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Abstract: The escalating prevalence of metabolic and cardiometabolic disorders, often characterized
by oxidative stress and chronic inflammation, poses significant health challenges globally. As the
traditional therapeutic approaches may sometimes fall short in managing these health conditions,
attention is growing toward nutraceuticals worldwide; with compounds being obtained from nat-
ural sources with potential therapeutic beneficial effects being shown to potentially support and,
in some cases, replace pharmacological treatments, especially for individuals who do not qual-
ify for conventional pharmacological treatments. This review delves into the burgeoning field of
nutraceutical-based pharmacological modulation as a promising strategy for attenuating oxidative
stress and inflammation in metabolic and cardiometabolic disorders. Drawing from an extensive body
of research, the review showcases various nutraceutical agents, such as polyphenols, omega-3 fatty
acids, and antioxidants, which exhibit antioxidative and anti-inflammatory properties. All these can
be classified as novel nutraceutical-based drugs that are capable of regulating pathways to mitigate
oxidative-stress- and inflammation-associated metabolic diseases. By exploring the mechanisms
through which nutraceuticals interact with oxidative stress pathways and immune responses, this
review highlights their potential to restore redox balance and temper chronic inflammation. Addition-
ally, the challenges and prospects of nutraceutical-based interventions are discussed, encompassing
bioavailability enhancement, personalized treatment approaches, and clinical translation. Through
a comprehensive analysis of the latest scientific reports, this article underscores the potential of
nutraceutical-based pharmacological treatment modulation as a novel avenue to fight oxidative stress
and inflammation in the complex landscape of metabolic disorders, particularly accentuating their
impact on cardiovascular health.
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1. Introduction

Metabolic disorders represent a spectrum of conditions that have become a significant
burden on global health systems, with diseases such as obesity, type 2 diabetes, dyslipi-
demia, and hypertension at the forefront [1]. These conditions not only contribute substan-
tially to global morbidity and mortality rates but also have far-reaching socioeconomic
consequences, limiting quality of life for millions of people worldwide [2]. Traditional
therapeutic strategies often provide inadequate results, as they do not sufficiently address
the intricate biological mechanisms underlying these diseases [3]. In addition to medical
interventions, it is crucial to emphasize the role of lifestyle changes in managing these
conditions. In particular, oxidative stress, a common factor in metabolic disorders, is often
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exacerbated by overeating or by physical inactivity [4]. Thus, modifications in diet and
exercise are not only recommended but are essential in the prevention and management of
these diseases. Lifestyle interventions, including balanced diets and regular physical activ-
ity, have been shown to significantly reduce the impact of metabolic disorders, addressing
both their symptoms and underlying causes [5].

1.1. Molecular Pathways in Metabolic Disorders

The treatment of metabolic disorders requires a nuanced approach, especially consid-
ering the key molecular pathways involved. For example, the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) plays a pivotal role in inflammation [6]. It is
instrumental in the pathophysiology of atherosclerosis—a primary contributor to cardio-
vascular disease—by promoting the inflammatory response within arterial walls, leading to
plaque buildup and eventual tissue fibrosis [7]. Similarly, the pathogenesis of metabolic and
cardiovascular diseases is intimately linked with the activity of proinflammatory cytokines
(Figure 1) such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) [8,9]. These
cytokines exacerbate metabolic imbalances by promoting insulin resistance, elevating the
levels of free fatty acids in the bloodstream, and contributing to a pro-thrombotic state that
can precipitate vascular events [10].
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To effectively manage metabolic disorders, it is crucial to employ therapies that specif-
ically target and modulate key molecular pathways. Innovative treatments focusing on
the inhibition or regulation of NF-κB, TNF-α, and IL-6 hold great promise in addressing
the intricacies of these diseases’ healthcare [11]. Such strategic interventions could lead to
significantly improved outcomes, particularly for patients at elevated risk of cardiovascular
issues stemming from metabolic dysfunctions. This approach represents a more precise
and potentially impactful strategy in the complex realm of metabolic healthcare [12].

The pathology of metabolic disorders involves an intricate interplay between oxidative
stress and chronic inflammation, which leads to atherosclerosis, tissue fibrosis, and cardio-
vascular disease [13]. Additionally, they are increasingly prevalent and have emerged as
global health challenges posing a serious threat to global health [14,15]. The imbalance of

https://www.biorender.com/


Nutrients 2024, 16, 507 3 of 18

reactive oxygen species (ROSs) and antioxidant defenses is one main factor in the develop-
ment of these conditions. ROSs and free radicals play a complex role in biological systems,
acting as both essential signaling molecules and potential agents of damage [16]. ROSs, a
byproduct of normal cellular metabolism, are involved in cell signaling, homeostasis, and
defense mechanisms. However, an imbalance in ROS levels can lead to oxidative stress,
contributing to cellular damage and a range of metabolic disorders [17,18]. Free radicals,
often generated from environmental factors and cellular metabolic processes, can similarly
cause oxidative damage when not adequately neutralized by antioxidants. Elevated levels
of ROSs can lead to cellular damage. This damage is mediated through lipid peroxidation
and protein oxidation, which in turn promote insulin resistance. The impairment of glucose
metabolism is often a result of alterations in the phosphatidylinositol 3-kinase (PI3K)/Akt
pathway, a critical route for maintaining normal metabolic functions [19]. Additionally,
substantial research has identified the key role that inflammatory signaling pathways play
in metabolic disorders. Molecular targets such as JNK and IKKβ are pivotal in initiating
insulin resistance and endothelial dysfunction. These elements form a critical link between
metabolic imbalance and increased cardiovascular disease risk [20,21].

