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Abstract: Our study harnesses the power of natural language processing (NLP) to explore the
relationship between dietary patterns and metabolic health outcomes among Korean adults using
data from the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII).
Using Latent Dirichlet Allocation (LDA) analysis, we identified three distinct dietary patterns:
“Traditional and Staple”, “Communal and Festive”, and “Westernized and Convenience-Oriented”.
These patterns reflect the diversity of dietary preferences in Korea and reveal the cultural and social
dimensions influencing eating habits and their potential implications for public health, particularly
concerning obesity and metabolic disorders. Integrating NLP-based indices, including sentiment
scores and the identified dietary patterns, into our predictive models significantly enhanced the
accuracy of obesity and dyslipidemia predictions. This improvement was consistent across various
machine learning techniques—XGBoost, LightGBM, and CatBoost—demonstrating the efficacy of
NLP methodologies in refining disease prediction models. Our findings underscore the critical
role of dietary patterns as indicators of metabolic diseases. The successful application of NLP
techniques offers a novel approach to public health and nutritional epidemiology, providing a deeper
understanding of the diet–disease nexus. This study contributes to the evolving field of personalized
nutrition and emphasizes the potential of leveraging advanced computational tools to inform targeted
nutritional interventions and public health strategies aimed at mitigating the prevalence of metabolic
disorders in the Korean population.

Keywords: dietary pattern; obesity; dyslipidemia; language model; natural language processing
(NLP); explainable artificial intelligence (xAI)

1. Introduction

Disease prediction stands as a paramount research focus across myriad biomedical
fields. Particularly, the prediction of food- and nutrition-related diseases assumes significant
prominence in light of the rapid advancements in data mining and artificial intelligence
(AI). Numerous studies have leveraged these advancements to explore disease prediction
within the realm of food and nutrition. For instance, Shetty et al. (2017) applied Bayesian
and K-Nearest Neighbor algorithms to diabetes patient databases, taking into account a
multitude of diabetes attributes to predict the disease [1]. Similarly, Mir and Dhage (2018)
constructed diabetes disease prediction classifier models using the Waikata Environment
for Knowledge Analysis (WEKA), while Sisodia and Sisodia (2018) endeavored to devise
a model capable of forecasting the likelihood of diabetes with maximum accuracy using
Pima Indians Diabetes Database (PIDD) data [2,3]. Fitriyani et al. (2019) proposed a
disease prediction model geared towards providing early predictions for type II diabetes
and hypertension based on individual risk factor data [4]. Furthermore, Mishra et al.
(2016) demonstrated that filter-based feature selection methods enhance the effectiveness
of learning algorithms in diagnosing and predicting diabetes [5].
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Building on this enduring interest in disease prediction, recent advancements have
been made in the analysis of metabolic diseases. Particularly, dietary patterns have taken
center stage in food and nutrition studies. Numerous investigations have underscored
the profound impact of dietary patterns on metabolic diseases. For instance, Minich and
Bland (2008) deliberated on various dietary strategies for managing metabolic syndrome,
focusing on specific foods and nutritional phytochemicals known to influence insulin
signaling [6]. Similarly, Kim et al. (2019) examined dietary patterns associated with obesity
using the Korea National Health and Nutrition Examination Survey (KNHANES) data,
while Ahluwalia et al. (2013) posited that dietary patterns offer a comprehensive, real-life
approach to dissecting the intricate relationship between diet and disease [7,8].

Given this context, the current study seeks to predict representative metabolic diseases,
such as obesity and dyslipidemia, by utilizing NLP techniques and AI algorithms from a dietary
pattern perspective based on an individual’s one-day diet as single text and natural language
processing (NLP) techniques. We also sought to verify the enhancement in predictive power
provided by our NLP analysis using an explainable artificial intelligence (xAI) technique.

2. Method
2.1. Study Population

The KNHANES provides a critical foundation for analyzing dietary habits and health
outcomes across various segments of the South Korean population. By categorizing par-
ticipants across a spectrum of demographic variables from geographic location to socioe-
conomic status, this dataset enables a nuanced understanding of nutrition and health
trends and disparities. Adhering to the ethical guidelines of the Declaration of Helsinki,
the collection and use of KNHANES data underscore a commitment to ethical research
practices, with the Korea Disease Control and Prevention Agency’s approval emphasiz-
ing the importance of these standards. Furthermore, written informed consent from all
participants reinforces this ethical foundation.

In this study, we undertook a comprehensive data preprocessing phase of the 2016–2018
(KNHANES VII) dataset. The demographic information of KNHANES VII is presented in
Table 1. The inclusion of data specific to 17 major cities and provinces facilitates in-depth
analysis of regional dietary patterns and health outcomes, revealing the impact of local
food availability, cultural preferences, and socioeconomic factors on dietary choices. This
regional diversity is complemented by insights into urban versus rural living conditions,
with distinctions between types of townships and housing conditions offering perspectives
on how environmental factors influence nutritional habits and, by extension, health.

Table 1. Demographic information of KNHANES VII data.

Column Description Category

REGION 17 cities

1. Seoul;
2. Busan;
3. Daegu;
4. Incheon;
5. Gwangju;
6. Daejeon;
7. Ulsan;
8. Sejong;
9. Gyeonggi;
10. Gangwon;
11. Chungbuk;
12. Chungnam;
13. Jeonbuk;
14. Jeonnam;
15. Gyeongbuk;
16. Gyeongnam;
17. Jeju.
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Table 1. Cont.

