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Abstract: Background: The edible fungus Auricularia delicate (ADe) is commonly employed in tradi-
tional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal
cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect
of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate
sodium. Results: ADe effectively suppressed the growth and number of intestinal tumors in mice.
Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides
while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of
2′-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore,
the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides.
ADe up-regulated the free fatty acid receptor 2 and β-Arrestin 2, inhibited the nuclear factor kappa
B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mit-
igating the inflammatory in CAC mice. Conclusions: The protective effect of ADe in CAC mice
is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB
pathway and regulation of inflammation.

Keywords: colitis-associated colorectal cancer; Auricularia delicate; intestinal microbiota; NF-kB;
inflammation

1. Introduction

The term colitis-associated colorectal cancer (CAC) refers to a subtype of colorectal
cancer that develops due to long-term inflammation in the gastrointestinal tract, specifically
associated with inflammatory bowel disease (IBD), encompassing Crohn’s disease (CD),
and ulcerative colitis (UC) [1]. The prevalence of colorectal cancer (CRC) in UC patients ac-
cumulates to 7% after 30 years of disease [2]. Patients with CAC typically undergo standard
surgical treatment; however, surgery may potentially result in intestinal damage, thereby
impacting the area of intestinal absorption [3,4]. The mitigation of CAC can be achieved
through pharmacotherapy aimed at reducing inflammation, such as the administration of
oxaliplatin and fluorouracil during chemotherapy [5,6], which is responsible for diarrhea,
nausea, absorption, and digestive disorders [7,8].

Accordingly, nuclear factor kappa B (NF-κB) activation due to chronic inflammation
leads to overabundant tissue regeneration, thus promoting the production and develop-
ment of tumor cells [9,10]. Tumor necrosis factor α (TNF-α) is a key factor in the develop-
ment and advancement of IBD. Its inhibition through anti-TNF-α therapy has become a
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common approach for managing this condition [11]. The specific binding between TNF
and its receptor can activate NF-κB, thus facilitating the development of CAC [12]. In the
process of inflammatory reaction, reactive oxygen species (ROS) generated by inflammation
induce DNA damage and mutations through oxidative reactions [10,13].

In clinical, intestinal microorganisms were considered to directly inflict epithelial
injury and trigger “intestinal permeability”, thereby instigating chronic inflammation and
further exacerbating tumor progression [14]. The mechanism of microorganisms-induced
colon cancer mainly includes three hypotheses, including the α-bug hypothesis (cancer-
promoting microorganisms that can produce toxins directly cause epithelial damage and
promote the development of CAC) [15], common ground hypothesis (under the influence
of both internal and external factors, such as diet and pollution, intestinal tissue damage
increased the probability of microbial infection, thereby promoting the development of
chronic inflammation and cancer in susceptible individuals) [16], and driver–passenger hy-
pothesis (based on the α-bug hypothesis, the opportunistic pathogens and the induction of
tumorigenesis are enhanced) [17]. As a biomarker of therapeutic efficacy, a hindrance to can-
cer treatment, and a probiotic for maintaining intestinal function, intestinal microbiota has
received increasing attention in tumor clinical treatment [18]. The involvement of certain
intestinal microorganisms in the development of enteritis and colon cancer has gradually
come to light; for instance, genus Desulfovibrio has been found to compromise the integrity
of the epithelial barrier while promoting cellular mutation [19,20]. The genus Parabacteroides
is a significant source of short-chain fatty acids (SCFAs) in the intestine, which effectively
inhibit inflammatory reactions and contribute to maintaining host-intestinal homeosta-
sis [21]. SCFAs are considered active metabolites produced by intestinal microorganisms
that regulate various physiological responses in the body, including anti-inflammatory and
anti-tumor effects. By promoting SCFAs secretion and subsequently inhibiting NF-κB path-
way activity, it aids in alleviating mouse colitis, reducing inflammatory cytokine expression,
and facilitating mucosal repair [22]. The administration of chitooligosaccharides has been
reported to protect mice from CRC by rectifying bacterial imbalance, specifically through
the reduction of Turicibacter genus [23]. In mice, glycomacopeptide can elevate SCFAs levels
and alleviate inflammation by decreasing Desulfovibrio genus [24]. Although regulating the
intestinal microbiota is considered a promising research direction for cancer treatment, the
role of intestinal microbiota in tumor clinical treatment is not fully common and collectively
recognized. Modulating intestinal microbiota is still not a standard treatment option in
clinical practice for cancer.

