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Abstract: It has been proposed that oxidative stress is a pathogenic mechanism to induce cytotoxicity
and to cause cardiovascular and neuronal diseases. At present, natural compounds such as plant
extracts have been used to reduce the cytotoxic effects produced by agents that induce oxidative stress.
Our study aimed to evaluate the antioxidant and cytoprotective capacity of Desmodium tortuosum
(D. tortuosum) extract in the co- and pre-treatment in EA.hy926 and SH-SY5Y cell lines subjected to
oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Cell viability, reactive oxygen species
(ROS), nitric oxide (NO), caspase 3/7 activity, reduced glutathione (GSH), glutathione peroxidase
(GPx), glutathione reductase (GR), and molecular expression of oxidative stress biomarkers (SOD2,
NRF2 and NFκB1) and cell death (APAF1, BAX, Caspase3) were all evaluated. It was observed that the
D. tortuosum extract, in a dose-dependent manner, was able to reduce the oxidative and cytotoxicity
effects induced by t-BOOH, even normalized to a dose of 200 µg/mL, which would be due to the high
content of phenolic compounds mainly phenolic acids, flavonoids, carotenoids and other antioxidant
compounds. Finally, these results are indicators that the extract of D. tortuosum could be a natural
alternative against the cytotoxic exposure to stressful and cytotoxic chemical agents.

Keywords: plant antioxidants; phytochemicals; polyphenols; medicinal plants; vascular endothelium;
neuroprotection

1. Introduction

The chemical products as xenobiotics can cause the production of ROS and other free
radical that may result in inflammatory and fibrotic processes [1]. After absorption, the
first tissue affected is the vascular system, especially the endothelia, this being the first step
towards the development of vascular diseases [2]. Oxidative stress is capable of inducing
vascular endothelial damage, which would produce a change in the vascular structure,
this being one of the causes of diseases such as diabetes or nephropathy. Therefore, it
is important to reduce this stressful effect on the vascular endothelium, with medicinal
plants being a good therapeutic alternative [3–5]. During the last decade, studies have been
published indicating that the antioxidant compounds of medicinal plants have the function
of reducing endothelial damage and this would make them effective against cardiovascular
diseases [6,7].
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Neurodegenerative diseases, characterized by progressive dysfunction and cellular
senescence of specific neuronal systems, involving structural and functional damage of
neurons, may be caused by oxidative stress [1,8,9]. Recent mounting evidence suggests
that oxidative stress in neuronal cells contributes to neuroinflammation, facilitated by the
constant activation of microglia, hence inducing neuronal necrosis and apoptosis [8,9].
Since the onset of oxidative stress seems to be a main contributive cause of cardiovascular
and neurodegenerative pathologies, protection of cells, tissues and organs against this
challenging condition is the major goal of many studies dealing with nutritional and
pharmacological prevention of pathologies.

During the last two decades, extended research on plant antioxidants, especially
polyphenols, has unequivocally demonstrated their role as bioactive compounds that
protect against oxidative stress and prevent or delay the onset of many pathologies [5,9,10].
For example, metabolic diseases, such as type 2 diabetes, or cardiovascular complications
have endothelial damage as a common factor and, also, are characterized by an excess of
free radical, oxidative stress and pro-inflammatory cytokines creating an oxidative and pro-
inflammatory environment [11]. Some alternatives to counteract these effects are medicinal
plants, such as D. tortuosum, which has antioxidant activity due to its high concentration in
polyphenols, polyterpenes and flavonoids and their metabolites. In addition, continuing
with the vascular endothelium, cocoa catechins are known to have a positive effect on
healthy vascular function [10,12] which has been proclaimed since the pioneer studies from
two decades ago [13–15], up to recent reviews [12,16,17]. However, the beneficial effect
on cardiovascular function is not privative of flavanols or flavonoids in general [16] as
we have already described before, also many other phenolic compounds or plant extracts
have shown this potential [18,19]. Indeed, by using EA.hy926 cells, we have shown the
protective effect of an extract from Silybum marianum, rich in flavonol derivatives known as
flavonolignans, on cultured endothelial cells subjected to high glucose concentrations [20].
In the same model, Vochysia rufa stem bark extract, rich in reducing sugars and flavonoids,
also showed significant protection against high glucose damage [21]. Similarly, in yerba
mate and green coffee extracts, their main hydroxycinnamic acids and microbial metabolites
prevented Tumor Necrosis Factor-alpha (TNF-α)-induced inflammation [22]. More recently,
cocoa flavanols were proven to protect the same EA.hy926 cells against chemically induced
oxidative stress [23]. All these studies confirm the protective effect on endothelial function
of plant extracts and pure antioxidant compounds, as well as endorse the reliability of the
cell culture model.

On the other hand, the preventive effects of polyphenolic antioxidants in aging and
neurodegeneration associated with oxidative stress have been largely reported [1,9,24,25].
Since the culture of primary neurons is rather difficult, established cell lines have been
widely used to test the neuro-regulatory effect of different bioactive compounds and their
specific effects at the cellular and molecular levels. Neuroblastoma SH-SY5Y cells, derived
from the SK-N-SH cell line, is one of the most commonly used neuronal-like cell cultures,
and it has been recently validated as a simple reliable model of neuronal-like cells that is
amenable to biological, biochemical and electrophysiological investigation [26]. In fact,
using this human cell line as a neuronal cell culture model, the chemo-protective effect of an
aqueous extract of cocoa phenolic compounds (mainly flavanols) against oxidative stress-
induced neurodegeneration has been recently reported [27], as well as that of an extract
from Sambucus nigra (elderflower), rich in flavonoids and hydroxycinnamic acids [28].

Thus, in this study, the polyphenolic chemical composition of the D. tortuosum extract
was determined and to delineate the potential protective mechanisms through which
D. tortuosum extracts protect endothelial and neuron cell function, two human cell lines,
EA.hy926 and SH-SY5Y cells, were treated with t-BOOH a strong pro-oxidant used to
induce oxidative stress in cell cultures.
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2. Materials and Methods
2.1. Reagents

t-BOOH, glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione,
o-phthaldialdehyde, nicotine adenine dinucleotide phosphate reduced salt (NADPH), 2,4-
dinitrophenylhydrazine, gentamicin, penicillin G and streptomycin, 2′,7′-dichlorofluorescin-
diacetate (DCFH-DA), 4-amino-5-methylamino-2,7-difluorofluorescein-diacetate (DAF-FM-
DA), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), Dulbecco’s
phosphate-buffered saline (DPBS, D8537) were obtained from Sigma-Aldrich (Madrid,
Spain). Acetonitrile, methanol of high performance liquid chromatography (HPLC) grade,
dimethyl sulfoxide (DMSO) of analytical grade and all other usual laboratory reagents were
acquired from Panreac (Barcelona, Spain). Nucleo-spin-RNA, qPCRBIO-cDNA-synthesis,
ICgreen-amplification-PCR, DMEM-culture-media and fetal bovine serum (FBS) were from
Cultek (Madrid, Spain). The Apo-ONE® Homogeneous Caspase-3/7 Assay kit was ac-
quired from Promega (Madison, WI, USA). Bradford reagent was from BioRad Laboratories
S.A (Hercules, CA, USA). All other chemical reagents used were of high-purity for cell and
molecular biology and were available in the laboratory.