Column Description Category

TOWN_T Townships
1. Dong;
2. Eup/Myeon.

APT_T Apartment
1. Non-apartment;
2. Apartment.

SEX -
1. Male;
2. Female.

AGE 1–80 *

INCM Income quantiles (individual)

1. Low;
2. Medium low;
3. Medium high;
4. High.

HO_INCM Income quantiles (household)

1. Low;
2. Medium low;
3. Medium high;
4. High.

INCM5 Income quintiles (individual)

1. Low;
2. Medium low;
3. Medium;
4. Medium high;
5. High.

HO_INCM5 Income quintiles (household)

1. Low;
2. Medium low.
3. Medium;
4. Medium high;
5. High.

EDU Education level

1. Graduated elementary school or lower;
2. Graduated middle school-;
3. Graduated high school;
4. Graduated college or higher.

OCCP

Occupational reclassification and
unemployment/non-economic
activities
(except conscripted soldiers)

1. Managers, professionals, and related personnel;
2. Office workers;
3. Service and sales workers;
4. Skilled workers in agriculture, forestry, and fisheries;
5. Skill personnel and equipment and machine operation

and assembly workers;
6. Simple labor workers;
7. Unemployed (housewife, student, etc.).

* 80 years of age or older marked as 80.

Demographic variables such as gender and age are integral to evaluating nutritional
needs and health risks, while socioeconomic factors including income quantiles, education
level, and occupational status provide a comprehensive framework for assessing how
economic and social conditions affect dietary habits and health outcomes. The bench-
mark model developed from this demographic information focuses on forecasting health
outcomes based on demographic factors alone. Compared to the benchmark model, our
proposed model extends prior research [9,10] and highlights the continued relevance of
KNHANES VII in Korean nutritional and health outcomes.

2.2. Methodology
2.2.1. Data Preprocessing

The first stage involved the elimination of erroneous entries, including instances where
data were misplaced across columns and distortions in column values such as the listing of
food items under the weight category. This action yielded 17,774 unique food items from
the dataset.
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Subsequent stages of normalization and cleaning were characterized by the removal
of outliers—terms that were only represented once in the dataset. This was based on the
presumption that such rarities would minimally impact the modeling process. Furthermore,
efforts were made to standardize the food items by excluding English letters, numerals,
and special symbols. This was performed to accommodate variations in the annotator’s
entries. As variations in spelling may arise from factors such as accents or typographical
errors, all food items were subjected to a Korean spelling test using Hanspell, a Python
software version 1.0, based on NAVER’s Korean spelling checker, accessed on 19 February
2023 [11].

Post cleaning and standardization, the remaining dataset contained 1653 unique food
items across 179,846 rows, which constituted 78.89 percent of the original dataset [12,13].

For the subsequent analysis, words were replaced with word vectors that encapsulated
their meanings based on distributional semantics. The underlying hypothesis is that words
in close proximity within a distribution share similar meanings. In this representation, each
word is depicted as a continuous vector of a predetermined dimension in a variance table.

In this study, we employed advanced word vectorization techniques to cluster similar
food items, significantly streamlining the preprocessing phase and reducing the reliance
on manual data handling. This method enhanced speed and accuracy compared with
traditional manual data processing approaches. To enrich our analysis, we leveraged
morpheme-processed corpora from Korean Wikipedia, Soynlp, and KorQuad, integrating
these resources to refine our understanding of the linguistic structure of food names [14,15].
Recognizing the unique aspects of the Korean language, which can be segmented alphabet-
ically, our analysis included a detailed consonant-level examination. Both consonant and
syllable units were analyzed using advanced word embedding techniques, maintaining a
1:1 processing ratio.

The vector representation of food names in our study was visualized through a two-
dimensional scatter plot, generated via Principal Component Analysis. This visualization,
with the x- and y-axes representing reduced dimension vectors of food names, facilitated
an intuitive understanding of the clustering of similar food items. Adjustments were
implemented to address the diversity of food names found within specific clusters, utilizing
the cluster numbers linked to each food name for reference. The examination of data
from 2016 to 2018 led to the discovery of 835 unique food names. The incorporation of
additional preprocessing methods, such as the Modu Corpus, and the exclusion of data from
2007–2009 (KNHANES IV), led to slight deviations in the final list of food names compared
with those identified in the study by Choi et al. (2022) [9].

The final list of food names was derived by calculating the weighted average of
each participant’s food intake frequency, which was then normalized by the frequency of
keyword inclusion to yield a refined upper value of the computed value, ensuring a precise
and accurate representation of food item relevance in the dataset.

2.2.2. Sentiment Analysis

We leveraged sentiment analysis, a potent text mining technique, to probe the attitudes
and opinions manifest in written or spoken content concerning food items. Sentiment
analysis enables us to discern the tone of text—whether positive or negative—providing
invaluable insights for examining a diverse range of content, from articles and movie
reviews to social media posts [16,17].