Based on its abundant biological activity and proven safety, mushrooms have the
potential to emerge as a novel therapeutic option for addressing CAC. Auricularia delicate
(ADe), commonly known as Deer tripe mushroom in China, belongs to the family Auric-
ulariaceae. In both China and India, ADe is utilized as a functional food for managing
gastrointestinal disorders [25,26]. The extract derived from ADe demonstrates potent
antibacterial and antioxidant properties [25]. In vitro studies have shown that ADe polysac-
charide effectively scavenges ROS, highlighting its antioxidative effects [27]. Our previous
investigation revealed that ADe can exert anti-obesity effects in mice fed with high-fat diets
by modulating oxidative stress [28]. However, the inhibitory effect of ADe on CAC, along
with a lack of comprehensive understanding of underlying mechanisms.

This study utilized a murine model of azomethane (AOM) and dextran sodium sulfate
(DSS)-induced CAC to assess inhibitory effects and underlying mechanisms of ADe on CAC
development in mice. ADe effectively attenuated inflammatory responses and suppressed
tumor growth in CAC mice by regulating intestinal microbiota composition and regulating
the NF-κB signaling pathway. These findings contribute to the potential utilization of ADe
as a possible therapeutic method for anti-CAC purposes.
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2. Materials and Methods
2.1. Animal Experimental Protocol

This protocol adheres to the guidelines set by ARREAT and has been approved by the
Animal Ethics Committee of Jilin University (SY202104008). The fruiting bodies of ADe
were cultivated and collected at Jilin Agricultural University.

Forty male C57BL/6 mice, aged 7 weeks, were procured from Liaoning Changsheng
Biotechnology Co., Ltd. [SCXK(Liao)2020-0001] (Benxi, China). The mice were kept in
SPF environment with a controlled temperature (23 ± 1 ◦C), humidity (50 ± 10%), and a
light/dark cycle of 12/12 h (light: 7:00–19:00). They were provided with unrestricted access
to food and water. After one week of acclimatization, thirty mice were randomly selected
for intraperitoneal injection with AOM (10 mg/kg physiological saline solution) (#A5486,
Sigma-Aldrich, MO, USA) on the first day. The entire animal protocol lasted 10 weeks,
during which drinking water was replaced with DSS (2% dissolved in water) (#S14049,
Shanghaiyuanye Bio-Technology Co., Ltd., Shanghai, China) in weeks 2, 5, and 8. Starting
from the fifth week onwards, the aforementioned thirty mice were separated into three
groups (n = 10): a model group receiving oral saline and two ADe-treated groups receiving
daily doses of either 0.5 (ADeL) or 1.0 g/kg ADe (ADeH), respectively, for six weeks. The
remaining ten mice served as the control group, receiving intraperitoneal injections of
normal saline followed by regular drinking water.

From the fifth week onwards, control mice received daily oral saline treatment for six
weeks (Figure 1A). Blood samples were obtained from the tail veins of all mice at the last
administration two hours later. They stood at 25 ◦C for 30 min before being centrifuged
twice at 3000 r/min for 10 min to prepare serum. After euthanizing the mice through
carbon dioxide inhalation, the cecal contents were collected under sterile conditions, while
colorectum, liver, kidney, spleen, and heart tissues were immediately collected. The
colorectum index is the ratio of the weight to length of the colorectum, which is used to
compare the proliferation of intestinal tissue. Organ index (including liver, spleen, kidney,
and heart) is the ratio of organ weight to body weight. Some of these tissues were fixed in
4% paraformaldehyde for subsequent histopathological examination. The remaining tissue
samples, along with serum and cecal contents, were stored at −80 ◦C.
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Figure 1. The protective effect of ADe in CAC mice. (A) A simplified flowchart depicting the animal
experimental protocol. (B) Body weights of mice (n = 10). (C) Colorectum index measurements
(n = 10). (D) Representative colorectal tissues of each group. (E) H&E pathological sections showing
colorectal tumors at different magnifications (40× scale bar: 500 µm; 400× scale bar: 50 µm) (n = 3).
## p < 0.01 vs. control group; red arrows: tumor tissue.
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2.2. Histopathological Examination

Following the methodology described in a previous study [29], after fixation in 4%
paraformaldehyde for 48 h, colorectal, liver, spleen, kidney, and heart tissues from mice
(n = 3 per group) were sequentially treated with an ethanol solution, xylene, and paraffin
to obtain paraffin-embedded tissues. Subsequently, the tissues embedded in paraffin were
sliced into 5 µm sections. These sections underwent dewaxing with xylene and ethanol
before being stained with hematoxylin and eosin (H&E) and dehydrated through successive
treatments of ethanol and xylene. Finally, the sections were observed under a microscope
(ECLIPSE E100, Nikon, Tokyo, Japan).

