 0 0 0.6 2.3 1.1 0.02 0.67 0.49 0.55 0.2 0.59 
22:1ω9c 0.48 0.79 0.15 0.49 0.27 0.05 0.17 0.14 0.2 0.1 0.19 
24:1ω9c 0.17 0.19 0.24 0.53 0.53 0 0.37 0.39 0.46 0.15 0.45 

Other 3.09 2.39 2.71 4.16 3.61 1.59 3.45 3.39 2.8 1.87 3.19 
Total 100 100 100 100 100 100 100 100 100 100 100 

Other fatty acids: 14:1ω5c, i15:0, a15:0, 15:1ω6c, 16:2, i16:0, 16:1ω9c, 16:1ω7t, 16:1ω13t, i17:0, 17:1, 18:3ω6, 18:1ω7t, 18:1ω5c, 18:1, 19:1 (2 isomers), 20:3ω6, 

20:2ω6, 20:1ω11c, 20:1ω5c, 20:0, 21:0, 22:4ω6, 22:1ω7c, 22:0, 23:0, 24:6ω3, 24:5ω3, 24:1ω11c, 24:1ω7c, 24:0. 
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Table 3. Observed versus manufacturer labelled EPA and DHA values of selected fish and krill oil nutriceutical categories and products 

(labelled and values are rounded to two significant figures). Capsules or subsamples from two separate batches of each product were pooled 

for each FA analysis, except for Blackmores Omega Liquid Fish Oil for which only a single batch number could be sourced. 

Product 
Labelled EPA (mg) 

Per Capsule/Serve 

Observed EPA (mg) 

Per Capsule/Serve 

Labelled DHA (mg) 

Per Capsule/Serve 

Observed DHA (mg) 

Per Capsule/Serve 

EPA + DHA (mg) per Max 

Recommended Daily Serve

Cost (AUD)  

Per (Labelled) 500 mg 

DHA + EPA 

Krill Oil 
Swisse (NKO) 50 55 30 33 240 3.8 

Norkrill (Aker Biomarine) 60 86 28 40 180 4.0 

Enriched Fish Oils 
BioOrganics super liquid 1600 1600 810 860 2400 0.21 

Blackmores Omega Liquid 1700 1500 1100 1100 2800 0.24 

Bioceuticals omegasure Liquid 1050 1300 750 790 1800 0.28 

Formulations 
Blackmores Omega Joint 550 590 120 150 2700 0.40 

Nature’s way kidsmart 28 33 130 95 320 0.90 

Blackmores Pregnancy 25 27 130 86 300 2.7 

18:12 Standard Grade 
Nature’s Own Odourless 1000 180 180 120 110 2700 0.15 

Blackmores Odourless 1000 180 180 120 110 3600 0.10 

Cenovis 1000 175 180 70 120 250 0.25 
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3.2. Persistent Organic Pollutants 

None of the categories or products analysed in the current study, at their highest recommended 

dosage, came close to fulfilling tolerable daily intake (TDI) levels for any single analyte (Table 4). 

Despite the fact that environmental exposure to POPs does not occur to a single residue at a time, but 

rather to complex and interacting mixtures, this finding is reassuring. As a means of qualitatively 

comparing and contrasting the eleven products analysed in this study, and providing an overview of 

chemical summaries obtained, we devised a simple scoring system (Table 5). The five products with 

the greatest contaminant burden for five key compound groups, plus TEQ values, were ranked from 1–5 

with the sample containing the highest concentrations receiving a score of 5. Bioceuticals Omegasure 

liquid fish oil and Blackmores 1000 mg both carried a cumulative score of 16 reflecting their 

placement among the top five products for five and four compound/index groups respectively. 

