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Abstract: The neural mechanisms underlying susceptibility to eating more in response to large
portions (i.e., the portion size effect) remain unclear. Thus, the present study examined how neural
responses to portion size relate to changes in weight and energy consumed as portions increase.
Associations were examined across brain regions traditionally implicated in appetite control (i.e., an
appetitive network) as well as the cerebellum, which has recently been implicated in appetite-related
processes. Children without obesity (i.e., BMI-for-age-and-sex percentile < 90; N = 63; 55% female)
viewed images of larger and smaller portions of food during fMRI and, in separate sessions, ate four
meals that varied in portion size. Individual-level linear and quadratic associations between intake
(kcal, grams) and portion size (i.e., portion size slopes) were estimated. The response to portion size
in cerebellar lobules IV–VI was associated with the quadratic portion size slope estimated from gram
intake; a greater response to images depicting smaller compared to larger portions was associated
with steeper increases in intake with increasing portion sizes. Within the appetitive network, neural
responses were not associated with portion size slopes. A decreased cerebellar response to larger
amounts of food may increase children’s susceptibility to overeating when excessively large portions
are served.

Keywords: fMRI; portion size; food cue reactivity; eating behavior

1. Introduction

Serving larger portions of food increases intake across a variety of food types [1] and
environmental settings [2,3]. The tendency to consume more food in terms of weight and
energy when exposed to larger portions (i.e., “the portion size effect”—PSE) emerges as
early as infancy [4] and is evident across the lifespan [1]. The PSE is persistent up to five
days with no compensation evident in children, leading to sustained increases in energy
intake [5]. As excess energy intake is associated with the development of obesity and
long-term health risks [6,7], it is important to understand the neurobiological mechanisms
that underly this behavior.

The control of eating behavior involves a network of cortical (e.g., prefrontal cor-
tex, insula) and subcortical (e.g., basal ganglia, amygdala, hippocampus, hypothalamus)
regions that integrate exteroceptive signals (e.g., visual portion size cues) with intero-
ceptive signals from the gut and periphery [8,9]. This network contributes to a range
of processes relevant for appetitive behavior, including energy homeostasis, perception,
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reward responsiveness, learning, memory, cognitive regulation, and interoception [9–11].
The presentation of visual food cues (e.g., images) elicits patterns of neural engagement
across the appetitive network [12] that are associated with eating behaviors in both chil-
dren [13,14] and adults [15–17]. For example, prior analyses from our group [14] found
that greater activation to images of larger (vs. smaller) portions of food in the orbitofrontal
cortex (OFC) and ventromedial prefrontal cortex (vmPFC) was positively associated with
children’s food intake in response to larger food portions, whereas the opposite relationship
was observed in the inferior frontal gyrus (IFG). These data suggest that susceptibility
to the PSE is associated with neural responses to food portion size cues in brain regions
implicated in valuation (e.g., OFC, vmPFC) and cognitive control (e.g., IFG). Nevertheless,
these analyses only examined neural responses in a limited number (n = 9) of regions using
a region-of-interest-based approach; thus, a more comprehensive voxel-wise examination
of the appetitive network is needed to identify regions sensitive to the PSE.

Although the cerebellum is typically excluded or minimally integrated into models
of eating behavior [8–11], it is involved in many processes that may contribute to food
intake including sensorimotor [18], reward [19,20], affective [21], and cognitive [22,23]
processing. Growing evidence suggests that the cerebellum contributes to hunger and
satiety processing [24,25], meal anticipation [26,27], taste processing [28], visual food cue
processing [29–32], and satiation/meal cessation [33] through connections with cortical
and subcortical regions [25,33]. For example, cerebellar neurons respond to food cues and
nutrients, and their activation can suppress food intake via signals to subcortical reward
pathways [34]. In humans, there is evidence that cerebellar responses to food cues (e.g.,
images, commercials) differ by the adolescent weight status [30], child-reported loss of
control eating [35], and parent-reported child food responsiveness [29], suggesting that
cerebellar processing of visual food cues may contribute to pediatric eating behaviors.
Therefore, it is important to characterize how cerebellar processing of food cues relates to
objectively measured intake in youth.

Our group’s prior examination of associations between neural food cue reactivity and
the PSE tested a cohort that was heterogeneous in body weight [14]. However, since the
weight status is associated with both neural responses to food cues [36] and the PSE [5],
including children with and without obesity may confound results. Taking this into
account, the present study aimed to examine how neural responses to food images varying
in portion size relate to the PSE in children without obesity. To do so, children who had
BMI-for-age-and-sex percentiles < 90 viewed images of larger and smaller portions of food
during functional magnetic resonance imaging (fMRI), and individual-level PSEs were
estimated from intake of four laboratory meals that varied in portion size. We hypothesized
that children’s patterns of intake across the four portion size meals would relate to their
neural responses to portion size within an a priori-defined appetitive network and the
cerebellum. More specifically, we anticipated that increased susceptibility to the PSE would
be associated with greater activation to larger vs. smaller portion size cues in regions
implicated in reward and value processing (e.g., OFC, vmPFC) and less engagement in
regions implicated in cognitive control (e.g., dorsolateral PFC, IFG), interoception (e.g.,
insula), and satiation (e.g., cerebellum).