2.2. Plant Selection and Extract Preparation

The biological material was collected in the Monte Alegre district, Padre Abad province,
Ucayali region, Peru coordinates 0498477LS-9030950LW, at an altitude of 194 m.a.s.l.; 10 kg
of stems and leaves were collected (voucher number RS978). In the Ucayali Veterinary
Institute-Pucallpa Regional Herbarium (HRUIP), the plants were dried, herbalized, and
assembled, and the taxonomic verification of the species was carried out by comparison
with existing samples and the use of a specialized bibliography, voucher number RS978.
The obtained plants belonged to the species D. tortuosum of the Fabaceae family and were
entered in the Herbarium under the registration number 12208.

The stems and leaves were collected and washed-and-dried in open air, then com-
pletely dried in an oven and reduced to a fine powder. The decoction was made with
distilled water and the powdered plant material (10:1) in a beaker, heating until boiling and
maintaining for twenty minutes. Plant material was filtered off and the aqueous extract
was concentrated and lyophilized.

2.3. Chemical Characterization of Extract

Briefly, the sample (20 mg) was diluted with methanol (20 mL). The mixture was
ultrasonicated for 10 min. Then, it was filtered through a 0.25 µm filter, and 3 µL were
injected into a Dionex Ultimate 3000 (Thermo Scientific, Waltham, MA, USA) UHPLC
system. Column was a Luna© Omega (Phenomenex Inc., Torrance, CA, USA) C18 100 Å,
Phenomenex (150 × 2.1 mm, 1.6 µm), temperature 40 ◦C, flow rate 0.25 mL/min, with
distilled water 1% formic acid and acetonitrile 1% formic acid eluents. The UHPLC system
was coupled to a QExactive PLus mass spectrometer (Thermo Scientific, Waltham, MA,
USA). Full Mass Spectrometry (MS) scan parameters were in the range of 120–1500 m/z,
resolution 70,000, microscans 1, Automatic Gain Control (AGC) target of 1 × 106, and
maximum intensity (IT) of 100 ms. The parameters of the Resolution Type MS2 (MS2)
resolution were 17,500, an AGC target of 2 × 105, and a maximum IT of 50 ms. The
ionization source parameters were Electrospray ionization (ESI) (negative/positive), spray
voltage 2.5/3.0, temperature 280 ◦C, N2 (sheath gas flow rate: 40, aux gas flow rate: 10), gas
heater temp of 350 ◦C, S-lens radio frequency (RF) level of 100, and a normalized collision
energy of 20, 40, 60. The m/z values of the ions were detected in full ESI-MS (positive
and/or negative) and the main fragments observed in the MS/MS spectra, the error in
ppm is also indicated for the calculation of the molecular formula (≤5 ppm).

2.4. Cell Culture

Human EA.hy926 cells were a gift from Prof. Patricio Aller (CSIC, Madrid, Spain),
and the SH-SY5Y cell line was a gift from Prof. Ignacio Torres Alemán (Instituto Cajal,
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Madrid, Spain), and later (same depositary batch) from Prof. Carlos Guillén, School of
Pharmacy, University Complutense, Madrid, Spain. The cells were cultured and passaged
in DMEM-F12 with FBS (10%) and 50 mg/L of gentamicin, penicillin and streptomycin.
Cells were incubated in humid conditions with 5% CO2 and 95% air, at 37 ◦C; the culture
medium was changed every other day.

Different concentrations of the D. tortuosum extract (1, 10, 25, 50, 100 and 200 µg/mL)
dissolved in DMEM-F12 were added to microwell plates. To evaluate the protective effect
of the D. tortuosum extract against oxidative stress, co- and pre-treatment were carried out.
In the co-treatment assay, EA.hy926 and SH-SY5Y cells were simultaneously treated for
22 h with 100 µM t-BOOH plus the different concentrations of D. tortuosum; whereas in
the pre-treatment assay cells were first treated with noted doses of extract for 18 h, then
washed and submitted to a new media containing 200 µM t-BOOH for 4 h, after which the
assay was performed [29].

2.5. Cell Viability Evaluation (MTT)

In this assay, it is observed if the mitochondria is active and is capable of reducing
tetrazolium-MTT [30]. Briefly, after treatments, 0.5 mg/mL MTT as the final concentra-
tion in was added to each well for 2 h, during this time, metabolically active EA.hy926
and SH-SY5Y cells reduced the tetrazolium-MTT to a formazan-salt. Absorbance was
measured at 540 nm (SPECTROstar BMG microplate reader (BMG Labtech, Ortenberg,
Baden-Wurttemberg, Germany)). Cell viability is represented as % of control.

2.6. Intracellular ROS Production

Oxidative stress was assessed by the ROS intracellular production according to stan-
dardized protocols using the DCFH-DA-fluorescence assay [31]. DCFH-DA enters the cell
and is hydrolyzed by esterases to allow the release of DCFH and its reaction with ROS to
generate a fluorescent compound. Briefly, 10 µM of DCFH-DA was added to each well
(2 × 105 cells/well under incubation conditions) in a black multi-well plate for 30 min,
and immediately measured in a fluorescent microplate reader (FLx800 Fluorimeter, BioTek,
Winooski, VT, USA) at 485 nm/530 nm (λ excitation/λ emission).

2.7. Determination of Nitric Oxide (NO) Levels

NO levels were determined by direct measurement using the DAF-FM-DA assay. The
cells were seeded in black 96-well plates at a rate of 8 × 104 cells. After treatment, 1 mM
DAF-FM-DA stock solution was added to each assay well to obtain a final concentration of
10 µM for 30 min. Then, the intensity of the fluorescent signal was measured in a microplate
fluorescence reader (FLx800 Fluorimeter, BioTek, Winooski, VT, USA) at a λ excitation of
495 nm and λ emission of 515 nm [32].