Blackmores Pregnancy and Breastfeeding Gold formula and Nature’s Own 1000 mg each received a 

score of 12. Blackmore’s Pregnancy and Breastfeeding Gold formula incorporates tuna oil, sourced 

from northern hemisphere oceans, thereby likely contributing to the higher contaminant burdens found 

in this formulation, despite its lower oil content. Blackmore’s Joint formula was the only product 

which did not feature among the top five products for any analyte or index group. 
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Table 4. Chemical burdens per maximum recommended daily dose (lipid); where relevant, corresponding TEQ (2005) and percent (%) of 

Tolerable Daily Intake (TDI). Values are presented to two significant figures. Blank squares indicate that values fell below the method level of 

detection (LOD), which are given as an average concentration for all 11 products (pg/g lipid), whilst grey squares indicate that corresponding 

congeners were not analysed for that product. Abbreviations used for oil products are: Swisse Krill Oil (SW); Norkrill (Nor);  

Bio-organics (Bio-O); Blackmores Omega (B-Ω); Bioceuticals (BCT); Blackmores Joint (B-Joint); Nature’s Way Kidsmart (NWK); 

Blackmores Pregnancy (B-P); Nature’s Own 1000 mg (NO-1000); Blackmore’s 1000mg (B-1000); Cenovis 1000 mg (C-1000). Capsules or 

subsamples from two separate batches of each product were pooled for each POP analysis, except for Blackmores Omega Liquid Fish Oil for 

which only a single batch number could be sourced. 

Compound 

(LOD, pg/g Lipid) 

TDI a (pg)/Day Per 

60 kg Adult 

SW 

(pg/1 g) 

Nor 

(pg/ 1 g) 

Bio-O 

(pg/4.75 g)

B-Ω 

(pg/4.75 g) 

BCT 

(pg/4.75 g) 

B-Joint 

(pg/4 g) 

NWK 

(pg/1 g) 

B-P 

(pg/0.86 g) 

NO-1000

(pg/9 g) 

B-1000  

(pg/12 g) 

C-1000 

(pg/9 g) 

HCH             

a-HCH (27)   180 260   

b-HCH (32) 72 370 270 690 260 

g-HCH (29) 65 33 170 1700 

∑HCH 18,000,000 c (0.00076) (0.00018) (0.004)     (0.012)  (0.0038) (0.0014) 

DDT             

o,p’-DDE (46) 480 810.0 1800.0 49,000 

p,p’-DDE (59) 1000 16,000 1200 5000 15,000 120,000 35,000 

o,p’-DDD (37) 840 890 7100 1300 

p,p’-DDD (40) 180 10,000 6700 4900 31,000 20,000 25,000 11,000 

o,p’-DDT (43) 260 1300 1100 270 26,000 2000 3600 1000 

p,p’-DDT (69) 1400 4400 5100 80,000 140,000 9000 2100 

∑DDT 30,000,000 c (0.0015)  (0.038) (0.0095) (0.1) (0.004) (0.06) (0.53) (1.1) (0.24) (0.047) 
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Table 4. Cont. 

Compound 
TDI a (pg)/Day 

Per 60 kg Adult 

SW 

(pg/1 g) 

Nor 

(pg/1 g) 

Bio-O  

(pg/4.75 g) 

B-Ω 

(pg/4.75 g)

BCT  

(pg/4.75 g) 

B-Joint 

(pg/4 g) 

NWK  

(pg/1 g) 

B-P 

(pg/1.72 g) 

NO-1000

(pg/9 g) 

B-1000 

(pg/12 g)

C-1000  

(pg/9 g) 

Chlordanes             

trans-Chlordane (60)      4000       

cis-Chlordane (160)      2300       

oxy-Chlordane (1500)     30,000        

cis-Nonachlor (28)      1700  100     

∑Chlordane 30,000,000 c    (0.1) (0.027)  (0.000028)     

Endosulfan-I (34) 360,000,000 c   390.0 (0.00011)         

Toxaphene             

Tox-26 (61)      2400       

Tox-40 + Tox-41 (48)      2300  260 770   3500 

Tox-44 (160)      7800  1100    13,000 

Tox-50 (23)      6200  330 1100   5200 

∑Toxaphene 12,000,000 d     (0.16)  (0.014) (0.016)   (0.18) 

Chlorobenzenes             

PeCB (3.1) 60,000,000 b 930 (0.0016) 340 (0.00057) 59 (0.0001)  300 (0.0005) 180 (0.0003) 91 (0.00015) 190 (0.00032)   160 (0.00027) 

HCB (2.8) 9,600,000 e 9900 (0.1) 4400 (0.046) 68 (0.00071)  780 (0.0081) 160 (0.0017) 27 (0.00028) 500 (0.0052)   140 (0.0015) 
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Table 4. Cont. 