To conduct sentiment analysis, we employed a machine learning strategy that in-
tegrates two sophisticated algorithms: the Convolutional Neural Network (CNN) [18]
and the Bidirectional Long-Short Term Memory (BiLSTM) network [19]. The synergy
of CNN and BiLSTM in our combined CNN-BiLSTM model facilitates the computa-
tion of a sentiment score for textual content related to food, shedding light on the pos-
itive or negative sentiments tied to specific food names. This sentiment score is quan-
tified using a mathematical function that assigns “1” to positive sentiments and “0” to
negative sentiments.
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The CNN algorithm, typically associated with image classification tasks, is repurposed
in our study as a text analysis tool, enabling the detection of patterns within text data.
Conversely, the BiLSTM model excels in processing sequential data, making it perfectly
suited for text analysis where the sequence of words plays a pivotal role. This integration
leverages the strengths of both models in sequence processing and pattern recognition,
significantly enhancing the accuracy of sentiment analysis in our research.

In the architecture of our CNN-BiLSTM model, various layers are meticulously de-
signed to process and analyze text data effectively. Starting from an input layer that receives
the text, the process progresses through an embedding layer that converts words into mean-
ingful numerical vectors. The architecture is further strengthened with dropout layers to
prevent overfitting and dense layers that facilitate decision-making, culminating in a model
with 806,189 trainable parameters. This reflects the model’s complexity and its capacity to
learn intricately from text data.

For the model’s initialization, we opted for the He initialization method, renowned for
its efficacy in models employing ReLU activation functions [20]. We selected the AdamW
optimizer, an enhancement of the classic Adam optimizer, for its refined ability to adjust
learning rates and decouple weight decay from gradient updates, thus optimizing model
training efficiency [21].

We conceptualized entire menus as discrete textual entities, synthesizing sentiment
analysis into a singular metric—hereafter referred to as the “sentiment score”. This innova-
tive approach allowed us to interpret concatenated menu items as unified textual segments,
thereby streamlining the extraction and analytical process of sentiment values. This method
provides a refined means of examining the relationship between dietary choices and health
conditions, such as diabetes and dyslipidemia, by distilling complex data into a single,
interpretable dimension.

2.2.3. Dietary Pattern Extraction

We utilized Latent Dirichlet Allocation (LDA) [22], a robust tool in the domain of natu-
ral language processing (NLP), to analyze textual data from the KNHANES VII conducted
between 2016 and 2018. LDA is particularly effective at revealing hidden patterns, themes,
or structures within extensive volumes of text, making it exceptionally suited for analyzing
the complex and diverse dietary information gathered in the survey.

LDA operates under the assumption that documents (for our purposes, individual
dietary records) consist of a blend of topics (which we will refer to as “patterns”), with
a pattern being identified as a group of words that commonly appear in conjunction.
In the analysis of text data, LDA assigns each word in a document to a specific pattern
based on the probability of the word belonging to that pattern. This assignment is guided
by two principal parameters: one that determines the likely number of patterns to be
found in each document and another that dictates the number of words expected in each
pattern. These parameters are crucial for fine-tuning the model to mirror the data’s inherent
structure accurately.

The application of LDA in our study facilitated a systematic reduction in high-
dimensional dietary information into a concise set of patterns that accurately reflect the
population’s dietary habits. Being an unsupervised machine learning model, LDA does
not necessitate predefined categories, thereby allowing for the unbiased identification of
natural groupings of dietary information based on the actual data.

Our implementation of LDA employed Gibbs sampling, a statistical method that
iteratively assigns words to patterns until a stable distribution of patterns across documents
is achieved. This method is particularly beneficial for accurately capturing the subtle
nuances of dietary patterns within the population.

The primary aim of applying LDA to the dietary data was to condense the extensive
and varied information into distinct dietary patterns that could be analyzed in relation to
health outcomes such as obesity and dyslipidemia. By identifying these patterns, we strive
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to enhance the understanding of the association between various dietary habits and these
health conditions.

After identifying dietary patterns, we determined the optimal number of dietary
patterns to ensure that the patterns identified were both statistically robust and meaningful
within the context of dietary research. To select the optimal number of patterns for the LDA
model, we evaluated both perplexity and topic coherence metrics [23,24]. In our study, we
implemented a unique approach to analyze dietary patterns by utilizing binary columns
corresponding to the identified patterns. For each individual, if their diet aligns with a
specific pattern, the column representing that pattern is marked with a “1”, while all other
pattern columns are set to “0”. This method ensures that for each row—representing an
individual’s dietary data—only one column receives a “1”, indicating the predominant
dietary pattern for that person. This binary system allowed us to clearly and efficiently
categorize dietary habits into distinct patterns, facilitating a focused analysis of how each
pattern is related to health outcomes like obesity and dyslipidemia.

2.2.4. Target Diseases’ Definitions

In our analytical framework, the classification targets—obesity and dyslipidemia—are
defined using precise criteria reflective of the health challenges pertinent to the Asia-Pacific
demographic standards.

Obesity is classified when an individual’s Body Mass Index (BMI) reaches or ex-
ceeds a threshold of 25. This benchmark is in accordance with the criteria established for
populations in the Asia-Pacific region [25].

Dyslipidemia is identified through a comprehensive evaluation of lipid profiles,
marked by one or more of the following conditions [26]:

• A triglyceride (TG) level at or exceeding 200 mg/dL, or a total cholesterol level
surpassing 240 mg/dL, indicating elevated lipid concentrations that pose significant
health risks.

• An HDL-cholesterol (high-density lipoprotein cholesterol) level falling below the
threshold of 40 mg/dL in males or 50 mg/dL in females, reflecting the protective
lipid’s insufficiency against cardiovascular diseases.