2. Materials and Methods
2.1. Participants

As part of a 7-visit, prospective study aiming to identify risk factors for pre-adolescent
obesity (ClinicalTrials.gov, NCT03341247), 88 (45 male, 43 female) children (mean [SD]
age = 7.8 [0.62] years) attended 6 baseline visits. Children were accompanied by the parent
primarily responsible for feeding decisions and were required to be 7–8 years old and have
a BMI-for-age-and-sex percentile < 90 (i.e., not have obesity). Children were ineligible if
they were colorblind, not reading at grade level, not fluent in English, had a learning (e.g.,
dyslexia) or neurodevelopmental disorder (e.g., ADHD), had a diagnosed psychological
condition (e.g., anxiety), were taking medications known to influence appetite, cognition,
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or blood flow, or had any MRI contraindications (e.g., metal in the body, claustrophobic).
Consent and assent were obtained in accordance with the Institutional Review Board of
The Pennsylvania State University.

Neural responses to food and non-food cues in this cohort has been examined in a
separate paper [37], and the PSE has been examined in a larger behavioral sample [38]. The
associations between food cue reactivity and the PSE in the present publication have not
been reported elsewhere.

2.2. Data Collection

Data for the present analyses were collected across six baseline visits between 2017 and
2022, with an ~8-month interruption due to the COVID-19 pandemic (study protocol and
materials are available on Open Science Foundation at https://osf.io/ynjqw/, accessed
on 21 February 2024). Procedures pertinent to the present analyses include the collection
of demographics (see Section 2.2.1) and anthropometrics (see Section 2.2.2), assessment
of parent-reported child appetitive traits (see Section 2.2.3), laboratory meals to assess the
PSE (see Section 2.2.4), a mock-MRI protocol (see Section 2.2.5), and a food-cue task during
fMRI (see Sections 2.2.6 and 2.2.7; Figure 1). Parents were instructed to have their child fast
for at least 3 h prior to each visit to create a physiological state similar to what would be
experienced prior to a meal.
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Figure 1. Timeline of procedures related to the present analyses. During visit 1, parental consent and
child assent were obtained in accordance with the Institutional Review Board of The Pennsylvania
State University, anthropometrics were assessed, and parents reported demographic information.
During visits 2–5, children were served four meals that varied in portion size. During visits 4 and
5, children completed a 2-session mock-MRI protocol to familiarize them with the scanning envi-
ronment. During visit 6, children completed a food-cue task during functional magnetic resonance
imaging (fMRI).

2.2.1. Demographics

Parents completed a questionnaire assessing child race and ethnicity, yearly family
income, and parental education (see Table 1). Family income and maternal education were
included as separate indicators of the socioeconomic status [39].

Table 1. Regions in appetitive network mask.

Region Brodmann Area (s)

Dorsolateral prefrontal cortex 9, 46
Anterior prefrontal cortex 10

Orbitofrontal cortex 11, 12
Insula 13, 14, 16

Associative visual cortex 19
Subgenual area 25

Dorsal anterior cingulate cortex 32
Fusiform 37

Primary gustatory cortex 43
Inferior frontal gyrus 44, 45, 47

Hippocampus -
Hypothalamus -

Globus pallidus (lateral, medial) -
Caudate (body, tail, head) -

Putamen -
Substantia nigra -

Subthalamic nucleus -
Amygdala -
Midbrain -

https://osf.io/ynjqw/
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2.2.2. Anthropometrics

Children’s height and weight were measured twice by a trained researcher using a
standard scale (Scale Tronix model 5002, Welch Allyn, Chicago, IL, USA; precision to nearest
0.1 kg) and stadiometer (precision to nearest 0.1 cm), respectively. Children removed shoes
and heavy clothing items prior to measurement. The BMI-for-age-and-sex percentile was
computed using averaged height and weight measurements based on growth charts from
the Centers for Disease Control and Prevention [40].

2.2.3. Laboratory Portion Size Meals

Across four visits, children were served four laboratory meals that varied in the
amount of food served [38]. Meals contained varied amounts of macaroni and cheese,
chicken nuggets, broccoli with margarine, and grapes, as well as fixed amounts of ketchup,
and ad libitum access to water. The smallest portion size condition was the reference
amount, and subsequent conditions increased all food weights by 33%, 66%, and 99% rela-
tive to the reference amount (Table S1). Reference amounts were based on the Continuing
Survey of Food Intake by Individuals [41] and previous laboratory meal paradigms [14,42].
The order of portion sizes was randomly assigned and counterbalanced across the four
meals. Foods were weighed before and after meals to the nearest 0.1 g, and nutrition facts
labels or reliable online databases (https://fdc.nal.usda.gov/, accessed on 20 December
2023) were used to convert the weight consumed to kcal.