Compound 
TDIa (pg)/Day 

Per 60 kg Adult

SW 

(pg/1 g) 

Nor 

(pg/1 g) 

Bio-O  

(pg/4.75 g) 

B-Ω  

(pg/4.75 g) 

BCT  

(pg/4.75 g) 

B-Joint 

(pg/4 g) 

NWK  

(pg/1 g) 

B-P 

(pg/0.86 g) 

NO-1000 

(pg/9 g) 

B-1000 

(pg/12 g) 

C-1000  

(pg/9 g) 

PCB  Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) 

18 (14) 38 14 150 86 52 140 

28 (10) 48 20 72 370 83 130 590 

31 (10) 45 21 50 230 91 68 190 

33 (10) 13 64 56  150 

47 (4.8) 48 75 210 420 46 240 260 310 

52 (5.4) 130 130 96 13 360 140 

66 (4.6) 57 14 850 600 790 600 260 

74 (4.0) 30 550 210 280 250 100 

77 (0.11)    10 (0.0011)  18 (0.0018)  0.59 (0.000059) 9.4 (0.00094) 54 (0.0054) 110 (0.011)  

81 (0.10)  0.51 (0.00015)   0.48 (0.00014) 0.38 (0.00011)    1.1 (0.00033)   

99 (5.7) 64 12 93 2300 38 820 920 130 510 

101 (6.3) 170 42 190 3700 62 69 900 1900 2800 1000 

105 (7.6) 34 (0.0010) 130 (0.0039) 1200 (0.036) 19 (0.00057) 210 (0.0063) 1100 (0.033) 1600 (0.048) 720 (0.022) 

114 (5.8)      120 (0.0036)     130 (0.065)  
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Table 4. Cont. 

Compound 
TDI a (pg)/Day 

Per 60 kg Adult

SW 

(pg/1 g) 

Nor 

(pg/1 g) 

Bio-O 

(pg/4.75 g) 

B-Ω 

(pg/4.75 g) 

BCT 

(pg/4.75 g) 

B-Joint  

(pg/4 g) 

NWK  

(pg/1 g) 

B-P 

(pg/0.86 g) 

NO-1000 

(pg/9 g) 

B-1000  

(pg/12 g) 

C-1000  

(pg/9 g) 

PCB  Conc. (TEQ) Conc. (TEQ) Conc.(TEQ) Conc.(TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) 

118 (5.7) 75 (0.0023) 0.017 (0.000001) 340 (0.01) 3500 (0.11) 0.067 (0.000002) 690 (0.021) 2600 (0.078) 4000 (0.12) 1600 (0.048) 

122 (6.3) 140 

123 (6.3) 55 (0.0017) 13 (0.00039) 110 (0.0033) 230 (0.0069) 

126 (0.43)  1.8 (0.18) 0.94 (0.094) 5.5 (0.55) 1.8 (0.18) 4.6 (0.46)    24 (2.4) 50 (5.0)  

128 (8.1) 21 120 1100 69 310 1200 1500 690 

138 (6.9) 110 15 790 60 7100 53 380 1800 6700 10,000 4300 

141 (4.8) 18 110 850 50 220 1000 1400 640 

149 (4.3) 100 19 320 2700 52 120 75 3100 4400 1700 

153 (4.1) 140 25 1200 76 9200 75 50 2600 9900 14,000 5500 

156 (6.9) 450 (0.014) 30 (0.0009) 150 (0.0045) 530 (0.016) 810 (0.024) 460 (0.014) 

157 (5.7) 100 (0.003) 110 (0.0033) 200 (0.006) 91 (0.0027) 

167 (5.9) 51 (0.00051) 260 (0.0026) 19 (0.00019) 107 (0.053) 370 (0.037) 550 (0.055) 250 (0.025) 

169 (0.28)  1.4 (0.042) 0.86 (0.026) 2.1 (0.063) 0.83 (0.025)     3.6 (0.11) 8.8 (0.26)  

170 (7.7) 18 320 71 1400 150 2100 3500 1700 

180 (7.3) 770 130 4000 62 590 2300 6600 9800 4700 

183 (5.7) 100 47 630 40 56 190 880 1100 560 

187 (6.0) 43 320 1800 190 440 2600 3700 1600 

189 (7.7) 250 (0.0075) 

194 (5.3) 110 59 57 83 180 910 1200 640 

206 (6.8)   36 200 290 160 

209 (2.4)      120  23 106   92 

∑PCB 

(%TDI) 
7,800,000 b 1200 (0.015) 270 (0.0035) 5000 (0.064) 1000 (0.013) 4600 (0.59) 800 (0.01) 2500 (0.032) 14,000 (0.17) 45,000 (0.58) 65,000 (0.83) 29,000 (0.37) 
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Table 4. Cont. 

