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Abstract: In vitro and animal studies have shown that carrot juice containing bioactive natural
products, such as falcarinol (FaOH) and falcarindiol (FaDOH), can affect inflammation. The present
study was designed to test whether oral intake of carrot juice containing the bioactive acetylenic
oxylipins FaOH and FaDOH affects mediators of acute inflammation or the innate immune response
in human blood. Carrot juice (500 mL) was administered orally to healthy volunteers, and blood
samples were drawn before and 1 h after juice intake. Next, the blood samples were split in two, and
one sample was stimulated ex vivo with lipopolysaccharide (LPS) and incubated at 37 ◦C for 24 h.
The concentrations of 44 inflammatory cytokines and chemokines were examined using multiplex
electrochemiluminescence analysis. In blood samples not stimulated with LPS, a significant increase
in IL-15 was measured 1 h after carrot juice intake. Cytokines like IFN-È, IL-12/IL-23(p40), IL-23,
IL-17A, IL-17B, IL-17D, and IL-22 were significantly increased in LPS-stimulated blood samples
after carrot juice intake. The upregulation of the immunostimulating cytokines belonging to the
IL-23/IL-17 Th17 axis suggests that carrot juice intake could benefit diseases where inflammation
plays a role, like in the early stages of diabetes or cancers.

Keywords: carrots; inflammation; lipopolysaccharide; ex vivo; cytokines; falcarinol; falcarindiol

1. Introduction

Chronic and persistent inflammation makes individuals susceptible to the develop-
ment of many diseases, including diabetes, cancer, and cardiovascular diseases. It has
previously been demonstrated that carrots (Daucus carota L.) can contribute to functional
tissue recovery in these diseases and that the responsible compounds in carrots are the C17
acetylenic oxylipins falcarinol (FaOH) and falcarindiol (FaDOH) [1–10]. FaOH and FaDOH
have, in numerous in vitro and/or in vivo studies, shown anti-inflammatory effects on
common inflammatory biomarkers such as cyclooxygenase (COX)-1 and -2, lipoxygenase-5,
-12, and -15, NF-κβ, TNFα, and interleukin (IL)-6, as well as demonstrated antiplatelet-
aggregatory, anti-diabetic, antiproliferative, and antitumor activity [2,4,6,7,11–23]. Further-
more, it has been demonstrated that long-term intake of FaOH and FaDOH downregulates
the gene expression of cyclooxygenase-2 (COX-2) as well as the inflammatory cytokines
interleukin (IL)-6 and tumor necrosis factor α (TNFα) in the colonic epithelium in a rat
model of colorectal cancer (CRC) [4]. In the same rat study, the downregulation of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κβ), which is responsible for
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the production of cytokines and COX-2, was also observed, whereas no effect on the gene
expression of COX-1 was detected [4].

COX-2 levels are low in healthy tissue but are rapidly induced as an early response to
growth factors, cytokines, and tumor promoters associated with inflammation, abnormal
cell proliferation, angiogenesis, and metastasis [24]. A connection between CRC and COX-2
overexpression has been established in accordance with the chemopreventive effect of
FaOH and FaDOH in a rat model for CRC [24,25], and just recently, we demonstrated that
intake of carrot juice in healthy human individuals reduced the secretion of inflammatory
cytokines like IL-1α and IL-16, not of COX-2, IL-6, and TNFα, following LPS stimulation ex
vivo, which are all known players in cancer development [1].