Prior to each meal, children reported liking in response to tasting small samples
(~2–3 g) of the meal foods using a five-point facial hedonic scale. They also reported fullness
using a child-friendly visual analogue scale before and after each meal [43]. Children were
told they had 30 min to eat ad libitum until they reached satiation. If they reached satiation
before 30 min, they could notify the researcher. Children were notified during the meal
when 15 min had passed and when they had a few minutes remaining. Meals were served
in an observation room that had a table and chairs, a rug with child-friendly images (e.g.,
trains), and non-food pictures (e.g., animals) on the wall. To serve as a neutral distraction
during meals, children were read an age-appropriate, non-food-related book by either a
trained researcher or computer (i.e., audio book); methodologies were consistent per child
but switched during the COVID-19 pandemic to comply with social distancing restrictions.
Mealtimes (i.e., lunch or dinner) varied across children based on participant availability
but were consistent per child.

2.2.4. Mock-MRI Protocol

Children completed a two-session mock-MRI protocol [43] to familiarize them with the
scanning environment. During the first session, children visited the mock scanning room
and had an opportunity to ask questions. During the second session, children completed a
mock scanning protocol where they entered a mock MRI bore, viewed non-food images,
experienced simulated MRI sounds, and practiced using the response grip to make ratings.

2.2.5. fMRI Visit Protocol

Children arrived for the fMRI visit following at least a 3 h fast. As individuals
with and without an overweight status show an increased food cue response during fasted
conditions [44], we scanned children in the neutral appetitive state. To achieve this, children
who reported fullness levels below 25% using a child-friendly visual analogue scale [45]
upon arrival were given a snack (6.75 fl oz of apple juice, Quaker Chewy granola bar) and
then re-rated their fullness after consumption. This process was repeated a second time
if a child continued to report fullness below 25%. The fullness rating collected closest to
the scan was used as the index of pre-MRI fullness (imputed for one participant due to
recording error; see Supplement Materials). Before and after the scan, children rated their
state anxiety using the Children’s Anxiety Meter Scale [46].

https://fdc.nal.usda.gov/
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2.2.6. MRI Data Acquisition

A 3 Tesla MRI scanner (Magnetom Trio model, Siemens, Malvern, PA, USA) and
20-channel head coil were used to collect imaging data. A T1-weighted MPRAGE (160 sagit-
tal slices; TR = 1650; TE = 2.03 ms; flip angle = 9◦; FOV = 256 × 256 mm2; voxel
size = 1 × 1 × 1 mm3) was acquired using generalized autocalibrating partially paral-
lel acquisition (GRAPPA; acceleration factor 2) [47]. During each run of the food-cue
task (~2.7 min), 80 T2*-weighted images were acquired using echo planar imaging (EPI;
slice thickness = 3 mm (no gap); 33 descending slices; TR = 2000 ms; TE = 26 ms; flip
angle = 90◦; FOV = 220 × 220 mm2; voxel size = 3 × 3 × 3 mm3). To optimize the temporal
lobe and cerebellar signal based on prior findings relevant to our aims [29], EPI scans were
aligned parallel to the AC–PC line and adjusted vertically. Each EPI scan was preceded
by two unsaved “dummy scans” to establish a stable magnetization state prior to data
collection. Lastly, a field map was acquired using a double-echo gradient-echo sequence
(slice thickness = 3 mm (no gap), 33 descending slices, TR = 400 ms, TE 1 = 5.12 ms,
TE 2 = 7.65 ms, flip angle = 60◦, FOV = 220 × 220 mm2, voxel size = 3 × 3 × 3 mm3).