In metabolic disorders, there is a reciprocal relationship between oxidative stress
and inflammation: oxidative stress activates inflammatory pathways, which then enhance
oxidative stress, creating a vicious cycle [22]. This intricate interplay hastens the progression
of metabolic diseases and highlights the critical need for research into comprehensive
therapeutic strategies that address these underlying molecular pathways. For example, the
modulation of pathways like the Nrf2 signaling pathway, which controls the expression of
antioxidant proteins, and the NF-κB pathway, which regulates inflammation, could provide
targeted intervention strategies for restoring metabolic and cardiovascular balance [23,24].

1.2. Nutraceutical Interventions in Metabolic Disorders

In light of traditional therapies, which have had limited success in treating complex
metabolic disorders, nutraceutical interventions have gained prominence as effective alter-
natives [12]. Polyphenols, resveratrol, and antioxidants like vitamins C and E have been
shown to alleviate oxidative stress in metabolic disorders by bolstering the body’s natural
antioxidant defenses and reducing the production of reactive oxygen species (ROS) [25,26].
Polyphenols from plants show various biological activities, including the reduction in
ROS production by inhibiting enzymes responsible for their generation or binding trace
elements involved in free radical formation. Additionally, they scavenge ROS and enhance
the body’s antioxidant defenses, targeting enzymes like microsomal monooxygenase, glu-
tathione S-transferase, mitochondrial succinoxidase, and NADH oxidase, which are crucial
in ROS generation [27]. Studies have highlighted the antioxidant and anti-inflammatory
capabilities of agents like vitamins E and A in mitigating oxidative stress in these disor-
ders [26]. Vitamin E, essential for cell membrane protection, and Vitamin A, crucial for
cellular integrity and immunity, are particularly notable. Additionally, polyphenols and
omega-3 fatty acids show substantial efficacy in regulating oxidative stress, inflammation,
and insulin resistance. This holistic strategy, utilizing diverse bioactive compounds, offers
an integrated approach to combat oxidative and inflammatory challenges in metabolic
disorders, potentially enhancing the effectiveness of conventional treatments [28].

In this review, we highlight how nutraceuticals interact with and potentially counteract
oxidative stress and inflammation, suggesting that they could rebalance redox states and
reduce chronic inflammation. This review emphasizes the significant promise of nutraceu-
ticals in treating metabolic disorders and their extensive effects on cardiovascular health,
as supported by the latest research. Supported by recent research, our comprehensive liter-
ature search encompassed multiple databases, including PubMed, and Cochrane Library.
We employed a broad spectrum of keywords, such as ‘nutraceuticals’, ‘oxidative stress’, ‘in-
flammation’, ‘metabolic disorders’, and ‘cardiovascular health’, to capture the multifaceted
nature of metabolic disorders and the potential impact of nutraceuticals as in Figure 2.
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Additionally, we strategically combined these terms with specific nutraceuticals and related
pharmacological treatments to ensure extensive coverage of the relevant literature.
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atherosclerosis mitigation, and overall metabolic health enhancement.

2. Challenges in Metabolic Disorders and Nutraceuticals as a Novel Targeting Strategy

Within the domain of metabolic disorders, a complex interplay unfolds between ox-
idative stress and inflammation, setting a cascade of events in motion that significantly
contribute to the advancement of these pathological conditions. Oxidative stress, marked
by an excess of reactive oxygen species (ROS), assumes a central role in initiating and
perpetuating this destructive cycle. Beyond their destructive effects on cellular compo-
nents, ROS functions as signaling molecules that ignite proinflammatory pathways. Recent
studies have elucidated the intricate mechanisms through which ROS impair insulin sig-
naling and promote insulin resistance [29,30]. Conversely, inflammation, a hallmark of
metabolic disorders, exacerbates oxidative stress through various mechanisms. Recent
research highlights how immune cell activation, especially in macrophages and adipocytes,
amplifies ROS production by activating NADPH oxidase [31]. Additionally, the recruitment
of immune cells to adipose tissue, especially macrophages, plays a pivotal role in shaping
the pathophysiological landscape of metabolic disorders. Recent research emphasizes
macrophage infiltration into adipose tissue as a critical factor in obesity-related inflam-
mation and metabolic disorders. This infiltration occurs in response to various signals,
including chemokines and cytokines, secreted by adipocytes and other immune cells within
the adipose tissue microenvironment [32]. This intricate interplay between oxidative stress
and inflammation forms a self-sustaining loop, magnifying cellular damage and hastening
the progression of metabolic diseases.