FaOH and FaDOH are, besides carrots, also present in many other food plants of the
Apiaceae family, such as celeriac (Apium graveolens L. var. rapaceum), celery (A. graveolens
L. var. dulce), fennel (Foeniculum vulgare Mill.), parsnip (Pastinaca sativa L.), lovage root
(Levisticum officinale W. D. J. Koch), and turnip-rooted parsley (Petroselinum crispum Mill.
var. tuberosum), as well as in many medicinal plants of the Araliaceae family like the
famous ginseng root (Panax ginseng C. A. Meyer) [2,16,18]. Carrot is, however, the most
widely consumed vegetable, thus contributing to most of the dietary intake of FaOH and
FaDOH [12,16,26]. The content of FaOH and FaDOH depends on carrot cultivars and
growing conditions and may vary between 40 to 600 mg/kg dry weight (DW) [16,26].
However, a serum level in humans of around 4 ng/mL blood can still be reached by eating
300 g of commercially available carrots [16,27]. This is within the range where an effect
on the growth of human cells in vitro is observed [12–16,28]. Based on the systematic
investigation of FaOH and FaDOH and their interaction with human cancer cells and
enzyme systems, these compounds appear to play a prophylactic role in some vegetable
foods and medicinal plants [2,16]. These effects of FaOH and FaDOH are most likely due to
their triple bond functionality, which transforms them into highly alkylating compounds.
The alkylating properties of FaOH and FaDOH make them reactive towards proteins and
other biomolecules, whereby they are able to induce the formation of anti-inflammatory
and cytoprotective phase 2 enzymes via activation of the Kelch-like ECH-associated protein
1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements
(ARE) signaling pathway, the inhibition of proinflammatory peptides and proteins, and/or
the induction of endoplasmic reticulum (ER) stress [2,29–31], and thus can explain their
prophylactic effects on inflammatory-related diseases and in particular cancer.

The anti-inflammatory and antiproliferative effects of carrots and their bioactive
constituents indicate an effect on the innate immune system. However, it is unclear how
carrots and their bioactive metabolites exert their immune-modulating effects in humans.
In this study, we have comprehensively investigated the effect of carrot juice intake on
cytokine and chemokine secretion under healthy and inflamed conditions ex vivo to gain a
greater insight into the immune-modulating effects of carrots. Cytokines and chemokines
are important multifunctional mediators of cell behavior and cell-to-cell communication
and play an essential role in the innate immune system. The functions of cytokines and
chemokines vary from being stimulatory and inhibitory to migratory, and how they affect
the cells in the environment is frequently also dependent on the presence or absence of
other cytokines, and thus the inflammatory and health status of individuals [32,33]. The
present study, therefore, provides new important knowledge on the immune-modulating
effects of carrots and their potential health-promoting effects.

2. Materials and Methods
2.1. Study Subjects

Fourteen healthy volunteers (9 females and 5 males, aged 20–55 years) underwent
blood sampling before and 1 h after carrot juice intake. Consent to participate in the study
was obtained from each participant. Subjects took no NSAIDs or carrots/carrot products
48 h preceding the study. All samples have been part of a study on COXs and a few selected
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cytokines, as previously described [1]. This study was approved by the Regional Health
Research Ethics Committee (S-20210071).

2.2. Carrot Juice

Carrot materials (cv. Night Bird F1 hybrid) were grown organically at DanRoots A/S
(Bjerringbro, Denmark). Tops and bottoms were removed from fresh, washed carrots,
which were then shredded, freeze-dried, and prepared into powder (European Freeze-Dry,
Kirke Hyllinge, Denmark). The powder was packed in sealed aluminum foil pouches and
stored at −30 ◦C until use.

The carrot juice was prepared in a 600 mL plastic shaker on the same day as the tests
were conducted. The juice contained 30 g of freeze-dried carrot powder and 500 mL of
tap water, giving a maximum concentration of FaOH in circulation 1 h after juice intake in
humans [27].

2.3. Blood Sampling

For each individual, two times 4 mL aliquots of peripheral venous blood samples were
transferred into glass tubes containing 10 IU of sodium heparin (plasma samples) before
oral intake of carrot juice. This sampling was repeated 1 h after oral intake of carrot juice.

2.4. LPS Mediated Stimulation of Leucocytes/Monocytes in Human Blood

An amount of 4 mL aliquots of human whole blood containing 10 IU of sodium
heparin was incubated either in the absence or presence of LPS (10 µg/mL) (E. coli O111:B4,
MERCK) for 0 to 24 h, at 37 ◦C. Plasma was separated by centrifugation (10 min at 2000 rpm)
and kept at −30 ◦C until assayed for inflammatory markers [34,35] (Figure 1).
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der.com. 