2.2.7. Food-Cue Task

During the food-cue task, children viewed images of 120 food items and 60 non-
food items (i.e., office supplies) presented one at a time (Figure 2). Images were sourced
from a standardized dataset [47] and presented above smiley and frowny faces on a black
screen (Figure 2A). To encourage engagement and attention during the task, children were
instructed to indicate whether they wanted each item by pressing one of two buttons with
their dominant hand (index finger for “no”/frowny face and thumb for “yes”/smiley face).
Food images were categorized based on the amount (i.e., portion size; larger, smaller) and
energy density (ED; higher: <1.5 kcal/g, lower: <1.5 kcal/g), creating four conditions with
30 images each: (1) a larger amount of higher-ED food, (2) larger amount of lower-ED food,
(3) smaller amount of higher-ED food, and (4) smaller amount of lower-ED food. Food
items depicted included those served during the meals (macaroni and cheese, chicken
nuggets, broccoli, and grapes) as well as other foods commonly consumed by children (e.g.,
strawberries, cake, deli meat, pizza). Portions depicted in the smaller-amount condition
were based on servings from nutrition facts labels and reflected amounts consumed per
eating occasion by children in the 1990s [41]. Office supplies were also categorized based
on the amount (larger, smaller), creating two conditions. Images were presented in a
block design over five runs; each run began with a 4.0 s fixation and contained one block
(n = 6 images) per cue condition (i.e., six blocks per run; Figure 2B). Each image was
presented for 2.0 s followed by a 0.5 s fixation. Each block was followed by an 8.0 s fixation.
Children viewed blocks in one of two pseudorandomized and counterbalanced orders.
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Figure 2. Food-cue task. Children viewed images of food and non-food (i.e., office supply) items
from a standardized dataset [47] in a block design. Images were categorized into six conditions with
30 images each: (1) larger amount of higher-energy-dense (ED) food, (2) larger amount of lower-ED
food, (3) smaller amount of higher-ED food, (4) smaller amount of lower-ED food, (5) larger amount
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of office supplies, and (6) smaller amount of office supplies. Images were presented over five ~2.7 min
runs. (A) Image presentation: Images were presented on a black screen above a smiley face and
a frowny face. For each image, children answered the question “do you want this?” by pressing
one of two buttons with their dominant hand (index finger for “no”/frowny face and thumb for
“yes”/smiley face). (B) Example run: Each run contained one block per image condition. Block orders
were pseudorandomized across runs. Each block contained six images. Each image was presented for
2.0 s followed by a 0.5 s fixation cross on a black screen. Each block was followed by an 8.0 s fixation
cross on a black screen.

2.3. fMRI Data Processing

Standard preprocessing steps were implemented using fMRIPrep 20.2.3 [48] (see
Supplementary Materials for full report). MNI’s unbiased template for pediatric cohort
3 (MNIped; ages 7–11 y) [49,50] was used for volume-based spatial normalization. Brain
masks from BOLD signal (i.e., BOLD brain masks) and head-motion parameters were
estimated from functional scans. Susceptibility distortion correction was applied to func-
tional scans using a field-map-based approach (n = 62) or field-map-less approach (n = 1) if
field-map quality was poor. Functional scans were also slice-time corrected (i.e., realigned)
to the middle of each TR, co-registered to anatomical space, and resampled into MNIped
space. Preprocessed data were visually inspected using summary reports generated by fM-
RIPrep. If quality of preprocessed data was poor, scans were excluded (see Section 2.5.1) or
reprocessed. Data were subsequently blurred with a 6 mm FWHM Gaussian kernel, scaled
so results could be represented as percent signal change, and analyzed (see Section 2.5.5)
using AFNI v21.3.04 [51,52].

Individual-level general linear models (GLMs) included 1 parameter per food cue
condition and were modeled by convolving block onset times and durations with the
canonical hemodynamic response function. Onset times were shifted by subtracting half
a TR (i.e., 1 s) to account for fMRIPrep’s default slice-time realignment to the middle
of each TR. In addition, GLMs included 14 nuisance regressors computed by fMRIPrep
(6 rigid-body motion parameters and their derivatives, average signal within CSF and
white matter masks). To ensure analyzed data were acquired during a stable magnetization
state, the first two volumes of each run and any additional steady-state outliers identified
by fMRIPrep were censored. To reduce the effects of motion, volumes with a framewise
displacement [53] > 0.9 mm were censored, matching the motion threshold used by the
Adolescent Brain Cognitive Development (ABCD®) Study [54]. Runs with >20% of volumes
censored across task blocks were excluded from GLMs. A first-level portion size contrast
(larger–smaller food amounts, across ED) was generated from each GLM.

2.4. Masks

Separate appetitive network and cerebellum masks were generated using the Wake For-
est University (WFU) PickAtlas toolbox for Statistical Parametric Mapping 12 (SPM12 [55]).
Masks were dilated by 4 mm to avoid small, isolated regions and irregular boundaries and
restricted to voxels scanned in at least 80% of children (e.g., to only include voxels inside the
brain). Regions in the appetitive network mask (Table 1) were selected based on previous
reviews [11,56,57]; cortical regions were defined using Brodmann areas; and subcortical
regions were defined based on anatomical boundaries (Figure 3). The cerebellum was
anatomically defined (Figure S1).
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Figure 3. Appetitive network mask: (a) Sagittal slices with appetitive network mask (red) overlayed
on MNI’s unbiased template for pediatric cohort 3. Regions included in mask are listed in Table 1;
(b) coronal slice with appetitive network mask (red) overlayed on MNI’s unbiased template for
pediatric cohort 3. Blue vertical lines indicate location of sagittal slices depicted in (a).