2.8. Apoptotic Assay with Caspase 3/7 Activity

EA.hy926 and SH-SY5Y cells (15 × 103 cells/well) were seeded in black 96-well plates.
After treatment, Apo-ONE® (Promega (Madison, WI, USA)) Caspase-3/7 was prepared
and used according to the manufacturer’s instructions, for 60 min in the dark. Fluorescence
(λ excitation/λ emission, 485/528 nm) was measured using a plate reader (FLx800, BioTek,
Winooski, VT, USA). Data were evaluated as % of the control [32].

2.9. Antioxidant Defenses
2.9.1. Reduced Glutathione (GSH)

GSH content was evaluated by a fluorometric assay [29]. The method takes advantage
of the reaction of GSH with o-phthalaldehyde at pH 8.0. Fluorescence was measured at
340 nm/460 nm (λ excitation/λ emission). Fluorescence data were interpolated from a
standard curve of pure GSH (5–1000 ng).
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2.9.2. Antioxidant Enzymes

Determination of GPx activity was based on the oxidation of GSH by GPx, using
t-BOOH as a substrate, coupled to the disappearance rate of NADPH by GR [29]. GR
activity was determined by following the decrease in absorbance due to the oxidation of
NADPH utilized in the reduction in oxidized glutathione [29]. Protein concentration in the
samples was measured by the Bradford reagent.

2.10. Molecular Assay by Real-Time PCR

After treatment, total RNA was obtained using the NucleoSpin®-RNA-Plus Kit
(Macherey-Nagel, Germany) according to the manufacturer’s instructions. The total RNA
was quantified using a Nano-Spectrophotometer (Microdigital, Seoul, Korea), obtaining
A260/A280 ratios > 1.9–2.1 < in all the samples. cDNA synthesis was obtained from 1 µg of
total RNA by retro-transcription using the qPCRBIO cDNA Synthesis Kit (PCRBiosystems,
Wayne, PA, USA). Finally, the cDNA was diluted in nuclease-free water (v:v, 1:10) and
stored at −80 ◦C. Real-time PCR (qPCR) assays for SOD2, NRF2, NFκB1 (genes from
oxidative stress-antioxidant), APAF1, BAX, and Caspase 3 (genes from cell death) were
performed using a real-time PCR system (BioRad CFX, Hercules, CA, USA), using the
ICgreen Mastermix (Nippon Genetics, Duren, Germany) according to the manufacturer’s
instructions. For qPCR, it was necessary to use primers with concentrations of 400 nM, and
the thermocycling protocol was: 95 ◦C for 2 min, 40 cycles of 5 s at 95 ◦C and 30 s at 60 ◦C.

Forward and reverse primers were SOD2: ‘CCACTGCTGGGGATTGATGT’ ‘CGTG-
GTTTACTTTTTGCAAGCC’; NRF2: ‘CTGGTCATCGGAAAACCCCA’ ‘TCTGCAATTCT-
GAGCAGCCA’; NFκB1: ‘TTTTCGACTACGCGGTGACA’ ‘GTTACCCAAGCGGTCCA-
GAA’; APAF1: ‘TCTTCCAGTGGTAAAGATTCAGTT’ ‘CGGAGACGGTCTTTAGCCTC’;
BAX: ‘CCCCCGAGAGGTCTTTTTCC’ ‘CCTTGAGCACCAGTTTGCTG’; Caspase3: ‘GTG-
GAGGCCGACTTCTTGTA’ ’TTTCAGCATGGCACAAAGCG’. GAPDH was used as a
housekeeping gene and extracting the efficiencies from the raw data using the LinRegPCR
software [33].

2.11. Statistics

Analysis of the data obtained from the cell culture studies was performed with one-
way ANOVA followed by Tukey’s post hoc test, and the level of significance was p < 0.05
using the GraphPad Prism version 7.0 program (Boston, MA, USA).

3. Results
3.1. Chemical Analysis of D. Tortuosom Extract

Thirty compounds were identified in D. tortuosum based on their relative retention time,
mass spectra and commercial standards. Table 1 shows the retention time (RT), molecular
formula, accurate mass of the molecular ion (M – H)− after negative–positive ionization,
and MS2 fragments of the main compounds identified in D. tortuosum by Ultra High
Perfomance Liquid Chromatography (UHPLC) UHPLC/MS (Supplementary Figure S1).
The largest number of compounds identified were phenolic acids and flavonoids, and to a
lesser extent compounds derived from linoleic acid, and others.

3.2. Cell Viability

The first parameter to ascertain the potential cyto-protection of the D. tortuosum
extracts was cell viability after oxidative stress. D. tortuosum extracts at 1, 10, 25, 50, 100 and
200 µg/mL were tested for their cyto-protective capacity. As depicted in Figure 1, exposure
to t-BOOH produced a significant decrease in cell viability of around 62% in EA.hy926
cells and 50% in SH-SY5Y cells. Increasing the concentrations of extract evoked a partial
but significant dose-dependent recovery of cell viability in the two cell lines for both co-
and pre-treatment. D. tortuosum extracts at 100 and 200 µg/mL significantly increased
SH-SY5Y cell viability for both co- and pre-treatment (Figure 1B), and in the pre-treatment
of EA.hy926, whereas concentrations above 50 µg/mL were necessary to significantly
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recover EA.hy926 cell viability with co-treatment (Figure 1A). The highest recovery of cell
viability from the oxidative stress was observed at co- and pre-treatment with 200 µg/mL
extract in SH-SY5Y cells (Figure 1B). Once the cyto-protective effect of some of the tested
concentrations of the extract was ensured, the study of the redox status and antioxidant
response was carried out.

Table 1. Identification of bioactive compounds detected by UHPLC/MS in the D. tortuosum extract.