Figure 1. Illustration of the experimental setup used in the study. The participants (n = 14) consist of
9 females and 5 males. The volunteers were used as their own control as the native blood samples
from the same volunteers were analyzed before and after the intake of carrot juice. The blood samples
taken before and 1 h after intake of carrot juice were analyzed in the presence and absence of LPS.
The volunteers were not fasting before the carrot intake but were restricted to no intake of carrots or
carrot products as well as NSAID medication 48 h before the study. Created with BioRender.com.

2.5. Analysis of Cytokines and Chemokines in Plasma

Changes in the concentration of 44 human pro-inflammatory and anti-inflammatory
cytokines in plasma were analyzed in duplicate using the V-Plex Plus human cytokine kits
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(Mesoscale, Rockville, MD, USA, Catalog no. K15249D) in accordance with manufacturer’s
guidelines. The plates were read using the MSD QuickPlex (SQ120) Plate Reader (Mesoscale
Discovery), and the data were analyzed using the MSD Discovery Workbench software, as
detailed in [36]. An overview of the multi-plex plate containing analytes for the analysis
of pro-inflammatory cytokines, pro-inflammatory chemokines, and anti-inflammatory
cytokines is shown in Supplemental Tables S1 and S2.

2.6. Protein–Protein Interaction Network Analysis

The STRING 11 online tool (https://version-11-0.string-db.org/ (accessed on 11 Octo-
ber 2023) [37] was used to analyze protein–protein interaction networks of the significantly
altered cytokines in LPS-stimulated blood samples before and after intake of carrot juice.
The protein-interaction network graph was based on data on protein–protein interactions
including binding, activation, inhibition, posttranslational modification, transcriptional
regulation, etc.

2.7. Statistical Analysis

Wilcoxon signed-rank tests were performed to compare the excretion of each biomarker,
respectively, at baseline and 1 h after carrot juice intake. This was repeated for samples
subjected to LPS stimulation. The level of statistical significance was set at 5% (p < 0.05).
All data management and statistical analyses were performed in SAS software version 9.4
(SAS Institute Inc. SAS 9.4. Cary, NC, USA) and R statistical software package version 3.6.1
(R Core Team, Vienna, Austria).

3. Results
3.1. Carrot Juice Intake Affects Cytokine and Chemokine Concentrations in Human Plasma

At baseline, plasma was analyzed before and after intake of carrot juice. Most analytes
showed no change in plasma concentration between baseline and 1 h after carrot juice
intake except IL-15, which significantly increased (p = 0.0105) in plasma (Table 1).

Table 1. Overview of pro- and anti-inflammatory cytokines measured in the plasma samples and
affected by carrot juice intake. NSE = no significant effect. Mean concentrations of cytokines pg/mL
± standard deviation (n = 14).

Biomarker Plasma from Whole Blood before
and after Intake of Carrot Juice

Plasma from LPS (10 µg/mL,
24 h)-Stimulated Whole Blood before

and after Intake of Carrot Juice

Time of Sampling 0 h 1 h 0 h 1 h

Mean
(pg/mL)