2.3. Intestinal Microbiota Analysis

The cereal contents of four mice from each group were randomly selected and uti-
lized for the analysis of intestinal microbiota. Nucleic acids were isolated from the con-
tents of each cecum and underwent PCR amplification, specifically targeting the 16S
rRNA V3-V4 region [30]. The resulting products were sequenced using a double-ended
approach with 2 × 250 bp reads. Following the determination by Shanghai Personal
Biotechnology Co., Ltd., the bacterial sequences were uploaded to NCBI SRA under the
registered number PRJNA860221, which can be accessed via the provided website link
(https://www.ncbi.nlm.nih.gov/sra/PRJNA860221, accessed on 23 July 2022). The se-
quencing data were clustered using DADA2 with a 100% similarity threshold. Based on
the amplicon sequence variants (ASVs) data, a flower plot was created to compare the
differences in ASVs composition between groups. The alpha diversity indices were utilized
to assess variations in the uniformity, richness, and diversity of intestinal microbiota across
different groups. The unweighted UniFrac distance matrix was calculated to compare the
differences in intestinal microbiota distribution among groups based solely on the presence
or absence of changes without considering abundance. The differences in dominant genus-
level microorganisms and the abundance of dominant biomarkers in each group were
compared using a speciation heat map and LEfSe analysis of the microorganism abundance.
The prediction of microbial function can be achieved by employing phylogenetic surveys of
communities through the reconstruction of unobserved states, as demonstrated in previous
studies [31].

2.4. Metabolomics Analysis

The serum sample (100 µL) was added to a pre-cooled solution of methanol and
acetonitrile (400 µL, 1:1, v/v), and vigorously shaken to ensure thorough mixing. The
resulting mixture was then centrifuged, the supernatant removed, and the remaining
solid dried. Prior to analysis using mass spectrometry, the samples were reconstituted
in a solution containing equal parts of acetonitrile and water (1:1, v/v). The solution
was subsequently separated using the Agilent Technologies 1290 Infinity UHPLC system
(Santa Clara, CA, USA), equipped with an ACQUITY UPLC BEH Amide column (1.7 µm,
2.1 × 100 mm), and analyzed utilizing the AB Sciex TripleTOF 6600 quadrupole-time of
flight mass spectrometer (Framingham, MA, USA). The separation conditions employed
were consistent with previous literature [32]. After data processing, the abundance of
signature metabolites was filtered using orthogonal partial least squares discriminant
analysis with VIP > 1 and p-value < 0.05. Subsequently, a Venn diagram and heatmap were
generated to visualize the results. Additionally, a combined analysis of microorganisms at
the genus level (top 20 abundance) and significantly changed metabolites were used to plot
an associated heatmap.

2.5. The Analysis of Inflammatory Cytokines in Tumor Tissue

The obtained colorectal tumor samples were partially segmented and mixed with
phosphate buffer solution before being homogenized. Protein concentrations were deter-
mined using the BCA Kit (#23227, Thermo Fisher, Waltham, MA, USA). The expressions
of interleukin (IL)−1α, IL-1β, IL-6, IL-17A, IL-27, interferon (IFN)-γ, IFN-β, TNF-α, and

https://www.ncbi.nlm.nih.gov/sra/PRJNA860221
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monocyte chemoattractant protein-1 (MCP-1) in tumors were measured using the LEG-
ENDplex™ Mouse Inflammation Panel (#740446 Biolegend, San Diego, CA, USA). The
levels of IL-12 (#MM-0174M1), IL22 (#MM0892M1), and granulocyte macrophage colony-
stimulating factor (GM-CSF) (#MM0185M1) in tumors were detected using standard assay
kits from Jiangsu MEIMIAN (Yancheng, China).