New insights are needed in the direction of novel therapeutic strategies to over-
come the limitations of traditional approaches, as conventional therapeutic approaches
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are hindered by their inability to address all the multifaceted roles of oxidative stress and
inflammation, as well as the complex signaling pathways involved.

Nutraceuticals: A Novel and Promising Approach

Nutraceuticals are evolving nowadays as a key player in helping to address these
disorders. The bioactive compounds which they are constituted of are derived from natural
sources and possess both nutritional value and pharmacological properties [33].

Polyphenols, which are abundantly found in a variety of foods and drinks, including
vegetables, fruits, tea, and red wine, are among the most studied nutraceutical agents.
Indeed polyphenols—e.g., one of the most studied ones, resveratrol—have obtained con-
siderable attention due to their potent antioxidant effects. A great number of studies
have shown that resveratrol enhances endogenous antioxidant defenses and ameliorates
inflammation. A recent study showed that this molecule decreased ROS production and
reduced inflammation via MAPK pathway inhibition [34]. Furthermore, resveratrol’s abil-
ity to modulate the NF-κB pathway and reduce proinflammatory cytokines underscores
its anti-inflammatory potential [35]. Polyphenols, derived from plants, exhibit a range of
biological activities. Their actions include reducing ROS production by either blocking
enzymes responsible for their creation or by binding trace elements that contribute to free
radical formation. Furthermore, they actively scavenge ROS and bolster the body’s antioxi-
dant defenses. Specifically, polyphenols target enzymes like microsomal monooxygenase,
glutathione S-transferase, mitochondrial succinoxidase, and NADH oxidase, which are key
in ROS generation [36].

These compounds offer protection to lipids, shielding them from oxidative harm. The
presence of free metal ions amplifies ROS production through the conversion of hydrogen
peroxide into the highly reactive hydroxyl radical [37]. Flavonoids, the principal phyto-
chemical compounds in polyphenols, possess a lower redox potential, enabling them to
thermodynamically neutralize extremely oxidizing free radicals, including superoxide, per-
oxyl, alkoxyl, and hydroxyl radicals, through hydrogen atom donation [38,39]. Quercetin,
for instance, is renowned for its iron-chelating and iron-stabilizing properties, with trace
metals binding at specific locations within flavonoid structures [40]. Additionally, they
engage with the aryl hydrocarbon receptor (AhR), a transcription factor that serves as a
sensor for organic compounds, initiating the transcription of numerous detoxification genes.
These genes encode phase I and II metabolizing enzymes, particularly the cytochrome P450
CYP1 sub-family, Nrf2, and glutathione S-transferase (GST) [41].

Among polyphenols, curcumin has attracted great interest for nutraceutical purposes.
It has a wide spectrum of effects, including anti-inflammatory, antioxidant, anticarcinogenic,
antimutagenic, anticoagulant, antidiabetic, antibacterial, antiviral, and neuroprotective
activities. Curcumin has a potent activity as a scavenger for ROS. It also facilitates the
elimination of many reactive oxygen radicals, especially superoxide anions, nitrogen
dioxide radicals, and hydroxyl radicals [42]. In addition, the protective effect of curcumin
on the cardiovascular system has been widely investigated in recent studies. In these
studies, it has been shown that curcumin protects endothelial and vascular functions
against damage, and it can activate SIRT1, inhibit the p53/p21 signaling pathway by
reducing p53 expression and preventing oxidative stress, and activate NRF2, an important
regulator involved in protection against oxidative stress [43–45]. Experimental evidence
alludes to curcumin’s effectiveness as an antidiabetic agent, primarily through its action
on glucose homeostasis. Curcumin activates glycolysis, inhibits hepatic gluconeogenesis,
and reduces lipid metabolism, which helps in controlling blood sugar levels. It has shown
promising results in diabetic mice models, improving hyperglycemia [46,47]. As an NF-κB
inhibitor, curcumin may reduce insulin resistance. Additionally, its role in activating PPARγ
contributes to its hypoglycemic effects. Curcumin has also been found to alleviate obesity-
related ER stress in tissues, thereby improving insulin resistance and glycemic status,
as seen in mouse obesity models. Curcumin effectively reduces systemic inflammation
markers like CRP and NF-κB-related cytokines [48,49]. It also lessens hepatocyte damage
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and oxidative stress while enhancing insulin sensitivity and glycemic control. By activating
PPAR-α and PPAR-γ, curcumin supports fatty acid β-oxidation and facilitates weight loss.
These actions are crucial in preventing nonalcoholic fatty liver disease, metabolic syndrome,
and aiding obesity treatment. Curcumin’s interaction with multiple targets, including
lipoprotein lipase, influences the synthesis and breakdown of triglyceride-rich lipoproteins,
underscoring its multifaceted therapeutic potential [50].