Mean
(pg/mL) p-Value Mean

(pg/mL)
Mean

(pg/mL) p-Value

Pro-Inflammatory Cytokines

IFN-γ 26.5 ± 16.6 26.9 ± 16.5 NSE 252.7 ± 235.7 337.4 ± 278.2 0.0166

IL-15 1.5 ± 0.35 1.8 ± 0.47 0.0105 2.0 ± 0.68 2.2 ± 0.83 NSE

IL-17A 7.3 ± 2.1 7.2 ± 2.7 NSE 96.6 ± 69.0 149.9 ± 83.9 0.0023

IL-17B 6.3 ± 7.6 7.2 ± 7.4 NSE 15.1 ± 9.7 19.2 ± 11.5 0.0134

IL-17D 39.4 ± 18.0 45.3 ± 18.6 NSE 48.9 ± 27.7 62.3 ± 24.8 0.0085

IL-23 2.5 ± 1.9 4.5 ± 4.7 NSE 135.9 ± 184.4 207.9 ± 204.2 0.0002

Anti-Inflammatory Cytokines

IL-12/IL-23p40 133.3 ± 41.9 141.3 ± 32.3 NSE 3011 ± 2395 4131 ± 2594 0.0245

IL-22 4.4 ± 2.5 4.9 ± 2.6 NSE 8.0 ± 4.4 11.2 ± 8.2 0.0215

https://version-11-0.string-db.org/
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In contrast, carrot juice intake affected both pro- and anti-inflammatory cytokines
in LPS-stimulated plasma samples 1 h after juice intake compared to no juice intake
(Table 1). Levels of IFN-γ, IL-17A, IL-17B, IL-17D, IL-22, IL-23, and IL-12/IL-23p40 were
significantly changed following carrot juice intake and LPS-stimulation (Table 1) in plasma
samples with a peak concentration of FaOH [27]. However, we did not observe any gender
differences concerning the production of cytokines. The results of all analyzed cytokines
and chemokines are shown in Supplemental Table S2.

3.2. Effect of Carrot Juice Intake in LPS-Stimulated Human Plasma

To reveal the effect of carrot juice intake on stimulated cytokine synthesis and release,
the TLR4 agonist LPS was added to whole blood drawn before and after carrot juice
intake. Plasma was separated after incubation for 24 h. Addition of LPS increased plasma
concentration of most cytokines above baseline in the present investigation with the largest
fold-increase for GS-CSF (528-fold), IL-10 (44-fold), MIP-1α (38-fold), and IL-8 (23-fold),
while IL-17A GenB, IL-15, IL-17D, IL-21, IL-31, VEGF-A, Eotaxin-1, MCP-4, and MDC were
not increased or only to a minor extent (Table 1 and Table S2). Comparison of the paired
samples with LPS before and after carrot juice showed that the addition of LPS to the blood
samples drawn before and 1 h after carrot juice intake resulted in a significantly increased
secretion of the pro-inflammatory cytokines IFN-γ (p = 0.0166), IL-17A (p = 0.0023), IL-17B
(p = 0.0134), IL-17D (p = 0.0085), and IL-23 (p = 0.0002), and the anti-inflammatory cytokines
IL-12/IL-23p40 (p = 0.0245) and IL-22 (p = 0.0215) in human plasma samples. However, we
did not observe any gender differences concerning the production of cytokines. STRING
network analysis was performed to reveal the protein–protein interaction network between
these identified cytokines (Figure 2). Based on interaction evidence [37], the cytokines
are involved in immune infiltration in cancers, defense responses, positive regulation
of cytokine production, and the inflammatory response; all the identified cytokines also
stimulate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT)
signaling pathway (Figure 2).
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4. Discussion

Carrots and their bioactive constituents FaOH and FaDOH have, in numerous investi-
gations, been shown to be potent inhibitors of inflammation and to inhibit the proliferation
of mammalian cells, including cancer cells [2,4,6,10–20]. In addition, FaOH and FaDOH
have shown a synergistic inhibitory effect on human intestinal cells of normal and cancer
origin demonstrating an enhanced antiproliferative effect in vitro in different ratios [12].
The ratio 1:1 of FaOH and FaDOH was used to demonstrate the anti-inflammatory and
anticancer effect of FaOH and FaDOH in the rat model of CRC described in the introduc-
tion [4]. In this context, the activation of the Keap1-Nrf2 pathway by FaOH and FaDOH
may constitute an important mechanism of action for their health-promoting effects. Nrf2
has been implicated in the regulation of the oxidative stress response and inflammatory
responses and as an important regulator of innate immunity through the formation of
pro- and anti-inflammatory cytokines [38–40]. The implication of Nrf2 in controlling the
immune response has been shown to be due to direct or indirect interaction with important
innate immune components, including the toll-like receptors–NF-kB pathway, inflamma-
some signaling, and the type-I interferon response indicating an essential role for Nrf2 in
diseases related to inflammation, cancer, and microbial infections [38–40]. In resting cells,
Nrf2 is bound to Keap1; however, upon exposure to various stimuli, including reactive
oxygen species, nitrogen species, and electrophilic molecules such as FaOH and FaDOH,
Nrf2 is activated and released from the Keap1 complex and translocated to the nucleus
to activate its target genes recruiting immune cells to the site of infection through the
formation of cytokines.