2.6. Western Blotting

Tumor tissues were placed in RIPA Lysis Buffer (#20-188, Merck Millipore, Burlington,
MA, USA) supplemented with a 1% Cocktail (#P002, NCM Biotechnology Co., Ltd., Suzhou,
China) for protein extraction at 4 ◦C. The target proteins were separated using a 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequently transferred
onto PVDF membranes. The membrane was blocked with a fast blocking solution (#GF1815,
Culham Science Centre, Oxfordshire, UK) at 25 ◦C for 15 min. Primary antibodies (Table S1)
were incubated on the membrane at 4 ◦C for 12 h. After removing the primary antibody,
corresponding secondary antibodies (Table S1) were incubated on the membrane at 4 ◦C for
4 h [33]. The protein was reacted with Electrochemiluminescence kits (#GK10006, GLPBIO,
Montclair, CA, USA) and detected using an imaging system (Tanon 5200, Tanon Science
and Technology Co., Ltd., Shanghai, China). The level of pixel density was quantified using
ImageJ v1.8.0 (National Institutes of Health, Bethesda, MD, USA).

2.7. Statistical Analysis

The data are presented as mean ± standard error of the mean (S.E.M.). Differences in
data between groups were assessed using a post-hoc multiple comparisons (Dunnett) test
(BONC DSS Statistics 25). Statistical significance for the differences in data between groups
was defined as a p-value less than 0.05.

3. Results
3.1. ADe Inhibited the Tumor in CAC Mice

AOM/DSS treatment led to an extensive increase in the growth of colorectal tumors
in mice, whereas ADe treatment significantly inhibited the incidence and progression
of colon tumors without affecting body weight in CAC mice. This led to smaller tumor
sizes and reduced number of tumors compared to untreated CAC mice (Figure 1B,D). The
proliferation of intestinal tissue was evaluated using the colorectum index. AOM/DSS
significantly increased intestinal tissue proliferation, while ADe restored colorectal prolifer-
ation without significant difference. ADe failed to change the structures of the liver, kidney,
and heart in CAC mice (Figures S1 and S2). In CAC mice, ADe notably suppressed spleen
index (p < 0.05) and megakaryocyte count in the spleen while maintaining its pathological
structure (Figures S1 and S2). Colorectal tissues from CAC mice exhibited a high nucleo-
cytoplasmic ratio, indistinct nucleoli, decreased infiltration of plasma cells, and increased
necrotic cell fragments; these effects were all regressed by ADe administration (Figure 1D).

3.2. ADe Regulated Intestinal Microbiota in CAC Mice

The alterations in the intestinal microbiota directly influence the occurrence and
progression of CAC [14]. Based on the Venn diagram, a total of 15,209 ASVs were detected,
with 1595 belonging to all four groups. The unique ASVs in normal mice, CAC mice,
ADeL-treated mice, and ADeH-treated mice were 4130, 3048, 3502, and 2934, respectively
(Figure 2A). Principal coordinate analysis (PCoA) was employed to assess and compare
the overall similarity of communities among groups; significant differences in microbial
composition were noted between the CAC mice and the ADe treatment mice (Figure 2B).
ADeL treatment significantly increased alpha diversity, as indicated by the Simpson index
(Figure 2C). The diversity in the top 20 abundances of intestinal microbiota between groups
was analyzed using a genus-level heatmap. AOM/DSS treatment resulted in increased
levels of Clostridium, Turicibacter, Oscillospira, and Desulfovibrio, which were subsequently
suppressed by ADe treatment. The abundance of eight genera, particularly Akkermansia
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and Parabacteroides, was significantly increased in CAC mice following ADe treatment
(Figure 2D and Table S2). LEfSe analysis revealed that the model group exhibited three
prominent taxa: Clostridium celatum at the species level, HB2_32_21 at the genus level,
and Alteromonadaceae at the family level. In contrast, the ADe-treated group showed
six significant taxa: Ruminococcus callidus species, Oscillospira and Paraprevotella genera,
Paraprevotellaceae and Burkholderiaceae family, as well as Burkholderia genus (Figure 2E).
These findings confirm that ADe treatment has a notable influence on intestinal microbiota
composition in CAC mice.
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diagram illustrated the overlap between different microbial taxa. (B) PCoA of unweighted UniFrac
distance was executed to assess beta diversity. (C) Grouping box plots were generated to compare
alpha diversity indices. (D) A heatmap was constructed to display the composition of the top 20
dominant genera. (E) LEfSe analysis. The logarithmic score threshold for LDA analysis was set at 2.0.