Hydroxy methyl glutaryl CoA (HMG-CoA) reductase is an enzyme involved in choles-
terol biosynthesis in the liver and this enzyme is also target for cholesterol-lowering drugs
like statins [51]. It has been shown that curcumin can inhibit liver HMGCoA reductase
activity and reduce the activity of the HMGR gene encoding this enzyme in the liver.
HMG-CoA reductase inhibitors decrease cholesterol levels by increasing the LDL receptor
on the hepatocyte membrane and thus increase the elimination of LDL [52]. Curcumin
reduces hepatic cholesterol and total cholesterol levels by suppressing hepatic enzymes
HMG-CoA reductase and acyl CoA cholesterol acyltransferase (ACAT). In addition, it
inhibits hepatic fatty acid synthase (FAS) activity and increases the beta oxidation of fatty
acids. Curcumin specifically downregulated FAS, leading to an effective reduction in
fat storage [51,53]. Furthermore, curcumin supplementation was found to suppress the
transcription factors PPARγ and CCAAT binding protein α (C/EBPα), which are essential
transcription factors in adipogenesis and lipogenesis, mainly in adipose tissue. Curcumin
also suppresses the conversion of preadipocytes to adipocytes, which causes the growth
and development of adipose tissue. Curcumin exerts this effect in part by suppressing the
expression of the transcription factor PPARγ. Therefore, suppression of these transcription
factors by curcumin is another potential mechanism by which curcumin contributes to the
suppression of adipogenesis [54,55].

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), specific Omega-3
polyunsaturated fatty acids that are present in fish oil, offer promising potential. Dong
et al. [56] found that combining omega-3s with vitamin D3 reduces systemic inflammation,
while another study showed anti-neuroinflammatory effects of omega-3 docosapentaenoic
acid (DPA) [57]. A meta-analysis of 67 studies involving 310,955 participants highlights
the role of PUFAs in lowering the risk of chronic diseases, especially cardiovascular dis-
eases and mortality, with EPA and DHA from marine sources playing a key role [58].
Omega-3 fatty acids impact gene expression, reducing chronic inflammation, a key factor
in diseases. They inhibit NF-κB, stimulate PPAR-γ, and regulate G protein-coupled recep-
tors [59]. Understanding these mechanisms is crucial for dietary guidelines and managing
inflammation-related diseases. Omega-3s like EPA and DHA influence cellular processes
and epigenetic markers, primarily through NF-κB, PPAR-γ, and G protein-coupled recep-
tors [60]. In a study conducted in rats, the effects of EPA and arachidonic acid (AA) on
proinflammatory markers were compared. EPA reduced NF-κB activation and MCP-1
secretion, while AGT II and IL-6 levels decreased. Omega-3s inhibit NF-κB, reducing
inflammation [61,62]. PPAR-γ interacts with NF-κB, reducing ROS and cytokines [63].
PPAR-γ agonists regulate monocytes and decrease TNF-α, IL-1β, and IL-6 [64]. Studies
suggest that the mechanisms of omega-3 fatty acids are not fully understood, and their
effects on cardiovascular disease remain uncertain. The optimal dosage and timing for
anti-inflammatory responses in humans are unclear [65]. Human diets, influenced by
factors like obesity, physical activity, and stress, are complex and may impact epigenetic
processes [66]. Omega-3s show promise in managing hypertriglyceridemia and reducing
cardiovascular risks [67]. Pharmacological supplements containing DHA + EPA have
shown effectiveness in conditions with elevated triglycerides [67,68].

Omega-3 fatty acids’ ability to reduce cytokines and inflammation-related proteins is
linked to their influence on gene expression regulation in inflammatory cells. Despite their
known benefits, the optimal dosage and duration for these effects are still undetermined,
necessitating further research. The American Heart Association suggests that adults con-
sume oily fish, rich in EPA and DHA, at least twice weekly [69]. For those with coronary
heart disease, 1 g/day of EPA and DHA is advised, and 2–4 g/day is recommended for
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hypertriglyceridemia [70]. Supplemental use should be conducted under medical guidance.
Understanding the epigenetic impacts of these fatty acids is crucial for developing new
dietary guidelines and combating inflammation-related diseases.

Antioxidants have long been a subject of scientific interest due to their potential in
mitigating oxidative stress markers, particularly in the context of metabolic disorders.
Vitamins C and E, well-known antioxidants, have been the focus of numerous studies
examining their role in combatting oxidative stress and associated health conditions [71,72].
One remarkable example of the efficacy of antioxidants is the administration of Silybin
complexed with phospholipids, supplemented with vitamins D and E, and milk this-
tle, as exemplified by the food supplement RealSIL 100D®. A comprehensive six-month
clinical study involving a cohort of ninety patients with nonalcoholic fatty liver disease
(NAFLD) provided compelling evidence of the benefits of the use of this antioxidant-rich
combination [73]. In this study, patients with NAFLD, a condition characterized by the
accumulation of fat in the liver, were subjected to this novel antioxidant regimen. The
results were nothing short of impressive. The antioxidant-rich supplement demonstrated a
significant anti-inflammatory effect within the patient group. This effect was manifested
through notable improvements in a range of metabolic indicators, including lipid profiles,
glucose metabolism, and liver function [74]. The growing acknowledgment of antioxidants
in treating endothelial dysfunction and related health issues is notable. Key antioxidants
like water-soluble vitamin C (ascorbic acid) and fat-soluble vitamin E are vital in defend-
ing endothelial cells [75]. Vitamin C fights damaging free radicals in the cells’ aqueous
surroundings, whereas vitamin E shields the cell membranes against oxidative injury [76].
Endothelial dysfunction, often linked to metabolic disorders, is a crucial forerunner to
cardiovascular problems [77]. Vulnerable to oxidative stress caused by an imbalance of
reactive oxygen species (ROS) and the body’s defenses, these cells can suffer damage and
reduced function [78,79]. Therefore, given its clinical significance, the use of antioxidants
in treating endothelial dysfunction is showing significant potential.