• An LDL-cholesterol (low-density lipoprotein cholesterol) level at or above 160 mg/dL,
highlighting an increased risk of atherosclerotic cardiovascular events. If TG levels
were below 400 mg/dL, LDL-cholesterol was calculated using the Friedewald formula
to recalibrate the LDL-cholesterol value [27].

2.2.5. Machine Learning-Based Classification

We used a machine learning approach to predict obesity and dyslipidemia by an-
alyzing dietary data. This comprehensive methodology integrates advanced machine
learning algorithms for classification, sentiment analysis for nuanced data interpretation,
and statistical testing to validate the performance of our models. Below is a logical reor-
ganization and expansion of our research methodology, incorporating the evaluation of
model performance and the application of statistical tests.

Our analysis began with the application of balanced accuracy (BA) and the F1 score as
the primary metrics to evaluate model performance, addressing the challenge of imbalanced
data representation of obesity (32.9%) and dyslipidemia (45.7%). These metrics were
derived from the general confusion matrix using the following formulas:

Balanced Accuracy =

(
True Positive

True Positive+False Negative +
True Negative

True Negative+False Positive

)
2

(1)

F1 Score =
2 × True Positive

2 × True Positive + False Positive + False Negative
(2)
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The performance measures represent the average outcomes of ten cross-fold tests, accom-
panied by 95% confidence intervals, ensuring the robustness and reliability of our findings.

To classify obesity and dyslipidemia, we strategically employed three gradient-boosting
algorithms: XGBoost [28], LightGBM [29], and CatBoost [30]. Each was chosen for its
specific strengths in handling the complexities of dietary data, ensuring a comprehensive
analysis. XGBoost is valued for its efficiency with large datasets, LightGBM for its speed
and precision across a wide range of dietary variables, and CatBoost for its adept handling
of categorical data, which is prevalent in dietary studies. The combined use of these models
enhances the robustness of our experiments, providing a multifaceted approach to ensure
reliable and generalizable findings in assessing the relationship between diet and these
health conditions. We trained 50 epochs for each set with the early stopping method and
randomly divided the whole dataset into ten sets. We used eight sets as the training set, one
set as the validation set, and the remaining one set as the test set. For the nine sets, we used
k-fold cross-validation. For the performance evaluation, we used binary cross-entropy.

We digitized the data by converting textual food item names into a format compat-
ible with deep learning and machine learning methodologies. This digitization process
involved vectorizing the dataset’s vocabulary, primarily composed of food names, into
high-dimensional numerical vectors through one-hot encoding. This technique ensures
that each unique food item is distinctly represented, enabling further analysis.

To enhance the specificity of our analysis, we employed the Term Frequency-Inverse
Document Frequency (TF-IDF) technique for vectorization. The TF-IDF method effectively
accentuates the importance of various food items within the dietary logs, weighing them by
both their frequency and their uniqueness across all entries. This process yields a nuanced
numerical representation that captures the significance of each food item within the broader
context of dietary patterns.

To strengthen the robustness and applicability of our findings, we implemented a
10-fold cross-validation scheme. By partitioning the data into ten subsets and iteratively
using each subset for validation and the rest for training, we mitigated the risk of overfitting
and enhanced the stability of our model’s performance metrics. Our focus on cross-
validation ensured that our model evaluations—reflected in balanced accuracy and F1
scores—were both stable and reliable.

The optimization of our models was carried out using the Optuna [31] library, con-
ducting a series of ten trials with balanced accuracy set as the optimization target. This
meticulous tuning was instrumental in refining the predictive capabilities of our mod-
els. For interpretability, a critical component for actionable insights, we integrated Tree-
SHAP [32,33], which enabled us to measure how individual dietary factors influenced the
health outcomes being investigated.

In addition to the models’ performance, sentiment analysis was incorporated to classify
the dietary records, enriching the dataset with insights derived from natural language
processing. This sentiment analysis was trained across 50 epochs for each data subset,
utilizing early stopping to prevent overfitting. The dataset was randomly divided into ten
sets—eight for training, one for validation, and one for testing—with k-fold cross-validation
applied to the remaining nine sets. Performance evaluation was conducted using binary
cross-entropy, providing a measure of the model’s ability to distinguish between the binary
classification targets.

To validate the effectiveness of incorporating NLP-based indices into our models
in improving the prediction of obesity and dyslipidemia, we conducted a paired t-test
comparing the performance of the benchmark model against the model enhanced with the
NLP indices. Statistical analysis was performed using the Python package “scipy,” version
1.0, accessed on 19 February 2023 [34]. We indicated “***” for p-values of the paired t-test
below 0.01, “**” for p-values of 0.01 or higher but below 0.05, and “*” for p-values of 0.05 or
higher but below 0.1 and did not mark anything otherwise.
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3. Results

The study participants’ demographic summaries are in Table 2. Our study encom-
passes a diverse cohort of 16,809 participants drawn from KNHANES VII dataset. The
demographic breakdown reveals a slight female majority, with 57.5% female participants
and 42.5% male. The age distribution is fairly even across the adult lifespan, with 32.7%
aged between 19 and 39 years, 35.9% between 40 and 59 years, and the remaining 31.4%
aged 60 years and above.

Table 2. Summary of study participants.