Compound 
TDI a (pg)/Day 

per 60 kg Adult 

SW 

(pg/1 g) 

Nor 

(pg/1 g) 

Bio-O 

(pg/4.75 g) 

B-Ω 

(pg/4.75 g) 

BCT 

(pg/4.75 g) 

B-Joint 

(pg/4 g) 

NWK  

(pg/1 g) 

B-P 

(pg/0.86 g) 

NO-1000 

(pg/9 g) 

B-1000 

(pg/12 g) 

C-1000  

(pg/9 g) 

Dioxin/Furans  Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) Conc. (TEQ) 

OCDD (0.41)    30 (0.009) 7.4 (0.0022) 73 (0.022)       

2378-TCDF (0.49)  0.54 (0.054) 0.15 (0.015)       0.72 (0.072)   

23478-PeCDF (2.3) 0.19 (0.095)   

123478/123479-HxCDF (0.19)   0.049 (0.0049)          

∑TEQ 120 TEQ/Day 0.23% 0.18% 0.53% 0.17% 0.55%  0.0018% 0.071% 1.5% 4.7% 0.10% 
a Values are based on current scientific information and may change; b Health Canada, 2007 [29]; c US EPA [30]; d Man Chan et al. (2000) [31]; e IPCS (1997) [32]. 
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Table 5. Ranking (1–5) of products according to analyte or TEQ category where a score  

of 5 denotes the highest concentration/index value. 

 ∑HCH ∑DDT ∑Chl HCB ∑PCB TEQ Score 

SW 1   5  1 7 

Nor    4   4 

Bio-O 4     2 6 

B-Ω   5    5 

BCT  2 4 3 4 3 16 

B-Joint    1   1 

NWK  1 3    4 

B-P 5 4  2 1  12 

NO-1000  5   3 4 12 

B-1000 3 3   5 5 16 

C-1000 2    2  4 

Hexachlorocyclohexane (HCH) congeners did not feature prominently in any product profiles, 

possibly reflecting the slightly lower lipophilicity of this compound group. The DDT group included 

the highest concentration of any single compound, with 13 ng/g lipid p,p’-DDE detected in Nature’s 

Own 1000 mg standard fish oil product, equalling a maximum daily dose 120 ng of p,p’-DDE. 

Notably, only one krill oil formulation (Swisse) showed detectable levels of ∑DDT. p,p’-DDE has 

repeatedly been found to be one of the dominant congeners accumulating in Antarctic krill and their 

predators [26,33–38]. Previously, the authors have reported a comprehensive overview of baseline 

contamination in Antarctic krill [26], with HCB and p,p’-DDE dominating the described profiles. 

Further, team studies on dependent populations of humpback whales (Megaptera novaeangliae), found 

that the profiles of these predators closely mirrored the profiles of their principal prey, Antarctic krill. 

In the case of the krill oil products analysed in the current study, however, only trace (440 pg/g lipid or 

daily dose)  

levels were quantified in the Swisse krill oil brand which may indicate purification through the 

manufacturing process. 

Detectable levels of chlordanes were observed in only three products, namely Bio-Organics Super 

Liquid fish Oil (30 ng per maximum daily dose), Bioceuticals Omegasure fish oil (4.6 ng per 

maximum daily dose) and Nature’s Way Kidsmart (0.1 ng per daily dose). Similarly, endosulfan-I was 

only detected at trace levels (390 pg/g lipid) in BioOrganics Super Liquid fish oil. 