The remarkable potential of nutraceuticals extends far beyond their actions; it re-
sides in their unique ability to orchestrate a symphony of benefits, harmoniously targeting
multiple intricate pathways implicated in oxidative stress and inflammation [80–82]. The
advent of personalized medicine has introduced a highly promising avenue for optimizing
nutraceutical therapy within the realm of these medical conditions [83]. Recent research
endeavors have delved into the intricate relationship between genetic factors and indi-
vidual responses to nutraceutical interventions. This revelation paves the way for the
development of tailored nutraceutical regimens precisely aligned with an individual’s
genetic predispositions, heralding a significant advancement in the field of personalized
healthcare [84].

3. Nutraceuticals Usage in Addressing Oxidative Stress and Inflammation in
Metabolic Disorders
3.1. Historical Perspective of Nutraceuticals

Ancient Ayurvedic medicine, predating Hippocrates’ famous adage “let food be thy
medicine and medicine be thy food”, had already recognized the positive influence of
dietary and plant consumption on human health [85]. In recent decades, heightened re-
search attention to dietary components has raised public awareness of nutrition. Within
this context, the term ‘nutraceuticals’ has emerged, combining the terms ‘nutrient’ (a nour-
ishing food component) and ‘pharmaceutical’ (a drug), implying their potential therapeutic
applications, akin to pharmaceuticals. This concept aligns with Stephen DeFelice’s defi-
nition of nutraceuticals as “food, or parts of food, providing medical or health benefits,
including disease prevention and treatment” [86]. It is worth also noting that the term
nutraceutical is being commonly used in the scientific literature and, in some countries,
also accepted in marketing products, but has till now no accepted and shared regulatory
definition. Consequently, nutraceuticals, when used for animal nutrition, are not subject to
specific regulations; Regulation No 1831/2003 should be followed, while compliance with
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Directive 2001/82/EC is required for nutraceuticals that are used with medical claims or
have pharmacological effects. Additionally, when used as ingredients in animal feed, they
must conform to Commission Regulation (EU) No 68/2013.

Nutraceuticals are in fact included in the food supplements category. Over recent
years, the definition of nutraceuticals has evolved to: “if derived from plant-based foods,
nutraceuticals are defined as the phytocomplex, and as the collection of secondary metabo-
lites when originating from animal-based foods, administered in the most appropriate
pharmaceutical form”. The key aspect to stress is that nutraceuticals would need studies
in vitro and in vivo, e.g., clinical trials, which can assess the appropriate dose, and sub-
stantiate their safety, effect, and efficacy against a set health condition, differently from the
food supplements which do not require—according to the current regulation—any clinical
trials to be put on the market. Alternatively, nutraceuticals may fall under the Foods for
Particular Nutritional Uses (PARNUTS) regulatory framework (Directive 89/398/EEC,
1989), encompassing foods for special medical purposes and those designed for specific
nutritional requirements. This classification is contingent upon their safety and efficacy,
being thoroughly evaluated through in vitro and in vivo studies [87].