Identified Compound Retention
Time (min)

Molecular
Formula MS-ESI− MS2 MS-ESI+ MS2 Nominal

Mass

HYDROXYCINNAMIC
ACIDS AND

HYDROXYCINNATES
4-Coumaric acid 8.79 C9H8O3 163 119, 93 164

CAROTENOIDS
Loliolide 9.60 C11H16O3 197 179, 161, 135, 133 196

FLAVONES
6-C-xylosyl-8-C-

galactosylapigenin 8.16 C26H28O14 563 473, 443, 383 565 547, 529, 511 564

Vitexin-2”-O-rhamnoside 8.66 C27H32O15 577 457, 413, 341, 323 579 433, 415, 367, 337 578
Vitexin 9.55 C21H20O10 431 341, 311, 283, 268 432

Isovitexin 8.85 C21H20O10 431 341,323, 311, 295 433 415, 397, 379, 367 432
Saponarin 8.10 C27H30O15 593 473, 431, 311, 297 595 433, 415, 367, 337 594

luteolin-7-glucoside 9.03 C21H20O11 447 357,285,256 448
Luteolin-6-C-glucoside 8.33 C21H20O11 447 429, 357, 327 449 431, 383, 353, 329 448

6-C-arabinosyl-8-C-β-D-
xylosylapigenin 8.66 C25H26O13 533 443, 413, 383, 353 535 517, 499, 481, 469 534

FLAVANONES
Naringenin 11.62 C15H12O5 271 177, 151, 119 272

Prunin 9.53 C21H22O10 433 271, 177, 151 434
8-Prenylnaringenin 13.79 C20H20O5 339 245, 233, 219 341 285,183,165 340

2’,4’,5,7-Tetrahydroxy-8-
prenylflavanone 13.32 C20H20O6 355 193,161,149 357 301, 283 356

FLAVONOLS
Hyperoside 8.95 C21H20O12 463 300, 271, 255 465 303, 229 464

Isorhamnetin-3-O-glucoside 9.46 C21H20O11 447 314, 285, 271, 243 448
PHENOLIC ACIDS

3,4-Dihydroxybenzoic acid 3.69 C7H6O4 153 109,108 154
2,5-Dihydroxybenzoic acid 5.88 C7H6O4 153 123, 108, 95 154
6,8-di-C-glucosylapigenin 7.70 C27H30O15 593 503, 473, 383 595 577, 559, 511 594
4-hydroxybenzaldehyde 7.92 C7H6O2 121 108, 95, 93 122
12-hydroxyjasmonic acid

glucoside 7.93 C18H28O9 387 207, 163, 119 388

Uralenneoside 4.00 C12H14O8 285 152, 108 286
[2-hydroxy-3-[3,4,5-
trihydroxy-6-[[3,4,5-

trihydroxy-6-
(hydroxymethyl)oxan-2-

yl]oxymethyl]oxan-2-
yl]oxypropyl]
hexadecanoate

14.87 C31H58O14 699 653, 415 654

p-hydroxybenzoic acid 10.00 C7H6O3 137 93 138
GLYCOSYLGLYCEROLS

[2-hydroxy-3-[3,4,5-
trihydroxy-6-[[3,4,5-

trihydroxy-6-
(hydroxymethyl)oxan-2-

yl]oxymethyl]oxan-2-
yl]oxypropyl]

(9E,12E,15E)-octadeca-
9,12,15-trienoate

13.90 C33H56O14 721 675, 415 722

GLYCEROPHOSPHOCHOLINES
1-Palmitoyl-sn-glycero-3-

phosphocholine 16.10 C24H50NO7 540 480, 255,152, 78 496 184, 125, 86 495

LINOLEIC ACIDS AND
DERIVATIVES

9,12,13-Trihydroxy-10,15-
octadecadienoic

acid
11.44 C18H32O5 327 291, 229 328

9,12,13-Trihydroxy-10-
octadecenoic

acid
11.85 C18H34O5 329 229, 211 330

9,10,13-Trihydroxy-10-
octadecenoic

acid
12.47 C18H34O5 329 293, 211 330

9,10-DHOME or Leukotoxin
Diol 14.38 C18H34O4 313 277, 201 314
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3.3. Intracellular ROS Production

The addition of t-BOOH to cell cultures induced a remarkable increase in ROS genera-
tion of around 100% in EA.hy926 and around 40% in SH-SY5Y cells, very similar for both
types of treatments, ensuring the reliability of the model for oxidative damage (Figure 2).
The same extract concentrations (1–200 µg/mL) tested for cell viability were also assayed
for their ROS-quenching capacity. Similar to the assay of cell viability, a significant dose-
dependent reduction in ROS production was observed with increasing doses of the extract
and, in the case of EA.hy926 cells, a decline in ROS almost to control pre-stress values
was reached with the highest tested concentration of 200 µg/mL of D. tortuosum extract
(Figure 2A). The two highest extract concentrations, 100 and 200 µg/mL, were also efficient
in preventing ROS overproduction induced by t-BOOH in SH-SY5Y cells. The results
clearly indicate that both co- and pre-treatment with extracts from D. tortuosum in the range
of 50–200 µg/mL, significantly reduced ROS production induced by oxidative stress in
these two cell lines (Figure 2).
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Since the highest protection against an oxidative challenge for both co- and pre-
treatment approaches was obtained with the three highest concentrations of the extract, 50,
100 and 200 µg/mL, these three doses were tested for the rest of the oxidative
stress biomarkers.

3.4. Determination NO Levels

When t-BOOH was added to cell cultures, an increase in NO levels was observed in
EA.hy926 (around 50%) and SH-SY5Y cells (around 40%) (Figure 3), while the extracts
of D. tortuosum in the highest doses prevented the effect of t-BOOH. In EA.hy296 cells,
doses of 50, 100, and 200 µg/mL of D. toruosum reduced NO levels that were previously
induced by t-BOOH; and in SH-SY5Y cells this effect could only be observed with the 100
and 200 µg/mL doses of D. tortuosum (Figure 3).
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3.5. Apoptotic Assay: Caspase 3/7 Activity

The capacity of D. tortuosum extract to reduce the apoptotic effects produced by t-
BOOH was evaluated. The activity of the caspase 3/7 enzyme was increased by the effect
of t-BOOH in EA.hy926 cells by 70% (co- and pre-treatment), and in SH-SY5Y cells by 95%
(co- and pre-treatment) (Figure 4). D. tortuosum was able to reduce the apoptotic activity
induced by t-BOOH in both cell lines from doses of 25, 50, 100, to 200 µg/mL; this effect
was similar for both co- and pre-treatment with D. tortuosum (Figure 4).

3.6. Antioxidant Defenses
3.6.1. GSH Concentration

The concentration of GSH was determined as a reliable biomarker of the intracellular
non-enzymatic antioxidant defenses. Since an acute treatment with pure compounds or
extracts rich in natural antioxidants might evoke changes in the steady-state level of GSH
that might affect its response to induced oxidative stress, both cell lines were subjected to a
direct treatment for 22 h with the three extracts. Figure 5 shows that 50–200 µg/mL of extract
did not induce any change in the basal concentration of GSH of EA.hy926 cells, whereas
100–200 µg/mL evoked a significant decrease in SH-SY5Y cells, indicating that neuronal-like
cells were more sensitive to the presence of the extract concentrations for 22 h.
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Figure 5. Direct effect of D. tortuosum extract on GSH levels in EA.hy926 (A) and SH-SY5Y (B) cells
after a 22 h of treatment period. GSH levels was determined as % of control-change, and represent
the mean ± SEM of four independent experiments. a,b,c Different letters show significance between
groups at p < 0.05. ↓ represents percentage decrease with respect to control.