3.3. ADe Regulated Serum Metabolism in CAC Mice

The application of untargeted metabolomics enables a comprehensive and systematic
analysis of metabolic profiles, facilitating the identification of differential metabolites.
Notably, significant differences were observed in two specific metabolites across each group:
1-methylnicotinamide and cyclopiazonic acid (Figure 3A). In comparison to CAC mice, ADe
exhibited a down-regulation of 16 serum metabolites, including 2′-deoxyuridine, allantoin
and 1-palmitoyl lysophosphatidylcholine, and an up-regulation of 5 serum metabolites,
including alpha-tocopherol (Vitamin E), 1-aminocyclopropanecarboxylic acid, nicotinamide
N-oxide, 1-methylnicotinamide and cyclopiazonic acid (Figure 3B and Table S3). The
IBD marker, allantoin, exhibited a positive correlation with DL-indole-3-lactic acid and a
negative correlation with 1-methylnicotinamide (p < 0.01) (Figure 3C). Correlation analysis
was employed to examine the association between differential serum metabolites and
differential intestinal microbiota. The genus Oscillospira exhibited a positive correlation with
2′-deoxyuridine (p < 0.05). Conversely, the genera Lactobacillus and Allobaculum displayed a
negative correlation with 2′-deoxyuridine (p < 0.05). Furthermore, the genus Paraprevotella
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demonstrated a negative correlation with 1-palmitoyl lysophosphatidylcholine, nervonic
acid, and behenic acid (p < 0.05). Similarly, the genus Parabacteroides exhibited a negative
correlation with creatinine, 1-palmitoyl lysophosphatidylcholine, choline, nervonic acid,
protocatechuic acid, and behenic acid (p < 0.05) (Figure 3D).
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Figure 3. The levels of serum metabolites in CAC mice were regulated by ADe treatment. (A) Venn
diagram illustrated the overlap of altered metabolites. (B) Heatmap displaying 36 significantly altered
metabolites. (C) Heatmap showing the associated alterations in metabolite levels. (D) Heatmap
presenting the associations between significantly altered metabolites and microbiota species.
* p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. ADe Suppressed the Inflammation and NF-κB Signaling in CAC Mice

The significance of inflammation is crucial in the onset and advancement of CAC [34].
Compared to CAC mice, ADe-treated reduced IL-1α (>95%) (p < 0.001), IL-1β (by 81%
at 1.0 g/kg ADe) (p < 0.001), IL-6 (by 88% at 1.0 g/kg ADe) (p < 0.001), IL-17A (>51%)
(p < 0.001), TNF-α (>67%) (p < 0.001), and MCP-1 (by 64% at 1.0 g/kg ADe) (p < 0.01).
Correspondingly, ADe significantly up-regulated the levels of IL-12 (by 93% at 1.0 g/kg
ADe) (p < 0.05), IL-22 (by 141% at 0.5 g/kg ADe) (p < 0.001), IL-27 (by 563% at 0.5 g/kg
ADe) (p < 0.001), IFN-γ (by 135% at 0.5 g/kg ADe) (p < 0.001), IFN-β (by 311% at 0.5 g/kg
ADe) (p < 0.001), and GM-CSF (by 67% at 1.0 g/kg ADe) (p < 0.05) (Figure 4A–L). The
regulatory effect of ADe on IL-1, IL-1, IL-6, IL-12, IL-17A, GM-CSF, MCP-1, and TNF is
dose-dependent. However, the effect on IL-22, IL-27, IFN, and IFN in the 0.5 g/kg ADe
treatment group is greater than that of 1.0 g/kg ADe. The above data demonstrate that
ADe effectively attenuated inflammation in CAC mice.
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Figure 4. The regulatory effect of ADe on colorectal cytokines in colorectal tumor of CAC mice.
Specifically, (A) IL-1α, (B) IL-1β, (C) IL-6, (D) IL-12, (E) IL-17A, (F) IL-22, (G) IL-27, (H) GM-CSF,
(I) IFN-γ, (J) IFN-β, (K) MCP-1, and (L) TNF-α. (n = 6). ## p < 0.01, and ### p < 0.001 vs. control group;
* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. model group.