Feature Category Feature Proportion (%)

Sex Demographic Male 7144 (42.5%)
Female 9665 (57.5%)

Age Demographic
19–39 5296 (32.7%)
40–59 5814 (35.9%)
60+ 5077 (31.4%)

House type Demographic General 7831 (46.6%)
Apartment 8978 (53.4%)

Highest level
of education

Demographic
Graduated elementary school 3288 (19.6%)
Graduated high school 6342 (37.8%)
Over associate
degree/bachelor’s degree 5639 (33.5%)

Obesity Disease
Obesity 5535 (32.9%)
Normal 11,311 (67.1%)

Dyslipidemia Disease
Dyslipidemia 1350 (45.7%)
Normal 1605 (54.3%)

Total 16,809

In terms of living arrangements, a slight majority of 53.4% reside in apartments,
with the remainder 46.6% living in general housing. Educational attainment among the
participants varies, with 19.6% having graduated from elementary school, 37.8% from high
school, and 33.5% holding an associate degree or higher.

Within the participant population, health indicators show that obesity is present
in 32.9% of individuals, and dyslipidemia is observed in 45.7%. These figures indicate
that more than a third of the surveyed group is affected by these metabolic disorders,
underscoring the significant impact on public health.

3.1. Dietary Pattern Extraction Results

In our comprehensive analysis utilizing LDA, we unearthed three prominent di-
etary patterns from the data collected from the Korean participants. These patterns of-
fer a panoramic view of the prevailing food choices and their implications for health
and nutrition.

Table 3 delineates the most frequently occurring food items within each identified
pattern, and Figure 1 depicts the estimated term frequencies for the top ten food char-
acteristics of each pattern. The first pattern, which can be described as “Traditional and
Staple”, is replete with items such as “Kimchi”, “Instant Coffee”, “Milk”, “White Rice”, and
“Multigrain Rice”. This pattern is emblematic of a diet steeped in Korean culinary heritage,
with a staggering 67.1% of participants and 62.3% of the textual mentions aligning with this
group. The prevalence of this pattern underscores the quintessential role these foods play
in daily consumption and reflects the cultural gastronomic identity. The dietary preferences
exhibited here also shed light on the potential health benefits and drawbacks associated
with a diet rich in rice-based dishes and fermented products.
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Table 3. Most frequent keywords that appeared in the patterns.

Rank Pattern 1 Pattern 2 Pattern 3

1 Kimchi Mix of Red Pepper Paste and Soybean Paste Americano
2 Instant Coffee Pork Belly Fried Chicken
3 Milk Lettuce Mayonnaise
4 White Rice Red Pepper Fish Cake Soup
5 Multigrain Rice Cold Noodle Ramen
6 Soybean Paste Soup Onion Salty Snack (Cookie)
7 Kimchi Stew Soju Chicken Breast
8 Apple Grilled Mushrooms Soda
9 Roast Seaweed Orange Juice Sausage
10 Stir-Fried Anchovy Duck Meat Beer

Proportion of participants 67.1% 17.4% 15.5%
Proportion of tokens 62.3% 15.0% 22.7%
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The second pattern, labeled as “Communal and Festive”, captures the essence of Ko-
rean social and celebratory dining experiences, spotlighting items like “Mix of Red Pepper
Paste and Soybean Paste”, “Pork Belly”, “Lettuce”, and “Cold Noodles (Naengmyeon)”.
Accounting for 17.4% of participants, this pattern likely mirrors the convivial nature of Ko-
rean meals, where savory meats and piquant side dishes are central to social gatherings and
festivities. This pattern is particularly insightful for understanding the nutritional nuances
of communal eating habits, including the preference for richer, more flavorful dishes.

The third pattern, termed “Westernized and Convenience-Oriented”, reflects a shift
towards globalized food preferences, with items such as “Americano”, “Fried Chicken”,
“Mayonnaise”, and “Ramen” taking center stage. This pattern, embraced by 15.5% of
participants, is indicative of an inclination towards fast food and processed products. The
significant representation of these items, coupled with a notable 22.7% of textual mentions,
raises critical considerations regarding their influence on public health issues, including
obesity and metabolic disorders.

3.2. Predicting Diseases and Analyzing Disease Prediction Results
3.2.1. Obesity Prediction Results

In our rigorous examination of obesity prediction methodologies, we scrutinized the
efficacy of three state-of-the-art machine learning algorithms—XGBoost, LightGBM, and
CatBoost. As detailed in Table 4, our empirical findings reveal a marked elevation in
predictive accuracy following the integration of NLP-based indices, particularly sentiment
scores and pattern-based binary variables.

Table 4. Performance comparison results of obesity prediction results.

Machine
Learning Model Performance Measure Benchmark Model NLP-Based Indices

Included Model T-Statistic p-Value

XGBoost Balanced accuracy 0.5276 0.5879 15.2015 0.0000 ***
F1 score 0.4958 0.5813 13.6947 0.0000 ***

LightGBM Balanced accuracy 0.5194 0.5855 15.1472 0.0000 ***
F1 score 0.4752 0.5754 18.7120 0.0000 ***

CatBoost Balanced accuracy 0.5276 0.5879 15.2015 0.0000 ***
F1 score 0.4958 0.5813 13.6947 0.0000 ***

Note: We indicated “***” for p-values of the paired t-test below 0.01.