Treatment of EA.hy926 and SH-SY5Y cells with 100 µM t-BOOH for 22 h (co-treatment)
or with 200 µM t-BOOH for 4 h (pre-treatment) significantly reduced the cell GSH concen-
tration (Figure 6A,B). There was a slight but significant increase in GSH in EA.hy926 cells
subjected to co-treatment with the extracts; however, a significant dose-dependent recovery
was observed when endothelial cells were pre-treated with the extract concentrations prior
to exposure to the potent pro-oxidant (Figure 6A, pre-treatment). In SH-SY5Y cells, none of
the three tested doses of extract recovered the depleted GSH when they were added simul-
taneously (co-treatment) to the pro-oxidant (Figure 6B). Nevertheless, when neuroblastoma
cells were pre-treated with the extract prior to the stress, all three concentrations were
capable of fully preventing the GSH decrease (Figure 6B), indicating a chemo-preventive
effect of D. tortuosum on neuronal-like damage.
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The results indicate that a pre-treatment with the extracts of D. tortuosum was effective
in reducing cell death and quenching ROS and NO over-production, as well as diminishing
caspase 3/7 activity, and significantly preventing the intense depletion of GSH induced by
oxidative stress in both EA.hy926 and SH-SY5Y cells.

3.6.2. Antioxidant Enzymes

As the main antioxidant enzymes, evaluation of GPx and GR activity guarantees an
archetypal response of the antioxidant system to a stressful challenge. As in the case of
GSH, acute treatment with pure phytochemicals or natural extracts rich in antioxidants
might evoke changes in the basal pre-stress activity of GPx and GR that might affect its
further response to induced oxidative stress; thus, both cell lines were firstly subjected to
a direct treatment for 22 h with the three extract doses. A slight but significant decrease
in GPx activity was observed after treatment with 50–100 µg/mL extract in EA.hy926
cells (Figure 7A); similarly, a reduced activity of GR was found when EA.hy926 cells
were treated with 100–200 µg/mL (Figure 7B). Direct treatment of SH-SY5Y cells with D.
tortuosum extract for 22 h did not evoke any change in GPx activity (Figure 7C), whereas all
three tested doses (50–200 µg/mL) induced a significant decrease in GR activity (Figure 7D),
similar to what was observed in endothelial cells.

Treatment of EA.hy926 cells with 100 µM t-BOOH for 22 h evoked a 100% increase
in GPx activity (Figure 8A), whereas treatment with 200 µM t-BOOH for 4 h provoked a
50% enhancement of the enzyme’s activity (Figure 8A). This result confirms the expected
response of GPx to face the over-production of ROS induced by t-BOOH in EA.hy926 cells.
In agreement with the GPx increase, GR activity was also stimulated by 100 µM of the
pro-oxidant for 22 h to more than 100% (Figure 8B), and around two-fold by 200 µM of
t-BOOH for 4 h (Figure 8B). This result of GR ensures appropriate recycling of GSSG to
GSH for re-utilization. Remarkably, both co- and pre-treatment of EA.hy926 cells with
100–200 µg/mL of the extract evoked a significant reduction in the enhanced GPx activity,
that was dose-dependent in the co-treatment, and reverted to basal activity at the end of the
stress period (Figure 8A). Similarly, a dose-dependent rescue of the altered GR activity was
observed when EA.hy926 cells were co- or pre-treated with the three extract concentrations
(Figure 8B).
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Figure 7. Direct effect of D. tortuosum extract on GPX and GR activities in EA.hy926 (A,B) and
SH-SY5Y (C,D) cells after a 22 h of treatment period. GPX and GR activities were determined as %
of control-change, and represent the mean ± SEM of four independent experiments. a,b,c Different
letters show significance between groups at p < 0.05. ↓ represents percentage decrease with respect
to control.

Nutrients 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

was observed when EA.hy926 cells were co- or pre-treated with the three extract 

concentrations (Figure 8B). 

 

Figure 8. Effect of D. tortuosum extract on GPx (A) and GR (B) activity altered by t-BOOH in 

EA.hy926 cells after co-treatment (red bars, █) and pre-treatment (blue bars, █) periods. Data 

represent the mean ± SEM of three independent experiments. a,b,c,d Different letters show significance 

between groups at p < 0.05. ↑ represents percentage increase with respect to control, ↓ represents 

percentage decrease with respect to t-BOOH. 

Treatment of SH-SY5Y cells with 100 µM t-BOOH for 22 h or with 200 µM t-BOOH 

for 4 h provoked a significant enhancement of GPx and GR activity (Figure 9), confirming 

the predictable response of both enzymes to face the over-production of ROS induced by 

t-BOOH and the suitable reprocessing of GSSG to GSH for re-utilization in SH-SY5Y cells. 

Co-treatment with the extract did not evoke a significant rescue of the enhanced GPx 

activity, whereas pre-treatment of the SH-SY5Y cells with the three doses of D. tortuosum 

extract remarkably reverted the stimulated GPx activity to the control pre-stress values 

(Figure 9). Unexpectedly, no significant changes in GR activity were found in the SH-SY5Y 

cells treated with 100 µM t-BOOH (co-treatment) or 200 µM t-BOOH (pre-treatment). As 

GR activity was very low in all conditions, the assay was not sensitive enough to detect 

any measurable changes in enzyme activity (data not shown). Overall, EA.hy926 cells 

were more robust and responsive to stressful conditions than SH-SY5Y cells but, in 

general, both co- and pre-treatment of endothelial and neuronal-like cells with the D. 

tortuosum extract significantly prevented the permanent enhancement of both antioxidant 

enzyme activities, especially GPx (Figures 8 and 9). 