3.2. Nutraceuticals in Metabolic Syndrome and Cardiometabolic Disorders

Commencing with the influence of metabolic syndrome, a spectrum of health condi-
tions closely linked to dietary habits, there arises a compelling need to establish innovative
and sustainable nutraceutical approaches as complements or alternatives to traditional
pharmacological treatments, especially for individuals who do not qualify for a conven-
tional pharmaceutical approach. Recent years have witnessed extensive research into the
role of nutraceuticals in metabolic diseases, focusing on their oxi-metabolic effects. Ac-
cording to market analysis and the available literature, many nutraceutical products are
well-formulated to prevent and manage various health conditions, including diabetes, obe-
sity, and hypertension [88]. This review specifically addresses nutraceutical formulations
aimed at improving cardiometabolic disorders and mitigating oxidative stress (Table 1).
In this context, Barrios et al. (2017) [89] emphasized the positive impact of a nutraceutical
blend comprising red yeast rice, berberine, polycosanol, astaxanthin, and coenzyme Q10.
This innovative nutraceutical has demonstrated significant reductions in TC (11–21%) and
LDL-C (15–31%) levels, akin to low-dose statins. It also offers a 10% additional improve-
ment in TC and LDL-C for statin-intolerant patients or those not achieving their treatment
goals with ezetimibe [89]. Another double-blind crossover study studied a nutraceuti-
cal comprising berberine, astaxanthin, policosanol, red yeast rice extract, folic acid, and
coenzyme Q10 (namely the commercially available Armolipid Plus) suggested the effec-
tiveness of this nutraceutical in moderate cardiovascular risk situations, especially when
a traditional pharmacological approach may not be tolerated well by the patient [90]. A
nutraceutical approach using a probiotic Bifidobacterium longum BB536 and red yeast rice
extract has been also evaluated. In a recent randomized, double-blind, placebo-controlled
trial, a two-week treatment with a nutraceutical blend comprising Bifidobacterium longum
BB536 and red yeast rice extract demonstrated significant improvements in the atherogenic
lipid profile among individuals with low cardiovascular risk, with high tolerability [91].
Additionally, Tenore et al. aimed to create a novel nutraceutical formulation with gastro-
resistant micronized chia seeds and antioxidants, including vitamin E, which was tested in
a clinical trial for its impact on human plasma triglyceride levels. This study was conducted
in recognition of the well-established benefits of dietary polyunsaturated ω-3 fatty acids
on the cardiovascular system [92].
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Table 1. Some key nutraceuticals, active compounds, and health benefits.

Nutraceutical Primary Active Compound Health Benefits

Omega-3 Fatty Acids
[35,58,59] EPA, DHA Anti-inflammatory,

cardiovascular health

Probiotics [91] Various live bacteria Gut health, immune support

Resveratrol [93] Stilbenoids Antioxidant, antiaging

Vitamin D [56,57] Cholecalciferol, Ergocalciferol Bone health, immune function

Flavonoids [36,94] Quercetin, Kaempferol,
Myricetin

Anti-inflammatory,
cardiovascular health,

anticarcinogenic, antioxidant

Curcumin [46,49] Curcuminoids Anti-inflammatory, antioxidant

Selenium [95] Selenomethionine,
Selenocysteine

Antioxidant, thyroid function,
immune health

Coenzyme Q10 [89] Ubiquinone, Ubiquinol Antioxidant, heart health

Allicin (Garlic) [96–98] Allicin Anti-inflammatory, antioxidant

Anthocyanins [99,100] Cyanidin, Delphinidin Anti-inflammatory, antioxidant

Soy Isoflavones [101,102] Genistein, Daidzein
Antioxidant, cardiovascular and

bone health, menopausal
symptom relief

Lycopene [103,104] Lycopene Antioxidant, anti-inflammatory,
anticarcinogenic, heart health

Recently, in a clinical trial, Annunziata et al. demonstrated the Trimethylamine N-
oxide (TMAO)-reducing effect of grape pomace extract formulated as a nutraceutical rich in
polyphenols in particular resveratrol [93]. This study was prompted by the recognition of
TMAO as a novel risk factor for cardiovascular diseases (CVDs) and as an oxidative stress
biomarker [105]. Polyphenols have a long history as the quintessential antioxidant. They
possess potent antioxidant properties, acting as effective scavengers of various oxidants,
thanks to the presence of phenolic rings with multiple hydroxyl groups in their chemical
structure [106]. In recent years, in addition to the active principles mentioned above,
bioactive peptides from plant proteases formulated as nutraceuticals have been considered
as the next generation of nutraceuticals [107]. For example, it has been demonstrated that
the clinical effectiveness of bioactive peptides with antihypertensive properties hinges on
two crucial factors: how well they resist degradation by gastrointestinal peptidases and
their ability to be absorbed into the bloodstream [108].

3.3. Emerging Nutraceutical Compounds

A very large number of phytochemicals exist, and new compounds will be likely
isolated and identified. Recently, there has been growing interest in palmitoylethanolamide
(PEA) as a potential nutraceutical due to its natural presence in various plant and animal
food sources. Research efforts have focused on understanding the molecular mechanism
by which PEA exerts its pharmacological effects. PEA’s binding to PPAR-α initiates het-
erodimerization with the retinoic acid receptor (RXR), forming an active receptor complex
that translocates to the nucleus. This complex binds to peroxisome proliferator response
elements, leading to reduced transcription of proinflammatory genes associated with
metabolic disorders [109]. In addition, bioactive compounds such as alpha-lipoic acid
(ALA) and acetyl-L-carnitine (ALC) have a significant impact on regulating oxidative stress
and enhancing mitochondrial function, their primary site of action [110].
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3.4. Nutraceutical-Based Pharmacological Modulation

Phytochemicals derived from plants and present in nutraceuticals offer valuable tools
for the exploration and characterization of diverse receptor types, contributing significantly
to our comprehension of their roles in health and disease [111]. While nutraceuticals are
not intended to serve as substitutes for pharmaceutical drugs, they play a supportive role
in preventive healthcare, especially in addressing conditions frequently associated with
metabolic syndrome, including type 2 diabetes, stroke, heart disease, and various cardiovas-
cular issues [112]. Emerging research indicates that dietary phytochemical compounds can
influence the endocannabinoid system (ECS), a regulatory system in the body. Compounds
like β-caryophyllene (found in edible plants and spices) and 3,3′-diindolylmethane (abun-
dant in Brassicaceae vegetables) act as agonists of CB2 receptors, while falcarinol (present
in carrots, parsley, and celery) functions as a CB1 antagonist. Additionally, guineensine (de-
rived from black pepper) and β-amyrin (found in various vegetables) inhibit the re-uptake
and enzymatic degradation of endocannabinoids [113]. Activation of CB2 receptors by
phytonutrients may help counteract inflammation, while CB1 blockade may have potential
benefits for individuals with metabolic syndrome [114].