When juxtaposed against the baseline benchmark model, our enriched models, infused
with these NLP-derived indices, exhibited substantial gains in the key performance indica-
tors. Remarkably, the assimilation of sentiment scores and pattern-based binary variables
bolstered model efficacy. Illustratively, within the XGBoost framework, we observed an
increase in balanced accuracy from 0.5276 to 0.5879 and an augmentation of the F1 score
from 0.4958 to 0.5813.

The statistical significance of these enhancements was corroborated by paired t-tests,
yielding T-statistics that spanned from 13.6947 to 18.7120 and p-values at a trifling
0.0000 ***, decisively refuting all null hypotheses at the stringent alpha threshold of 0.01.
This unambiguously signifies that incorporating NLP-based indices fortifies the prognostic
capabilities of our models in discerning obesity risk.

Although not visually presented here, Figure 2 is posited to articulate the mean
absolute SHAP values across the models, shedding light on the contribution of individual
features to the predictive acumen. Applying SHAP values, with a 95% confidence interval
and predicated on nine degrees of freedom, affords nutrition professionals a simple and
interpretable understanding of the determinants influencing the model outcomes. Our
analysis confirmed that the influence of “sentiment_score” was consistently profound
across all models in predicting obesity. Additionally, while the impact of pattern-based
binary variables was relatively modest, their positive values nonetheless contributed to
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the predictive process, thereby validating the significance of our NLP-based variables in
forecasting obesity.

3.2.2. Dyslipidemia Prediction Results

Table 5 presents the comparative results for dyslipidemia prediction using the XGBoost,
LightGBM, and CatBoost algorithms, considering both the benchmark models and those
incorporating NLP-based indices. Notably, the introduction of NLP-based indices—such
as sentiment scores and pattern-based binary variables—yielded improvements in the
balanced accuracy and F1 score across the models. For instance, the XGBoost model
exhibited an increase in balanced accuracy from 0.5497 to 0.5956 and an increase in the F1
score from 0.5461 to 0.5937.

Table 5. Performance comparison results of dyslipidemia prediction results.

Machine
Learning Model Performance Measure Benchmark Model NLP-Based Indices

Included Model T-Statistic p-Value

XGBoost Balanced accuracy 0.5497 0.5956 3.8721 0.0019 ***
F1 score 0.5461 0.5937 4.0133 0.0015 ***

LightGBM Balanced accuracy 0.5730 0.5873 1.6280 0.0690 *
F1 score 0.5676 0.5858 2.2078 0.0273 **

CatBoost Balanced accuracy 0.5801 0.6186 3.5572 0.0031 ***
F1 score 0.5741 0.6166 3.8686 0.0019 ***

Note: We indicated “***” for p-values of the paired t-test below 0.01, “**” for p-values of 0.01 or higher but below
0.05, and “*” for p-values of 0.05 or higher but below 0.1 and did not mark anything otherwise.

These enhancements were statistically significant, with p-values indicating a decisive
rejection of the null hypotheses, particularly at an alpha level of 0.1. However, the mag-
nitude of improvement was less pronounced in dyslipidemia than in obesity, with some
measures showing no significant difference depending on the alpha level chosen.
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The experimental findings further highlighted the substantial impact of the sentiment
score in predicting instances of dyslipidemia. In contrast, age emerged as the most influen-
tial feature in the CatBoost model for dyslipidemia prediction. These insights are visually
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corroborated in Figure 3, which illustrates the mean absolute SHAP values across the
ten models.
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The influence of dietary patterns on health outcomes was also underscored, with Pat-
tern 3—characterized by a high frequency of fast foods and convenience items—showing a
particularly strong association with both obesity and dyslipidemia. This pattern’s signifi-
cant predictive value is consistent with the existing literature linking such dietary choices
to metabolic health issues.

The probability of adhering to a rice-based diet (Pattern 1) and a meat-based diet
(Pattern 2) was also found to be a significant determinant in the models’ predictions. This
finding suggests that specific dietary patterns may play a crucial role in the onset and
progression of metabolic diseases.

4. Discussion

Our study applied NLP techniques to discern three distinct dietary patterns among Ko-
rean adults, offering a novel lens through which to view the intricate relationship between
diet and metabolic health outcomes utilizing data from KNHANES VII. In our study, LDA
analysis revealed three distinct dietary patterns among Korean participants, providing a
comprehensive overview of dietary preferences and their health implications. The “Tradi-
tional and Staple” pattern, predominant among 67.1% of the participants, features staples
like Kimchi and rice, highlighting the cultural significance of these foods in daily Korean
diets and their potential health impacts. The “Communal and Festive” pattern, identified
in 17.4% of the participants, emphasizes foods associated with social gatherings, such as
Pork Belly and Cold Noodles, reflecting the social aspect of eating and its nutritional im-
plications. Lastly, the “Westernized and Convenience-Oriented” pattern, chosen by 15.5%
of the participants, comprises fast food and processed items, indicating a trend towards
Westernized dietary preferences and their potential risks for public health, particularly
obesity and metabolic disorders. These findings underscore the varied dietary landscapes
in Korea and their complex relationships with health outcomes, offering valuable insights
for targeted nutritional interventions and public health strategies.
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Moreover, our findings demonstrate a significant improvement in the predictive
models for obesity and dyslipidemia when incorporating NLP-based indices, including
sentiment scores and dietary patterns, compared with traditional benchmark models.
This advancement was observed across all three employed machine learning techniques
(XGBoost, LightGBM, and CatBoost), highlighting the robustness of NLP methodologies in
enhancing disease prediction accuracy.