Preclinical studies have found that some Parabacteroides species can reduce intestinal
inflammation by producing SCFAs and inhibiting NF-kB signaling [21]. Based on the
requirements of safety and accuracy of clinical treatment, it is necessary to clarify the exact
mechanism of intestinal microorganisms for the application of corresponding therapeutic
options in clinical. The binding ability of β-Arrestin 2 is regulated by metabolites produced
by microorganisms through the activation of free fatty acid receptor 2 (FFAR2), resulting in
a reduction in nuclear translocation of NF-κB [35,36]. The levels of FFAR2 were significantly
increased by 0.5 g/kg ADe treatment (by 45%) (p < 0.05), along with β-Arrestin 2 (by 60%)
(p < 0.05) and TAB1 (by 134%) (p < 0.05). The regulatory effect of 0.5 g/kg ADe on FFAR2,
β-Arrestin 2, and TAB1 is greater than that of 1.0 g/kg ADe. Additionally, ADe treatment
resulted in a reduction in the phosphorylated of inhibitor of nuclear factor kappa-B alpha
(IκBα) (by 25% at 1.0 g/kg ADe) (p < 0.01), transforming growth factor-β activated kinase 1
(TAK1) (by 43% at 1.0 g/kg ADe) (p < 0.05), inhibitor of nuclear factor kappa-B kinase (IKK)
(>36%) (p < 0.05), NF-κB (by 39% at 1.0 g/kg ADe) (p < 0.05), reduced the protein levels of
IL-6 (>21%) (p < 0.05), IL-1β (>38%) (p < 0.01), IL-1α (by 24% at 1.0 g/kg ADe) (p < 0.05),
TNF-α (>29%) (p < 0.05), and MCP-1 (by 44% at 1.0 g/kg ADe) (p < 0.01) in colorectal
tissues (Figure 5). ADe regulated the expressions of associated proteins and suppressed the
NF-κB signaling.
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Figure 5. The proteins associated with the NF-κB pathway and inflammation in colorectal tumors of
CAC mice. Quantification data were standardized by employing GAPDH as a reference, and fold
change values were reported relative to control mice (n = 3). # p < 0.05, ## p < 0.01, and ### p < 0.001
vs. control group; * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. model group.

4. Discussion

This study confirmed that treatment with ADe reduced the occurrence and develop-
ment of colorectal tumors and protected intestinal tissue cells in mice with CAC induced by
AOM/DSS. Additionally, ADe treatment influenced the alterations in intestinal microbiota
and serum metabolites of CAC mice while inhibiting inflammation mediated by the NF-κB
pathway. According to reports, polysaccharide from Pleurotus pulmonarius inhibited carcino-
genesis in CAC mice by regulating the NF-κB pathway and suppressing inflammation [37].
Similarly, the inhibitory effect of ADe on CAC mice may be achieved through adjusting
intestinal microbiota and regulation of inflammation mediated by the NF-κB pathway.

Affected by lifestyle changes, the composition of the host’s intestinal microbiota under-
goes significant alterations, subsequently impacting susceptibility to intestinal diseases [38].
Research on intestinal microbiota has gradually unveiled the correlation between microor-
ganisms and CAC. The abundance of the genus Turicibacter is positively associated with
inflammation levels in CAC mice [39]. As a sulfate-reducing bacterium, the genus Desul-
fovibrio can produce hydrogen sulfide, leading to dysfunction of the colorectal barrier and
inflammation in both the colon and liver. This contributes to creating a microenvironment
conducive to CRC tumor occurrence and metastasis [40]. Treatment with Akkermansia has
been proven effective in reducing inflammation and improving LPS-induced dysfunction
of the intestinal barrier by inhibiting activation of the NF-kB pathway [41,42]. Akkermansia
selectively decreases in fecal microbiota among IBD patients, while supplementation with
Akkermansia can regulate immune-killing effects and inhibit IBD as well as CAC develop-
ment [43]. Both genera Akkermansia and Parabacteroides promote SCFAs production, which



Nutrients 2023, 15, 5011 11 of 15

can be regulated through the NF-kB pathway to suppress inflammation and help maintain
host intestinal homeostasis [21,44,45]. In AOM/DSS-induced CAC mice models, ADe treat-
ment prevented an increase in Clostridium, Turicibacter, Oscillospira, and Desulfovibrio genera
while also preventing a decrease in Akkermansia and Parabacteroides genera. These findings
suggest that ADe treatment may protect intestinal tissue by improving the composition of
intestinal microbiota.