Moreover, nutraceuticals, as illustrated in Figure 3, exhibit the capability to restore
redox balance within the body and modulate the immune response. Oxidative stress, a
condition arising from an imbalance between reactive species and endogenous antioxi-
dants, can be alleviated by nutraceuticals due to their possession of antioxidant, antiaging,
anticancer, and immunomodulatory properties [115,116]. This multifaceted role of plant-
derived compounds in nutraceuticals underscores their significance in promoting overall
health and wellbeing.
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3.5. Potential Usage of Algae-Derived Nutraceuticals

Algae, encompassing a wide range of eukaryotic organisms, extend from unicellular
types like Chlorella vulgaris to substantial multicellular varieties, demonstrating their vast
diversity [117,118]. These organisms are adept at photosynthesis, thriving in varied aquatic
environments, including wastewater. They efficiently convert sunlight, water, and CO2 into
valuable bioactive metabolites and oxygen, showcasing their ecological importance [119].
Algae are broadly divided into macroalgae, typically large and found in coastal areas, and
microalgae, which are smaller and inhabit both coastal regions and open oceans like phyto-
plankton. Algae’s role extends to human and animal nutrition [119–121]. The reason is that
algae are one of the most biologically active resources in nature and contain many bioactive
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components [122]. Algae are rich in carbohydrates, various amino acids, proteins, fatty
acids, and dietary fibers. They also contain polysaccharides, polyphenols, antioxidants, pig-
ments, and other active substances that play important roles in various biological processes
such as antioxidant activity, antiviral, antitumor, anticoagulant, and anti-inflammatory
responses [121,123]. Due to these numerous immunomodulatory components, they are
known to prevent diabetes, oxidative stress, inflammation, and high cholesterol [124].
Because of these potent bioactive molecules, algae are used industrially as nutraceuticals
and in a wide range of commercial fields, including pharmaceuticals [121,123].

Polyunsaturated fatty acids, PUFAs, derived from microalgae are important bioactive
components with health benefits. Especially polyunsaturated fatty acids such as omega
3 and omega 6 among PUFAs draw a lot of attention. These fatty acids are essential
fatty acids and cannot be synthesized in the human body [125]. Algae contain essential
fatty acids such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linoleic
acid (GLA), and arachidonic acid (ARA) that have important effects in various metabolic
and cardiovascular diseases. For instance, Schizochytrium sp. (dietary marine algae),
Crypthecodinium cohnii (dinoflagellate marine algae), Amphidinium sp. (15N enriched
dinoflagellates), and Prorocentrum triestinum can synthesize DHA, while Porphyridum
cruentum and Chrysophyceae (green algae) can synthesize EPA [126,127]. Arthrospira
platensis and Porphyridium purpureum species have been reported as sources of GLA and
ARA, respectively [128]. GLA-rich nutraceuticals have also been reported to be effective in
the treatment of breast cancer, skin allergies, diabetes, obesity, rheumatoid arthritis, heart
disease, high blood pressure, multiple sclerosis, hyperactivity disorder, and neurological
problems [129,130].

4. Nutraceuticals as Novel Drug Targets
4.1. Interaction of Nutraceuticals with Oxidative Stress Pathways

Nutraceuticals can be a tool for support and coadjutant therapy in many health
conditions. They aid in regulating oxidative stress, an imbalanced redox state arising from
elevated levels of reactive species, and a notably lower presence of endogenous antioxidants
in the body. Nutraceuticals, as mentioned, may help to prevent oxidative stress as well
as other health conditions, e.g., diabetes, neurodegeneration, organ inflammation, and
cardiovascular diseases, which are results of cellular oxidation. Nutraceuticals may be
a useful tool to maintain proper homeostasis preventing oxidative stress [131,132] and
the onset of good health conditions. Novel approaches in this field are needed, including
different pharmaceutical formulations which also include nano nutraceuticals [133], for
example, which are better capable of reaching their target and exerting their beneficial
health effects. Among them, the prevention and treatment of complicated diseases are
notable. These have recently increasingly been the focus of researchers, clinicians, and
healthcare providers. What contributes to the popularity of nutraceuticals is their ability
to effectively boost the immune system, their widespread availability, affordability, and
well-tolerated nature among people [134].