Figure 8. Effect of D. tortuosum extract on GPx (A) and GR (B) activity altered by t-BOOH in EA.hy926

cells after co-treatment (red bars,

Nutrients 2023, 15, x FOR PEER REVIEW 8 of 22 
 

 

3.2. Cell Viability 

The first parameter to ascertain the potential cyto-protection of the D. tortuosum 

extracts was cell viability after oxidative stress. D. tortuosum extracts at 1, 10, 25, 50, 100 

and 200 µg/mL were tested for their cyto-protective capacity. As depicted in Figure 1, 

exposure to t-BOOH produced a significant decrease in cell viability of around 62% in 

EA.hy926 cells and 50% in SH-SY5Y cells. Increasing the concentrations of extract evoked 

a partial but significant dose-dependent recovery of cell viability in the two cell lines for 

both co- and pre-treatment. D. tortuosum extracts at 100 and 200 µg/mL significantly 

increased SH-SY5Y cell viability for both co- and pre-treatment (Figure 1A), and in the 

pre-treatment of EA.hy926, whereas concentrations above 50 µg/mL were necessary to 

significantly recover EA.hy926 cell viability with co-treatment (Figure 1B). The highest 

recovery of cell viability from the oxidative stress was observed at co- and pre-treatment 

with 200 µg/mL extract in SH-SY5Y cells (Figure 1B). Once the cyto-protective effect of 

some of the tested concentrations of the extract was ensured, the study of the redox status 

and antioxidant response was carried out. 

 

Figure 1. Cytoprotective effects by D. tortuosum extract on EA.hy926 (A) and SH-SY5Y (B) cells after 

co-treatment (red bars, █) and pre-treatment (blue bars, █) periods. Data are presented as % control, 

and as mean ± SEM of six independent experiments. a,b,c,d Different letters show significance between 

groups at p < 0.05. ↓ represents percentage decrease with respect to control, ↑ represents percentage 

increase with respect to t-BOOH. 

3.3. Intracellular ROS Production 

The addition of t-BOOH to cell cultures induced a remarkable increase in ROS 

generation of around 100% in EA.hy926 and around 40% in SH-SY5Y cells, very similar 

for both types of treatments, ensuring the reliability of the model for oxidative damage 

(Figure 2). The same extract concentrations (1–200 µg/mL) tested for cell viability were 

also assayed for their ROS-quenching capacity. Similar to the assay of cell viability, a 

significant dose-dependent reduction in ROS production was observed with increasing 

doses of the extract and, in the case of EA.hy926 cells, a decline in ROS almost to control 

pre-stress values was reached with the highest tested concentration of 200 µg/mL of D. 

tortuosum extract (Figure 2A). The two highest extract concentrations, 100 and 200 µg/mL, 

were also efficient in preventing ROS overproduction induced by t-BOOH in SH-SY5Y 

cells. The results clearly indicate that both co- and pre-treatment with extracts from D. 

tortuosum in the range of 50–200 µg/mL, significantly reduced ROS production induced 

by oxidative stress in these two cell lines (Figure 2). 

) and pre-treatment (blue bars,

Nutrients 2023, 15, x FOR PEER REVIEW 9 of 22 
 

 

Since the highest protection against an oxidative challenge for both co- and pre-

treatment approaches was obtained with the three highest concentrations of the extract, 

50, 100 and 200 µg/mL, these three doses were tested for the rest of the oxidative stress 

biomarkers. 

 

Figure 2. Antioxidant effects by D. tortuosum extract on ROS production induced by t-BOOH in 

EA.hy926 (A) and SH-SY5Y (B) cells after co-treatment (red bars, █) and pre-treatment (blue bars, 

█) periods. ROS production was measured as fluorescence units. Data are presented as mean ± SEM 

of six independent experiments. a,b,c,d,e,f Different letters show significance between groups at p < 

0.05. ↑ represents percentage increase with respect to control, ↓ represents percentage decrease with 

respect to t-BOOH. 

3.4. Determination NO Levels 

When t-BOOH was added to cell cultures, an increase in NO levels was observed in 

EA.hy926 (around 50%) and SH-SY5Y cells (around 40%) (Figure 3), while the extracts of 

D. tortuosum in the highest doses prevented the effect of t-BOOH. In EA.hy296 cells, doses 

of 50, 100, and 200 µg/mL of D. toruosum reduced NO levels that were previously induced 

by t-BOOH; and in SH-SY5Y cells this effect could only be observed with the 100 and 200 

µg/mL doses of D. tortuosum (Figure 3). 

 

Figure 3. D. tortuosum extract effect on NO levels induced by t-BOOH in EA.hy926 (A) and SH-SY5Y 

(B) cells after co-treatment (red bars, █) and pre-treatment (blue bars, █) periods. NO levels are 

presented as % of control-change. Data represent the mean ± SEM of six independent experiments. 
) periods. Data represent the

mean ± SEM of three independent experiments. a,b,c,d Different letters show significance between
groups at p < 0.05. ↑ represents percentage increase with respect to control, ↓ represents percentage
decrease with respect to t-BOOH.

Treatment of SH-SY5Y cells with 100 µM t-BOOH for 22 h or with 200 µM t-BOOH
for 4 h provoked a significant enhancement of GPx and GR activity (Figure 9), confirming
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the predictable response of both enzymes to face the over-production of ROS induced
by t-BOOH and the suitable reprocessing of GSSG to GSH for re-utilization in SH-SY5Y
cells. Co-treatment with the extract did not evoke a significant rescue of the enhanced GPx
activity, whereas pre-treatment of the SH-SY5Y cells with the three doses of D. tortuosum
extract remarkably reverted the stimulated GPx activity to the control pre-stress values
(Figure 9). Unexpectedly, no significant changes in GR activity were found in the SH-SY5Y
cells treated with 100 µM t-BOOH (co-treatment) or 200 µM t-BOOH (pre-treatment). As
GR activity was very low in all conditions, the assay was not sensitive enough to detect
any measurable changes in enzyme activity (data not shown). Overall, EA.hy926 cells were
more robust and responsive to stressful conditions than SH-SY5Y cells but, in general, both
co- and pre-treatment of endothelial and neuronal-like cells with the D. tortuosum extract
significantly prevented the permanent enhancement of both antioxidant enzyme activities,
especially GPx (Figures 8 and 9).
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3.7. Gene Expression of Oxidative–Antioxidative and Cell Death Biomarkers

Genes related to oxidative–antioxidative (SOD2, NRF2 and NFκB1) and cell death
(APAF1, BAX and Caspase3) proteins were evaluated for the effect of t-BOOH or D. tortuosum
extract (co- and pre-treatment) on EA.hy926 and SH -SY5Y cells.