2.5. Group-Level Analyses
2.5.1. Analysis Sample

Children were excluded from analyses if they declined to enter the MRI (n = 4), did
not complete at least 3 runs of the food-cue task (n = 4), or had fewer than 3 runs included
in first-level analyses (see Section 2.3; n = 17). Children were also excluded from some
analyses of eating behavior if they had data for <4 meals (due to measurement error) and
thus could not be included in quadratic fixed-effects individual slopes models (n = 3; see
Section 2.5.2). In addition, children were excluded from analyses within the appetitive
mask if they had a reduced cortical field of view identified via visual inspection (n = 2). In
sum, sample sizes for analyses ranged from N = 58 to 63.

2.5.2. Estimation of Individual-Level Portion Size Slopes

The PSE (i.e., relationship between portion size and intake) was estimated for both
weight (g) and energy (kcal) of food consumed. As large portions of food have been shown
to increase intake in a curvilinear manner [58,59], we tested both linear and quadratic
PSE models: (1) intake (g or kcal)~intercept + linear portion size, and (2) intake (g or
kcal)~intercept + linear portion size + quadratic portion size. In subsequent sections, we
refer to the linear slope of the linear model as the “linear portion size slope” and the
quadratic slope of the quadratic model as the “quadratic portion size slope”. Meal portion
size was modeled using the proportion increase from the reference portion (i.e., 0, 0.33, 0.66,
0.99) so that a 1-unit increase in portion size reflects the estimated change in intake between
the reference portion and approximately the largest portion (100% increase). Fixed-effects
individual slope (FEIS) models were used to extract child-specific slope estimates for the
linear and quadratic PSE models (feisr 1.3.0 [60] in R 4.2.2 [61]). Both models were adjusted
for meal-related influences on intake (i.e., pre-meal fullness, average pre-meal liking of
foods at the meal, and meal order).

2.5.3. Descriptive Statistics

Histograms and Kolmogorov–Smirnov tests were used to assess the normality of
linear and quadratic portion size slopes and imaging covariates (i.e., pre-MRI fullness,
pre-MRI anxiety, framewise displacement). The mean and standard deviation are reported
for normally distributed quantitative variables while quartiles (25% (Q1), 50%, 75% (Q3))
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are reported for non-normally distributed variables. Pearson correlations were used to
assess associations between linear and quadratic portion size slopes estimated for weight
and energy consumed (Table S2). Associations between portion size slopes and child
characteristics (age, BMI percentile, sex) were assessed using Pearson correlations for
age and BMI percentile and 2-sample t-tests for sex (Table S3). Demographic variables
and imaging covariates were compared between children included and excluded from
analyses using 2-sample t-tests and χ2 or Fisher’s Exact Test for continuous and categorical
variables, respectively.

2.5.4. Wanting Responses during the Food-Cue Task

Using lme4 1.1-32 [62] in R 4.2.2 [61], a mixed-effects linear model with the subject as
the random effect was used to compare the percent of items children reported wanting per
block (%want) during the food-cue task between larger and smaller portion size conditions;
models predicted %want from portion size (larger, smaller), controlling for the run. The
estimated marginal means (EMMs) and corresponding 95% confidence intervals from this
model are reported for larger and smaller portion size conditions.

To explore whether wanting responses might mediate the observed association be-
tween neural responses and the PSE, a post hoc correlation was conducted between the
average difference in %want between larger and smaller portion size conditions and the
neural response to portion size (larger–smaller) extracted from the cerebellar cluster associ-
ated with the quadratic portion size slope identified in fMRI analyses (see 2.4.5).

2.5.5. Neural Responses to Portion Size and the PSE

Within each mask (see Section 2.4), four regression analyses (3dttest++) were used
to test associations between the neural response to portion size (larger–smaller) and
child-specific portion size slopes; models included parameter estimates from (a) linear or
(b) quadratic PSE models (see Section 2.5.2) estimated from (a) weight (g) or (b) energy (kcal)
of food consumed. The predictors of interest include the linear and quadratic portion size
slopes. Since individual slope estimates (e.g., linear slope) cannot be interpreted outside
the context of the overall curve for each child (e.g., linear slopes depend on intercepts),
all child-specific FEIS model coefficients were included in regression models (i.e., linear
model: intercept + linear slope; quadratic model: intercept + linear slope + quadratic slope).
Models were adjusted for average framewise displacement, sex, pre-MRI fullness, and
pre-MRI anxiety to control for their potential effects on the BOLD response. Within each
mask, cluster thresholds derived from 3dClustStim [63] were used to adjust for multiple
comparisons (voxel-wise threshold p < 0.001, cluster-corrected to p < 0.05). To examine
whether significant results were confounded by the weight status, sensitivity analyses were
conducted by including the BMI percentile as a covariate.