Nutraceuticals contain potent active ingredients that, when administered in controlled
doses, offer health benefits without toxicity. This has bolstered consumer confidence,
leading to their use in preventing common and chronic ailments such as diabetes [135].
Maintaining the balance between antioxidants and reactive species is vital in preventing
diseases, including severe conditions like cardiovascular diseases, neurodegenerative dis-
eases, and renal failure [111]. In more challenging cases such as cancer, pro-oxidant therapy
is being explored. Substances like polyphenols and water-soluble vitamin C can induce
oxidative stress in cancer cells, disrupting their growth and causing DNA damage [136].
Numerous researchers have explored the use of drug-compound-based nutraceuticals
to enhance both their effectiveness and bioavailability in omega-3 polyunsaturated fatty
acids, calcium, vitamin D, folic acid, resveratrol, alpha-lipoic acid, zinc, inositol, and
probiotics [137]. Nutraceutical formulations with physical and chemical stability entail
many challenges. Most phytochemical compounds must be controlled for the negative
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effects of light, heat, oxygen, elevated humidity, and alkaline pH. Creating a nutraceuti-
cal formulation involves understanding the fundamental physicochemical properties of
various ingredients, employing appropriate manufacturing techniques, choosing suitable
excipients, and incorporating the necessary manufacturing adjustments, as informed by
crucial stability studies [138–140]. The formulations have an important role in addition to
drug interactions in poly-medication treatments. Strict regulation is essential to curb their
uncontrolled use and prevent undesirable side effects [88].

4.2. Considerations for Clinical Translation and Challenges of Drug Formulations

Clinical translation for nutraceuticals is a current challenge for their potential protec-
tive cardiovascular effects due to compounds like resveratrol, cocoa, quercetin, curcumin,
glucosinolates (contained, e.g., in Brassicaceae), berberine, and Spirulina platensis [141–143].
A novel lifestyle approach to lower age-associated arterial stiffness represents a clinically
significant challenge that could be targeted by identifying nutraceutical approaches to
lower CVDs risk. Recently, the role of Apigenin, a flavonoid found in fruits and vegeta-
bles, has been studied for its antioxidant, anti-inflammatory, and antibacterial effects [144].
The potential therapeutic effects in the treatment of atherosclerosis, stroke, hypertension,
ischemia/reperfusion-induced myocardial injury, diabetic cardiomyopathy, and drug-
induced cardiotoxicity have been reported opening the way to explore novel approaches
to translational strategies for cardiovascular disease treatment [145]. The challenges that
are faced in formulating novel drug targets must be mentioned. They are the focus of
many studies. Drug interactions, also known as situations where one active constituent’s
activity is influenced by the presence of other constituents, can manifest as food–drug inter-
actions or drug–drug interactions, resulting in potential alterations in the pharmacological
response, including alleviation, reduction, or induction of side effects. The latter means
(i) various dosage forms, (ii) various formulation challenges, (iii) excipient selection, and
many others due to the various steps in the production process [146,147].

5. Conclusions

Metabolic disorders, characterized by the complex interplay of oxidative stress and
chronic inflammation, pose significant and multifaceted healthcare challenges. Conven-
tional treatment methods—often insufficient in addressing this complexity—call for in-
novative solutions. Nutraceuticals, along with ongoing research, hold promise for the
future in terms of prevention, treatment, and support alongside pharmaceutical thera-
pies. They offer a comprehensive approach to enhancing metabolic health, particularly in
cardiovascular wellbeing, by targeting various intricate pathways associated with oxida-
tive stress and inflammation. Emerging nano formulation techniques seek to overcome
formulation hurdles, resulting in micronized dietary products and nutraceutical supple-
ments with amplified advantages. Evaluating clinical evidence for each nutraceutical is
imperative, as broad generalizations—such as ‘nutraceuticals work’ or ‘nutraceuticals are
merely placebos’—lack scientific substantiation. The production process should encom-
pass rigorous monitoring, standardization, valid toxicological studies, precise product
characterization, and an understanding of the absorption, distribution, metabolism, and
excretion (ADME) characteristics of bioactive components. Realizing the full potential
of nutraceuticals for optimizing metabolic health necessitates a blend of robust scientific
methodologies and judicious evidence assessment as we navigate this promising frontier.

Nutraceuticals and beyond are the future of many natural substances from vegetal
and animal origin in the context of ensuring the optimal productivity of natural resources
and sustainability with relevant impact on the circular economy; this is especially the case
for countries which possess rich sources of raw materials, where their use must be econom-
ically sustainable. It is important to mention once more the importance of novel treatment
strategies and proper drug formulation. Almost all naturally occurring compounds like
omega-3 fatty acids, flavonoids, and polyphenols like resveratrol are proven to be effi-
cacious. This is due to their strong anti-inflammatory and antioxidant properties, with



Nutrients 2024, 16, 507 13 of 18

substantial clinical support for improving cardiovascular and metabolic health. Conversely,
there exist nutraceuticals components like curcumin, found in turmeric, which have shown
less efficacy, potentially due to a low bioavailability, source quality, and the complex nature
of individual metabolic pathways. Therefore, future research directions should include
improving bioavailability and personalizing nutraceutical interventions based on genetic
and metabolic considerations, aiming to maximize positive therapeutic outcomes.
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