The regulation of inflammation and host metabolism is significantly influenced by
the intestinal microbiota. In this study, the combined analysis of intestinal microbiota
and metabolomics revealed a positive correlation between the genus Oscillospira and 2′-
deoxyuridine, as well as a negative correlation between the genus Parabacteroides and crea-
tinine, 1-palmitoyl lysophosphatidylcholine, and choline. The detection of 2′-deoxyuridine
can serve as an inflammatory biomarker to evaluate inflammatory damage [46,47]. An
increase in creatinine levels reflects muscle damage and inflammation [48]. Moreover,
1-palmitoyl lysophosphatidylcholine acts as an effective inducer of inflammation by pro-
moting white blood cell migration and increasing pro-inflammatory mediator levels [49].
The reduction of choline leads to a decrease in mitochondrial ATP synthesis, triggering
AMPK activation, inhibiting NLRP3 activation, and reducing the production of IL-18 and
IL-1β, thereby mitigating inflammation [50]. These conclusions align with the outcomes
derived from analyzing intestinal microbiota, suggesting that in CAC mice, ADe may
exert anti-inflammatory effects by synergistically regulating both intestinal microbiota and
serum metabolites.

Chronic inflammation promotes cancer by facilitating the accumulation of ROS, regu-
lating the tumor microenvironment, and activating NF-κB transcription [51]. In the context
of human intestinal epithelial cells, the activation of NF-κB pathway by IL-1β leads to an
upregulation in the expression of IL-6 [52]. The triggering of IL-1/IL-6 axis contributes to
CAC development while blocking IL-1β activity demonstrates a substantial decrease in
both mucosal damage and tumor development [53]. IL-1β can also promote colon cancer
by inducing the IL-17 response [54], which leads to increased inflammation and oxidative
stress levels that activate NF-κB [55], promoting the development of CAC [56]. The acti-
vation of NF-κB by TNF-α is believed to directly contribute to the development of CAC
and the inhibition of TNF-α has been widely acknowledged as an effective therapeutic
approach for patients with IBD [57]. MCP-1 expression is regulated by NF-κB, and elevated
levels of MCP-1 pose an increased risk for IBD [58]. The IL-22 pathway partially mediates
the process of anti-TNF-α treatment, while IL-22 treatment can attenuate inflammatory
infiltration in colon tissue and enhance goblet cell abundance within the intestine [59].
The absence of GM-CSF can result in impaired innate immune response in the intestine,
thereby increasing DSS-induced intestinal inflammation [60]. The high expression of IFN
genes can impede the development of CAC by inducing pyroptosis in tumor cells [61].
The ADe treatment effectively suppressed the inflammatory levels in CAC mice, which
is consistent with alterations observed in intestinal microbiota, metabolomics, and spleen
histopathology. The above findings suggest that the protective effect of ADe in CAC mice
may be attributed to the regulation of inflammation through the NF-κB pathway.

Based on previous research, SCFAs have been shown to activate FFAR2 and enhance
the interaction between IκBα and β-Arrestin 2, thereby inhibiting NF-κB pathway. On the
other hand, SCFAs increase the binding affinity of β-Arrestin 2 for TAB1, leading to further
inhibition of TAB1-TAK1 binding, blockade of TAK1 phosphorylation, and subsequent IKK
phosphorylation, ultimately resulting in reduced nuclear translocation of NF-κB [62,63].
The levels of these proteins in tumor tissues of CAC mice are influenced by ADe. Interest-
ingly, the effect of ADe on some proteins is not dose-dependent, indicating that some active
ingredients in ADe might have the best active dose. Based on our current data, the pro-
tective effect of ADe in CAC mice is associated with its regulation of intestinal microbiota,
which subsequently inhibits NF-κB pathway activation and regulates inflammation levels.

The limitation of this study is that it only addresses a subset of intestinal microor-
ganisms, and further systematic analysis is needed to understand the specific functions
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of individual microorganisms within the complex composition and functionality of the
intestinal microbiota. The sample size of some results is limited. Increasing more samples
to verify the results in further studies will be helpful in determining the activity mechanism
of ADe.

5. Conclusions

The administration of ADe in CAC mice safeguards intestinal tissue by regulating
the mouse intestinal and serum metabolites, inhibiting NF-kB pathway activation, and
mitigating intestinal inflammation. These discoveries provide valuable perspectives on the
possible therapeutic use of ADe in treating CAC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15235011/s1, Table S1: Details of antibodies; Table S2: Relative
abundance of top 20 genera; Table S3: Significantly different metabolites; Figure S1: Histopathological
analysis of the liver, spleen, kidney, and heart via H&E staining; Figure S2: The effect of ADe on the
organ indices in CAC mice.
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