Toxaphene structures were not quantified in five of the eleven products due to loss of the analytes 

during clean-up. However, notable quantities were detected in Cenovis 1000 mg (19 ng/daily dose; 

0.15% TDI) and Bioceuticals Omegasure fish oil (16 ng/daily dose; 0.14% TDI). Only trace levels of 

toxaphene were quantified in Nature’s Way Kidsmart and Blackmores Pregnancy and Breastfeeding 

formulation. These congeners were undetectable in Blackmores Joint formula and BioOrganics Super 

Liquid fish oil. 

Chlorobenzenes (penta- and hexa-) were quantified in eight of eleven products at levels ranging 

from 27–9900 pg/maximum daily dose. Antarctic krill products carried the highest levels of 

chlorobenzene contamination for both penta- and hexa- congeners. The higher levels of particularly 

HCB, in Antarctic krill oil is not surprising as this has repeatedly been shown to be the compound 
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dominating POP profiles of the Antarctic sea-ice ecosystem food-web [26,33,34]. The finding that 

levels were greater than any other product categories, sourced from other global regions, however, was 

unexpected as HCB has been postulated to be approaching global equilibrium [39]. This finding does 

not support equilibrium conditions and may be reflective of cold trapping or remobilisation processes of the 

compound in Polar Regions, combined with steady removal from temperate or tropical source regions. 

Polychlorinated biphenyls (PCBs) were detected in all products at cumulative levels ranging from 

0.01% TDI (Blackmores Joint formula) to 0.94% TDI (Blackmores 1000 mg). Krill oil products were 

at the lower end of the spectrum (0.034% and 0.015% TDI for Swisse and Norkrill krill oil 

respectively), as is expected, given the manufacturing applications of these compounds and the lower 

historical usage in the southern hemisphere. 

Dioxins and furans encompass a class of compounds which are not intentionally produced, but 

originate primarily through the manufacture of other chlorinated chemicals or combustion processes. 

Whilst the highest detected levels of any single dioxin or furan congener was 73.0 pg/g lipid of 

octachlorodibenzodioxin (OCDD) found in Bioceuticals Omegasure fish oil, only the krill oil products 

contained multiple detectable congeners. This is surprising given the low vapour pressure of dioxins 

and furans which predict long range atmospheric transport in association with particles. This in turn 

lowers their potential for effective transport to the Antarctic. Toxicity equivalencies (TEQ) are 

available for dioxins, furans and a sub-set of planar PCBs, and are calculated based upon their 

common mode of action. The single highest TEQ for any product analysed was obtained for 

Blackmores 1000 mg standard fish oil product which yielded a TEQ of 5.6 TEQ or 4.7% of the 120 TEQ 

TDI. Swisse Krill oil, however, also featured among the top five highest ranking TEQ products. 

Dioxins, furans and planar PCBs are among the POP compounds most effeciently removed by 

common fish oil cleaning processes [40]. This finding therefore raises two possibilities. Either some of 

the fish oil products analysed are subject to one or more chemical purification steps during 

manufacture, reducing their original TEQ values to the ones observed here, with krill oil apparently not 

being subject to the same procedures. Alternatively processing and handling itself may have 

introduced contaminants to the krill oil product that were not present in the raw oil. The dioxin/furan 

profiles of krill oil here do not match the profiles of whole Antarctic krill previously analysed [25], 

providing support for the latter. 

4. Conclusions 

This study compared a range of readily available fish and krill oil dietary supplements for both their 

favourable long-chain omega-3 composition and content, as well as their persistent organic pollutant  

profiles. All products and categories adhered closely to manufacturer specifications and none exceeded 

chemical guideline thresholds. When krill oil was compared across categories to other fish oil products 

and formulations, it was the most expensive oil per 500 mg DHA + EPA and adhered to manufacturer 

EPA and DHA specifications. The two krill oil products were ranked as intermediate in terms of their 

levels of POP contaminants when compared overall to the remaining omega-3 nutriceutical products 

selected for this study, with distinct chemical profiles reflecting their geographical region of origin. 

This study is the first to provide quantitative evaluation of toxicological profiles of Antarctic krill 

products, an emerging nutriceutical category. It hereby balances consumer information with regard to 
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marketing of krill oil on the basis of product chemical purity. Ongoing monitoring of the pollutant 

content of fish and krill oil products will become increasingly important as food authorities seek 

regulatory overview of this rapidly expanding industry. 
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