Molecular expression of SOD2 was decreased by around 45% due to the effect of
t-BOOH in both cell types, but this effect was reversed by the effect of the highest con-
centration of the D. tortuosum extract (200 µg/mL) in EA.hy926 and in SH-SY5Y cells
(Figure 10A,D). Likewise, NRF2 gene levels decreased by around 50% and 55% due to
the effect of t-BOOH in EA.hy926 and SH-SY5Y cells, respectively; while the 100 and
200 µg/mL doses, in both cell types, had the ability to significantly reduce the effect of
t-BOOH (Figure 10B,E). Moreover, t-BOOH was able to increase NFκB1 expression levels
above 250% and 175% in EA.hy926 and SH-SY5Y cells, respectively; and the D. tortuosum ex-
tract at all its doses reduced this effect in EA.hy926 cells, while only at 100 and 200 µg/mL
of D. tortuosum in SH-SY5Y cells (Figure 10C,F).
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The molecular expression of APAF1 was significantly increased above 140% and
90% by the effect of t-BOOH in EA.hy926 and SH-SY5Y cells, respectively; but this effect
was reversed by the effect of the concentrations of 50 (only pre-treatment in EA.hy926
cells), 100 and 200 µg/mL of D. tortuosum in EA.hy926 and SH-SY5Y cells, (Figure 11A,D).
Likewise, BAX mRNA expression was significantly increased by the effect of t-BOOH by
215% (co-treatment) and 179% (pre-treatment) in the EA.hy926 cells, and around 170%
in the SH-SY5Y cells; while all doses of D. tortuosum, in both cell types had the ability to
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significantly and dose-dependently reduce the effect of t-BOOH (Figure 11B,E). It was also
observed that t-BOOH induced Caspase3 expression above 89% in both cell types, which
was reduced by the effect of the D. tortuosum extract (50, 100 and 200 µg/mL) in both cell
types (Figure 11C,F).
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4. Discussion

In this study, an aqueous extract of D. tortuosum was prepared and its main phenolic
compounds were characterized by UHPLC/MS, showing phenolic acids, flavonoids such
as flavones, flavanones and flavanols, carotenoids and others antioxidant compounds
(Table 1) as the main compounds with bioactive potential. The extract showed significant
antioxidant capacity in vitro and effects in endothelial and neuronal-like cell culture that
include the regulation on ROS production and NO concentration, caspase 3/7 activity and
a remarkable anti-oxidative stress protection and molecular regulation of biomarkers of
oxidative stress and cell death. All these effects support the use of the plant since ancient
times in traditional medicine.

The range of doses of the D. tortuosum extract to test the anti-oxidative stress potential
was selected according to previous data from other studies working with plant extracts,
foodstuff and juices. A concentration of 35 µM of flavanol epicatechin was found in rat
serum 1 h after oral administration of 172 µmol epicatechin per Kg of body weight [34]. Sim-
ilarly, levels of 30–40 µM of cranberry phytochemicals have been detected in plasma after
the intake of cranberry juice [35,36]. Hence, the range of D. tortuosum extract concentrations
tested is not far from realistic; in fact, in previous works we have report the protective activ-
ity of Vochysia rufa (0.5–100 µg/mL) [21], Silybum marianum (5–25 µg/mL) [20], and cocoa
extract (2.5–20 µg/mL) [23] in EA.hy926 cells. Additionally, we have recently reported that
doses of 5–25 µg/mL of a Sambucus nigra extract [28] and 25–200 µg/mL of an aqueous
extract of cocoa phenolic compounds [27] protect SH-SY5Y cells from oxidative stress.

Previous results have indicated that the treatment of EA.hy926 cells with t-BOOH is
an excellent oxidative model in cell culture [20,23,37]. Similarly, very recently we have
also established a oxidative model in SH-SY5Y cells by a comparable treatment with the
same pro-oxidant, t-BOOH [27,28]. As most organic peroxides, t-BOOH decompose to
other alkoxyl and peroxyl radicals in a reaction assisted by metal ions that can generate
ROS, including H2O2 [29]. If the over-production of ROS is long-lasting, damage to macro-
molecules, proteins, lipids and DNA, might be excessive and irreversibly endanger cell
viability, as observed in t-BOOH-treated cells. However, under these stressful conditions,
significant inhibition of t-BOOH-induced cytotoxicity when both EA.hy926 and SH-SY5Y
cells were pre- or co-treated with plant extracts at realistic doses for 20 h indicated that
the integrity of the stressed cells was remarkably protected against the potent oxidative
challenge. The relevant amount of the bioactive phenolics in the extract was effective
enough for partial but significant dose-dependent cell protection, although the different
responses to co- and pre-treatment suggest a differential sensitivity of the two cell types to
the extracts in stressful conditions; pre-treatment being more effective in both cell lines. As
reported above, a similar cytoprotective capacity has been reported with other phenolic
extracts in both cell lines, EA.hy926 [20,21,23] and SH-SY5Y cells [27,28].

Assessment of ROS generation is a reliable index of the redox status as well as the
oxidative damage to living cells [29]. The addition of t-BOOH to either cell line in both, co-
and pre-treatment conditions, evoked a significant increase in ROS generation that might
be the main cause for the increased cell death. The significant dose-dependent reduction
in ROS induced by t-BOOH observed with co- and pre-treatment with extract in both cell
lines unequivocally support the antioxidant nature of the phenolic components and could
be a primary explanation for the reduced oxidative stress and subsequent cell protection.
Interestingly, a comparable ROS-quenching capacity has been reported not only in both
EA.hy926 and SH-SY5Y cells as referred above [20,21,23,27,28], but also in cultured hepatic
cells [38–42], clearly indicating that this chemo-protective effect is not specific of a particular
cell type or tissue but an systemic anti-oxidative stress capacity of natural antioxidants.

After administering t-BOOH to both cell cultures, NO levels increased significantly.
This similar effect of increasing NO in cell cultures by cytotoxic substances has been
previously reported [32,43]. The NO concentrations were reduced in a dose-dependent
manner by the effect of D. tortuosum from 50 µg/mL in both co- and pre-treatment in
EA.hy926 cells, and from 100 µg/mL in co- and pre-treatment in SH-SY5Y cells. NO is a
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signaling molecule that plays an important role in prolonging inflammation and immune
responses. D. tortuosum and other extracts could act as NO scavengers or inhibitors of its
production, through the inhibition of NO activity, inducible nitric oxide synthase (iNO) or
through free radical scavenging activities [44,45].