3. Results
3.1. Participant Characteristics

The analyzed sample was predominantly White (n = 61; 97%) and non-Hispanic/Latinx
(n = 63; 100%), had family incomes > USD 50,000 and had mothers with a bachelor’s degree
or higher (Table 2). Children included and excluded from analyses did not differ in demo-
graphics (ps > 0.59), pre-MRI anxiety (p > 0.05), or pre-MRI fullness (p > 0.88). As expected,
children included in analyses exhibited less motion (i.e., average framewise displacement)
during the food-cue task than those excluded (t(19) = −4.6, p < 0.001).

Table 2. Participant characteristics by analysis inclusion status.

Included (N = 63) Excluded (N = 25)

Sex
Male 30 (47.6%) 15 (60.0%)

Female 33 (52.4%) 10 (40.0%)
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Table 2. Cont.

Included (N = 63) Excluded (N = 25)

Age, yrs
Mean (SD) 7.82 (0.587) 7.79 (0.595)
Min, Max 7.00, 8.99 7.03, 8.81

Family Income
<USD 51,000 9 (14.3%) 2 (8.0%)

USD 51,000–USD 100,000 28 (44.4%) 14 (56.0%)
>USD 100,000 24 (38.1%) 8 (32.0%)

Missing 2 (3.2%) 1 (4.0%)
Maternal Education
<Bachelor’s Degree 13 (20.6%) 5 (20.0%)
Bachelor’s Degree 30 (47.6%) 11 (44.0%)

>Bachelor’s Degree 19 (30.2%) 9 (36.0%)
Missing 1 (1.6%) 0 (0%)

BMI Percentile
Mean (SD) 47.0 (25.5) 49.0 (24.2)
Min, Max 3.91, 89.3 6.69, 89.5

Pre-MRI Fullness
Mean (SD) 71.3 (30.1) 70.2 (33.2)
Min, Max 4.00, 150 3.00, 139
Missing 1 (1.6%) 0 (0%)

Pre-MRI Anxiety
Median [Q1, Q3] 2.0 [0.0, 3.0] 3.0 [0.75, 6.0]

Min, Max 0, 10 0, 10
Missing 0 (0%) 1 (4.0%)

Average Framewise
Displacement

Median [Q1, Q3] 0.30 [0.19, 0.38] 1.52 [0.89, 1.67]
Min, Max 0.0800, 1.29 0.500, 4.79
Missing 0 (0%) 6 (24.0%)

3.2. Child-Specific Portion Size Curves

Child-specific linear portion size slopes (adjusted for meal order, average liking, and
fullness) ranged from a decrease of 194 g or 205 kcal to an increase of 370 g or 647 kcal
between the reference and largest portion sizes (Table 3). Despite the large range, 76%
and 73% of children had positive linear portion size slope estimates for weight and energy
consumed, respectively, indicating that most children increased intake with increasing
portions as expected. Adjusting for meal order, average liking, and fullness, 38% (n = 23) of
children had positive quadratic portion size slopes estimated from weight consumed, while
50% (n = 37) had positive quadratic portion size slopes estimated from energy consumed.
Example quadratic portion size curves can be found in Figure S2.

Table 3. Descriptive statistics for portion size slopes estimated from weight (g) and energy
(kcal) consumed.

Portion Size Slope N Mean (SD) Min, Max

Linear portion size slope, g a 63 58.0 (113) −194, 370
Linear portion size slope, kcal b 63 124 (175) −205, 647
Quadratic portion size slope, g c 60 −66.8 (419) −953, 1090

Quadratic portion size slope, kcal d 60 −26.8 (628) −1500, 1470
a Slope extracted from linear fixed-effects individual slope (FEIS) model predicting weight consumed (g). b Slope
extracted from linear FEIS model predicting energy consumed (kcal). c Slope extracted from quadratic FEIS model
predicting weight consumed (g). d Slope extracted from quadratic FEIS model predicting energy consumed (kcal).

3.3. Behavioral Responses during the Food-Cue Task

The median response rate during the food-cue task was 97.5% (Q1 = 95.8%, Q3 = 99.2%).
The percentage of items wanted per block (%want) did not significantly differ between
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larger (EMM = 66.9; 95% CI: 62.1–71.6) and smaller (EMM = 68.3; 95% CI: 63.6–73.1) portion
size conditions (F(1, 1141.2) = 1.02, p = 0.31). The average difference in %want between
larger and smaller portion size conditions was not significantly correlated with the neu-
ral response to portion size (larger–smaller) in the cerebellar cluster associated with the
quadratic portion size slope (see Section 3.4.2; r(56) = −0.50, p = 0.62).

3.4. Associations between Neural Responses to Portion Size and the PSE
3.4.1. Appetitive Network Mask

In models adjusted for framewise displacement, sex, pre-MRI fullness, pre-MRI anxiety,
and FEIS model coefficients, there was no association between the linear or quadratic
portion size slopes (weight or energy) and neural response to portion size (larger vs.
smaller) within the appetitive network (p > 0.05).