This research underscores the importance of considering dietary patterns, identified
through sophisticated NLP techniques, as key indicators for metabolic diseases. By integrat-
ing these dietary patterns and sentiment scores into our predictive models, we achieved
statistically significant improvements in forecasting obesity, a testament to the potential of
leveraging NLP-based insights in public health and nutritional epidemiology.

Consequently, our study forges a pioneering integration of NLP techniques with
conventional epidemiological methodologies, aiming to unravel the impact of dietary
intake on metabolic disorders. Utilizing data from KNHANES VII, spanning the years 2016
to 2018, we applied sentiment analysis and LDA to deconstruct and interpret the intricate
narrative of dietary habits. This approach facilitated the extraction of sentiment scores and the
identification of diet-related patterns, each quantified with their corresponding probabilities.

The dietary habits of Korean adults observed in our study resonate with behaviors
documented in preceding research [35,36]. Our predictive methodology for obesity and
dyslipidemia, grounded in food data, corroborates with prior findings. Notably, a “White
Rice and Kimchi pattern”, which aligns with Pattern 1, a rice-based traditional dietary
pattern, is associated with obesity in Korean adults and dyslipidemia, including manifes-
tations such as dyslipidemia and reduced high-density lipoprotein cholesterol levels [36].
Conversely, a dietary pattern distinguished by a high intake of whole grains, legumes,
fruits, and seaweed was inversely related to obesity [37]. Similarly, dietary patterns charac-
terized by high consumption of meat and alcohol, akin to Patterns 2 and 3, were found to
influence dyslipidemia adversely. In contrast, a diet rich in grains, vegetables, and fish was
associated with a reduced risk of developing dyslipidemia and metabolic syndrome [38].

Our study contributes to the field of nutritional science by exploring the application
of AI and NLP techniques. This approach has shown promising potential in supporting
the management of metabolic disorders, including obesity and dyslipidemia. The method-
ological progress we have made encourages further exploration into the integration of
artificial intelligence within nutritional science, offering insights that could be valuable for
the evolving practice of personalized nutrition.

Applying sentiment analysis and topic modeling to dietary intake data in our study
has provided a glimpse into the capacity of NLP methodologies to aid in predicting obesity
and dyslipidemia among the Korean population. The outcomes of this research suggest that
computational tools may play a supportive role in advancing nutritional epidemiology and
public health, enriching our understanding and approach to these complex health issues.

The innovation in our data preprocessing for food menus marks a significant advance-
ment in nutritional research. By streamlining this process, we not only reduced the work-
load and time required to prepare and analyze dietary data but also significantly increased
the speed at which new information can be incorporated into our analysis [35,39]. This
rapid assimilation of data is crucial in the fast-paced field of nutrition, where dietary trends
and health recommendations evolve continuously. Our method ensures that the insights we
derive are both relevant and reflective of the latest dietary behaviors and preferences.

This enhanced processing capability is particularly beneficial for personalized nutri-
tion, a field that relies heavily on up-to-date, individualized data to offer bespoke dietary
advice. By efficiently processing large volumes of dietary information, our approach
supports the creation of dynamic, personalized nutrition plans that can quickly adapt to
changes in an individual’s dietary habits, health status, or emerging scientific evidence. It
enables a more agile response to the unique nutritional needs and preferences of individuals,
facilitating a more targeted and effective approach to dietary counseling and intervention.
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Furthermore, our preprocessing method opens the door to more comprehensive
analyses of dietary patterns and their health implications. By efficiently handling diverse
and complex dietary data [36,40,41], we can explore deeper relationships between food
intake and health outcomes across different populations. This capability allows for a
broader understanding of how specific dietary components contribute to or mitigate the
risk of health conditions such as obesity and dyslipidemia, providing a solid foundation
for developing more effective public health guidelines and nutritional therapies.

In addition, the ability to quickly process and analyze new dietary surveys means that
our nutritional recommendations can stay at the forefront of scientific discovery and public
health trends. This not only enhances the accuracy and relevance of our advice but also
ensures that it is grounded in the most current evidence available. As a result, individuals
can make informed decisions about their diet and lifestyle, empowered by the knowledge
that their choices are backed by the latest in nutritional science.

In essence, the streamlined data preprocessing method we have developed represents
a leap forward in the ability to deliver precise, personalized nutrition advice. By enabling
the rapid integration and analysis of dietary data, we are paving the way for a more
responsive, evidence-based approach to nutrition that can significantly impact individual
and public health outcomes.

Our deployment of NLP, mainly through the LDA algorithm, which is used in various
areas [42], marks a significant stride in understanding the nuanced architecture of dietary
habits beyond the conventional scope identified in related previous works on dietary
patterns [43–47]. This advanced analysis permits a dive into the complex mosaic of food
intake and preferences without the constraints of pre-established dietary categorizations. It
is especially pivotal for the burgeoning field of personalized nutrition, which thrives on the
identification and understanding of distinctive dietary patterns unique to individuals.

This methodological innovation transcends traditional dietary analysis by unlocking
a more dynamic and detailed exploration of dietary habits. By analyzing textual data
from dietary records, the LDA algorithm facilitates the discovery of underlying dietary
themes or patterns that might not be immediately apparent. This capability is indispens-
able in personalized nutrition, where the goal is to tailor dietary advice to the specific
health requirements, lifestyle, and even genetic predispositions of individuals. The precise
identification of dietary behaviors through our NLP approach enables a more nuanced de-
velopment of dietary recommendations, which can be finely tuned to align with individual
health goals and nutritional needs.