Many forms of cellular stress can lead to cell death, through intracellular stress or
mitochondrial dysfunction [46]. In this study it was observed that t-BOOH is capable of
inducing oxidative stress by increasing the levels of ROS and NO. This effect may have
produced an increase in the caspase 3/7 activity, enzymes involved in cell death and
evaluated in this study. It is also known that under conditions of oxidative stress, high
levels of ROS (superoxide, hydroxyl radical and hydrogen peroxide) are generated, which
induce cell damage and cell death [47]. This cell death often involves the induction of
apoptosis through the activation of caspase enzymes [48]. In this study, the high caspase
3/7 activity found in EA.hy926 and SH-SY5Y cells was reduced in a dose-dependent
manner by the effect of the D. tortuosum extract starting at 25 µg/mL for both pre- and
co-treatment. Similar effects have been reported in other studies, where they observed that
natural compounds with a high phenolic content reduced the activity of caspase enzymes
in EA.hy925 [49,50] and SH-SY5Y cells [51,52].

The best biomarker of the cell redox status is the concentration of GSH; thus, GSH de-
pletion or reduction indicates increased intracellular oxidation and precarious redox status,
whereas a balanced GSH concentration positions the cell in an advantageous situation to
face potential oxidative stress [53]. Concentration of GSH is tightly regulated within the
cell and direct exposure to plant extracts at non-toxic concentrations does not usually evoke
significant changes in basal GSH levels [20–22,29]. Thus, the decline in GSH concentrations
observed in SH-SY5Y cells treated with 100–200 µg/mL extract may be a consequence from
the direct conjugation of some extract compounds to GSH, a fact previously reported for
flavonoids, such as catechin [54] and epigallocatechin-3-gallate [55]. This direct conjugation
might be only relevant in the case of direct treatment with the highest concentrations tested
because of the larger amount of flavonoids and other antioxidants in the extract that are not
consumed to face the oxidative stress. On the other hand, the decreased GSH concentration
induced by t-BOOH suggests a state of oxidative stress that might result in irreparable
oxidative damage to macromolecules: lipids, proteins and nucleic acids. This hazardous
situation was dose-dependently prevented by the pre-treatment in EA.hy926 cells and
completely prevented by pre-treatment with all three doses in the SH-SY5Y cells. The
results suggest that the condition of co-treatment, with the continuous presence of a strong
pro-oxidant during the whole assay, was too severe for the extract compounds to recover the
consumed GSH to suitable levels in the cells. In any case, the response in the pre-treatment
assay is in agreement with reports of other plant extracts rich in phenolic antioxidants such
as Silybum marianum [20], Vochysia rufa [21] and green coffee [22] in EA.hy926 cells, as well
as cocoa [27] and Sambucus nigra [28] in SH-SY5Y cells. This outcome is essential since
preserving GSH concentrations above an appropriate threshold while struggling against a
stressful situation represents a crucial advantage for cell survival.

Activities of GPx and GR enzymes are essential to balance the cellular redox state. GPx
induces the reduction in cell-damaging peroxide species, along with the conversion of GSH to
oxidized glutathione [29,53], whereas GR recycles oxidized glutathione back to GSH [29,53],
recovering the steady state of cellular GSH. The increase in GPx and GR activities observed
after the noted treatments with t-BOOH unambiguously indicates a positive response
of the cell’s defense system to face oxidative stress [29,38–42]. Consequently, during
or after induced oxidative stress the antioxidant defense system of the cells pre-treated
with D. tortuosum extract rapidly returned to a steady-state condition minimizing cell
damage and, thus allowing the cell to deal with further oxidative insults in conditions
that are more favorable. We have previously demonstrated a similar chemo-protective
response of antioxidant defense enzymes by other antioxidant extracts in the same two cell
lines [20,21,23,27,28].
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Oxidative stress is one mechanisms through which cells respond by activating cell
survival or cell death pathways. Initially, cell tries to respond to oxidative damage in a
positive way, but if the damage too extensive the cell death mechanism will be activated.
In other words, the alteration of the oxidant–antioxidant mechanisms will activate cell
survival or death mechanisms in the cells [56]. In this study, we observed that the molecular
expression of the antioxidant biomarkers SOD2 and NRF2, and the oxidant biomarker
NFκB1 are altered by the effect of t-BOOH and are completely restored with a 200 µg/mL
dose of D. tortuosum. Likewise, it was observed that molecular biomarkers of cell death,
such as APAF1, BAX and Caspase3, were overexpressed by the effect of t-BOOH, and this
effect was reversed by the various concentrations of D. tortuosum in the EA.hy926 and
SH-SY5Y cells. Therefore, we can conclude that the D. tortuosum extract has an antioxidant
cytoprotective effect and a direct or indirect antiapoptotic effect (through antioxidant
mechanisms). In other studies where natural extracts have been used, this antioxidant–
antiapoptotic association effect has also been observed. This is the case of the increase
in SOD2 levels and the decrease in the expression of BAX and Caspase3 proteins due to
the effect of the Scrophularia buergeriana extract in the SH-SY5Y cells [57]. Furthermore,
the genus Astragalus was reported to increase SOD levels and decrease NFκB activity in
EA.hy926 cells [58]. Likewise, in cell cultures, the ability of natural extracts to increase
the levels of SOD and NRF2, two molecules involved in cell antioxidant activity, has been
observed [59,60].

In general, the response of EA.hy926 cells to stress was more constant and robust
than that of the SH-SY5Y cells and the protective effect of the D. tortuosum extract was
more efficient as a pre-treatment versus co-treatment. Overall data indicate that, under
chemically induced oxidative stress, treatment of endothelial and neuronal-like cells with
the D. tortuosum extract rich in antioxidant compounds reduces ROS production, NO gen-
eration, caspase 3/7 activity, and limits GSH depletion resulting in a restricted requirement
for antioxidant enzyme activity. Likewise, it was observed that there is an important
association between the expression of antioxidant molecules and the decrease in molecules
that induce cell death. This inclusive biochemical and molecular response evoked by the
bioactive extract could systematically explain the observed endothelial and neuronal-like
cyto-protection.

5. Conclusions

The extract of D. tortuosum is rich in phenolic compounds with antioxidant capacity.
This work demonstrates that the doses (50, 100 and 200 µg/mL) of the extract contributed
to the cytoprotection of EA.hy926 endothelial and SH-SY5Y neuronal cells subjected to
oxidative damage by t-BOOH, through the regulation of ROS, NO, GSH, antioxidant
enzyme activity, caspase3/7 activity, and molecular biomarkers from oxidative stress and
cell death. Taking into account all the data, it can be concluded that the treatment of
EA.hy926 and SH-SY5Y cells with the D. tortuosum extract (from 50 µg/mL) practically
normalizes (200 µg/mL) the antioxidant defense system of the cells after oxidative stress.
More studies are needed to evaluate the mechanism of action and biological activity in vivo
of D. tortuosum, before categorically concluding the potential protective effect of this botanic
extract in animals and humans.
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