3.4.2. Cerebellum Mask

Adjusting for the same variables listed above (Section 3.4.1), the quadratic portion size
slope estimated from gram intake was negatively associated with the neural response to
portion size (larger–smaller) in cerebellar lobules IV–VI (MNI peak: 7, −62, −13; cluster
size = 1853 1 × 1 × 1 mm3 voxels; peak z-statistic = −4.83; Figures 4 and S3). More positive
quadratic portion size slopes were associated with lower activation to images depicting
larger compared to smaller food portions while more negative quadratic portion size slopes
were associated with greater activation to images depicting larger compared to smaller
food portions. Therefore, children who showed steeper increases in weight consumed
with increasing portion sizes had lower cerebellar activation to images depicting larger
compared to smaller food portions. In contrast, children who showed plateaus of or steeper
declines in weight consumed with increasing portion sizes had greater cerebellar activation
to images depicting larger compared to smaller food portions (see Figure 4). Results were
similar after additionally adjusting for the BMI percentile (MNI peak: 7, −61, −13; cluster
size = 1935 1 × 1 × 1 mm3 voxels; peak z-statistic = −4.94). Cerebellar responses to portion
size were not associated with linear portion size slopes (g or kcal) or the quadratic portion
size slope estimated from kcal.
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portion size slope estimated from gram intake (N = 58): (a) z-statistic map for prediction of BOLD
response to portion size (larger–smaller) by quadratic portion size slope controlling for sex, average
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framewise displacement, pre-MRI fullness, and pre-MRI anxiety, and intercept and linear slope from
quadratic FEIS model. Analyses were conducted within cerebellum mask. Quadratic portion size
slope was negatively associated with activation in cluster (blue) spanning cerebellum lobules IV-VI
(peak: 7, −62, −13; k = 1853 1 × 1 × 1 mm3 voxels; peak z-statistic = −4.83); (b) scatterplot of adjusted
BOLD response to portion size (larger–smaller; y-axis) vs. quadratic portion size slope (x-axis). BOLD
responses to portion sizes were extracted from cluster depicted in (a) and adjusted for covariates
included in imaging analyses. Using individual-level intercepts and slopes estimated from quadratic
FEIS models, portion size curves (i.e., predicted gram intake vs. percent increase in portion size from
reference portion) were plotted for three subjects (circled in green) to exemplify patterns of intake for
children with negative (left), approximately zero (middle), and positive (right) quadratic slopes.

4. Discussion

The present study examined how neural responses to food portion size relate to the
PSE in children without obesity. Results revealed an association between food cue activation
in the cerebellum (culmen, declive) and the amount (weight) of food consumed across
meals varying in portion size. As cerebellar activation to larger (relative to smaller) portion
sizes increased, children exhibited plateaus or steeper declines in intake with increasing
portion sizes. Conversely, as cerebellar activation to larger (relative to smaller) portion
sizes decreased, children exhibited steeper increases in intake with increasing portion sizes.
These findings suggest that decreased cerebellar activation in response to larger amounts
of food may increase children’s susceptibility to overeating when faced with “supersized”
portions of food.

Cerebellum lobules IV–VI (culmen, declive) are implicated in multiple processes
relevant to feeding behavior [34], including leptin sensitivity [24], chewing [64], food cue
reactivity [29,30], reward anticipation and expectation [19], and emotional conditioning [65].
For example, in adults with leptin deficiency, a greater number of days of receiving leptin
replacement was associated with greater lobule VI activation to high-energy food vs. non-
food images [24], suggesting hormones that influence satiety alter food cue responding
in the cerebellum. The function and structure of lobules IV–VI have also been associated
with self-reported eating behavior (e.g., disinhibition [66], loss of control [35,67]) and
weight status [24,68–70]. These findings, along with our observation that activation in
lobules IV–VI relates to objectively measured food intake in children, indicate that cerebellar
processes contribute to susceptibility to overconsumption.

With the addition of the present findings, there is growing evidence that intact cere-
bellar function supports the development of satiation [25,71] and meal cessation [33]. For
example, in mice, the activation of anterior deep cerebellar nuclei reduced meal size and
feeding duration, leading to reductions in food intake [33]. This change was mediated
by blunted phasic dopamine responses to food consumption, suggesting the cerebellar
induction of satiation via reward-related pathways (i.e., hedonic satiation [34]). Low and
colleagues [33] proposed that the cerebellum fine-tunes predictive reward signals by inte-
grating information about the expected nutrient value from food (or food cues) with the
physiological nutrient status. Over the course of a meal, cerebellar neurons sense the nutri-
ent status and induce dopamine efflux, leading to an eventual blunting of food-dependent
phasic dopamine responses that is necessary to reduce the value of further consumption
and bring about meal cessation [33]. Thus, children who have reduced cerebellar activation
to larger portions of food may not be adequately fine-tuning predictive reward signals
based on the nutrient status during a meal, enabling sustained motivation to eat and
delayed meal cessation when they are presented with excessively large portions. This
postulation aligns with behavioral research demonstrating that increased susceptibility
to the PSE in children is associated with decreased sensitivity to internal fullness signals
(i.e., satiety responsiveness) and increased sensitivity to external food cues (i.e., food re-
sponsiveness) [5]. Alternatively, in line with behavioral research showing associations
between the PSE and executive functions [38], the cerebellum may influence satiation via
the modulation of cognitive processes [72,73]. PFC–cerebellar interactions are thought
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to enable the optimization of behaviors according to context [74], and the modulation
of PFC–cerebellar interactions has been shown to modulate food-induced appetite and
hunger in individuals with obesity [25]. As the cerebellum is implicated in a variety of
additional processes that could underlie its association with child appetitive behavior (e.g.,
oral behaviors [75,76], ocular control to visualize objects of interest [77], affect [78]), our
interpretations are speculative, and additional research is needed to delineate the role of
the cerebellum in meal cessation and the PSE.