Furthermore, our NLP-driven analysis enriches the dialogue on dietary interven-
tions by providing a basis for more informed decision-making in nutritional counseling.
The insights gleaned from the LDA analysis offer a detailed picture of an individual’s
dietary landscape, highlighting potential areas for nutritional optimization. For instance,
the identification of a prevalent reliance on processed foods or a deficiency in fruit and
vegetable intake can inform targeted dietary interventions aimed at mitigating disease risk
or addressing specific health concerns.

Moreover, the application of NLP and LDA in our study augments the precision of
personalized nutrition plans and contributes to the broader discourse on dietary health
and chronic disease prevention. By elucidating the intricate relationships between various
dietary patterns and health outcomes, our methodology paves the way for more effective
public health strategies and nutritional education programs. It champions the cause of
precision nutrition by advocating for dietary advice that is not only scientifically sound but
also personally relevant and actionable.

In essence, our approach embodies a significant advancement in nutritional research
methodology, leveraging the power of AI to delve deeper into the complex web of human
dietary habits. It stands as a testament to the potential of integrating technology and
nutritional science to foster a deeper understanding of diet and health, marking a pivotal
step towards the realization of truly personalized nutrition.
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Our research took a novel approach by targeting obesity and dyslipidemia, assigning a
binary value (1 or 0) to each condition based on the presence or absence of these metabolic
disorders. Through the application of sentiment analysis, we ventured beyond traditional
analysis to understand how the sentiment scores, approaching closer to 1, correlate with an
increased likelihood of developing obesity or dyslipidemia. This methodology underscores
a crucial aspect of our study, highlighting the capability of sentiment analysis not merely as
a tool for gauging general attitudes but as a predictive instrument that can signal potential
health risks associated with dietary patterns.

By focusing on sentiment scores derived from dietary data, we were able to uncover
a significant relationship between the positivity of dietary sentiments and the increased
risk of obesity and dyslipidemia. This finding is instrumental in the realm of personalized
nutrition, where it becomes clear that understanding the nuanced sentiments individuals
hold towards certain foods or dietary habits can offer predictive insights into their health
outcomes. For instance, a higher sentiment score towards foods high in saturated fats and
sugars may indicate a predisposition to obesity and dyslipidemia, providing a valuable
indicator for nutrition professionals to identify at-risk individuals.

In summing up our discussion, by integrating the cutting-edge methodologies of
artificial intelligence, specifically natural language processing and sentiment analysis, with
the nuanced domain of nutritional science, our study endeavors to contribute meaningfully
to the dynamic field of personalized nutrition. We strive to highlight their strengths by
applying their insights to predict dietary trends.

Our exploration into the predictive potential of sentiment analysis, particularly in
relation to obesity and dyslipidemia, offers a fresh perspective on the interplay between
dietary habits and metabolic health. This novel application of AI techniques in nutritional
research aims not only to enrich our understanding of diet-related health outcomes but also
to enhance the precision and personalization of dietary interventions. It is our hope that
these methodological advancements will encourage further inquiry and innovation at the
intersection of technology and nutrition, fostering a deeper, more holistic understanding of
the factors that influence dietary choices and their health consequences [48–50].

5. Conclusions

We embarked on an interdisciplinary journey that melded the realms of artificial
intelligence, specifically NLP techniques, with the intricate field of nutritional science. Our
objective was to illuminate the pathways through which dietary patterns influence the
prevalence of obesity and dyslipidemia within the South Korean population. By harnessing
the vast and detailed dataset provided by the KNHANES VII, we sought to unravel the
complex relationship between diet and these metabolic disorders.

Our approach was twofold: firstly, we applied sentiment analysis to parse the dietary
data, assigning sentiment scores reflecting the positive or negative connotations associated
with food items. This novel application of sentiment analysis gave us a unique lens to
examine how emotional and perceptual attitudes towards certain foods could influence
health outcomes. Secondly, through the use of LDA, we identified distinct dietary patterns
within the population and used them as the features for forecasting obesity and dyslipi-
demia, offering a nuanced understanding of the prevalent eating habits and their potential
health implications.

The integration of these advanced analytical techniques allowed us to generate pre-
dictive models that not only offer insights into the dietary determinants of obesity and
dyslipidemia but also enhance the precision of disease forecasting. Our findings underscore
the significant role that dietary patterns play in the development of metabolic disorders,
reinforcing the notion that a deeper understanding of these patterns is crucial for effective
public health interventions and personalized nutrition.

Our study highlights the transformative potential of combining AI methodologies
with nutritional epidemiology. By employing NLP and sentiment analysis, we were able to
dissect the complex web of dietary information, revealing the intricate ways in which food
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consumption is intertwined with health outcomes. This methodology offers a promising
avenue for future research to elucidate the connections between diet and disease, paving
the way for more targeted and effective nutritional guidance.

In conclusion, our study represents a step forward in the application of AI in nutritional
science, offering novel insights into the dietary determinants of obesity and dyslipidemia. It
underscores the potential of interdisciplinary approaches to enhance our understanding of
the complex relationship between diet and health, advocating for integrating technological
innovations into nutritional research and practice.
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