In contrast to our hypotheses, we did not observe associations between portion size
slopes estimated from weight or energy consumed and neural responses within the appeti-
tive network (i.e., a mask of cortical and subcortical regions implicated in the control of
food intake). This is in contrast to a previous study in 7–10-year-old children [14] where
linear and quadratic relationships between portion size and intake were modulated by
neural responses to portion size cues in the OFC, vmPFC, IFG, and caudate. Differences in
results may be due to demographic differences between the samples: the present sample
was younger (7–8 years) than the sample in [14] and did not include children with obesity.
As puberty influences the development of brain regions implicated in reward and cognitive
control [79], associations observed in older children may not generalize to younger children.
Further, neural responses to portion size in brain regions associated with valuation and
cognitive control may not influence food intake prior to the development of excess adipose
tissue. In addition, differences in results may be due to methodology: the present study
examined susceptibility to the PSE with fixed-effect individual slope models rather than
mixed-effects models and examined voxel-wise associations within a masked area rather
than using a region-of-interest-based approach. The two studies also used different data
processing methodology (e.g., choice of structural atlas, use of spatial smoothing) and
software, which could impact results. To better understand how neural responses within
the appetitive network relate to the PSE, future research should test the moderating effects
of puberty and the weight status and compare analytic methods.

This study has several strengths. First, we objectively measured food intake to quantify
intake rather than using self-reported measures of dietary behavior, which are subject to
misreporting [80]. Second, intake was assessed at four laboratory meals, allowing us to
capture both linear and quadratic relationships between intake and portion size. Third,
using a voxel-wise analytic approach within masks allowed us to explore associations
between individual-level portion size slopes and neural responses within a larger brain
area than previous region-of-interest-based analyses [14]. Despite these strengths, the
sample size of the present study was smaller than proposed (https://www.clinicaltrials.
gov/study/NCT03341247, accessed on 20 December 2023) due to data loss (e.g., from
motion) and difficulty recruiting during the COVID-19 pandemic. Small sample sizes
can increase the risk of both false negatives and false positives [81]; thus, results will
need to be replicated in other samples. In addition, the sample was predominately White
and not Hispanic, so results may not generalize to more diverse populations. Further,
while objective assessment of food intake mitigates error compared to self-report methods,
eating behaviors observed in the laboratory may not generalize outside the laboratory
environment. Lastly, the identified association between cerebellar function and intake was
observational and does not indicate causality. The causal relationship between cerebellar
function and the portion size effect could be tested empirically by modulating cerebellar
activation (e.g., with transcranial direct current stimulation, as performed in [25]) prior to
assessments of food intake.

This is the first study to examine how neural responses to portion size cues across
the appetitive network and cerebellum relate to changes in objectively measured intake
as portion sizes increase. The present results suggest that decreased cerebellar activation
to large portion size cues in children without obesity may be a risk factor for overeating
in response to large portions. Based on prior studies [25,33,71], reduced activation may
influence the PSE by increasing hunger or reducing satiation via reward or cognitive
mechanisms; nevertheless, additional research is needed to test this. If future research

https://www.clinicaltrials.gov/study/NCT03341247
https://www.clinicaltrials.gov/study/NCT03341247
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supports a causal mechanism between cerebellar function and the PSE, interventions that
modulate cerebellum activity (e.g., non-invasive stimulation [82], mindfulness training [83],
cognitive training [84], cognitive behavioral therapy [85]) may mitigate increased intake in
response to large portions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nu16050738/s1, Figure S1: Cerebellum mask; Table S1:
Amount of food served by portion size condition; Table S2: Pearson correlation coefficients between
individual-level portion size slopes; Table S3: Associations between portion size slopes and child
characteristics; Figure S2: Example portion size curves for gram intake; Figure S3: Association
between cerebellar response to portion size and quadratic portion size slope with example portion
size curves. References [37,86,87] are cited in Supplementary Materials.
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