Several studies have demonstrated that Nrf2 contributes to the anti-inflammatory
process and that there is a connection between Nrf2 and signaling pathways associated with
the inflammatory response [40–42]. STRING analysis of the cytokines affected by the intake
of carrot juice in the used ex vivo model showed that besides interaction with the JAK-
STAT signaling pathway, carrots also appear to have an impact on immune infiltration of
cancers, the defense and inflammatory response in the humane body, as well as the positive
regulation of the cytokine production (Figure 2). The JAK-STAT signaling pathway is central
to extracellular cytokine-activated receptor-mediated signal transduction, which is involved
in cellular proliferation, differentiation, inflammation, and immune homeostasis [43]. Thus,
the STRING analysis indicates that the intake of carrots has health-promoting effects, which
may be linked to their immunomodulatory and immunostimulating effect.

The ex vivo setup used in this study was a human model of acute inflammation
and immunostimulation to investigate the effect of intake of carrots on monocytes and
macrophages in blood samples from healthy volunteers with and without immunostim-
ulation by LPS [1]. Thus, this model system represents the effect of intake of carrots on
parts of the innate immune system and its effects on acute inflammatory response. Acute
inflammation caused by LPS resulted in increased excretion of the IL-12/IL-23p40, IL-23,
and IL-17 families (IL-17A, B, and D) of cytokines and IL-22, which were further increased
1 h after intake of carrots (Table 1), whereas it has previously been shown that the excretion
of IL-1α and IL-16 decreased in this ex vivo model [1].

IL-23 is an inflammatory cytokine, which has been shown to be a key cytokine for T
helper (Th) cell maintenance and expansion [44,45]. IL-23 is mainly secreted by activated
macrophages or monocytes in the ex vivo blood samples. The cytokine IL-23 stimulates
the Th17 cells to secrete IL-17 and IL-22 cytokines. The increased IL-23 level is, therefore,
in accordance with the observed increase in the level of IL-17 cytokines and IL-22 in the
blood samples after stimulation with LPS and 1 h after intake of carrot juice (Table 1).
The IL-17 family of cytokines is composed of six members named IL-17A (commonly
known as IL-17), IL-17B, IL-17C, IL-17D, IL-17E (also known as IL-25), and IL-17F with
different sequence homology and functions that are important players in host defense
responses, inflammation, and cancer development [46–48]. The IL-17 cytokines exert
their activities through binding to IL-17 receptors (IL-17RA to IL-17RE) that function
as homo- or heterodimeric complexes leading to the production of other cytokines and
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chemokines. IL-17A is the prototypic member of the IL-17 family and was the first member
of the IL-17 family to be discovered and targeted in the clinic. IL-17A has received much
attention for its pro-inflammatory role in autoimmune disease, but accumulating evidence
indicates that IL-17A has important context- and tissue-dependent roles in maintaining
health during response to injury, physiological stress, and infection [46–48]. IL-17A derived
from the innate and adaptive immune system is essential for modulating the interplay
between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae) at
different phases and locations of infection, protecting us from microbial invaders, and thus
preserving mucosal and skin integrity [46–48]. However, IL-17A overproduction has been
associated with chronic inflammatory disorders, autoimmune diseases, and cancers [49–51].
Therefore, IL-17A possesses a dual role that, under some conditions, will protect from
diseases, while under other conditions, it could harm the human body [52,53]. In one
case report, anti-IL-17A treatment was beneficial for preventing the development of an
autoimmune disease in a patient, but at the same time, it caused the loss of an antitumor
response in the same patient who also suffered from CRC [54]. Furthermore, the antitumor
effect has been demonstrated in mice models of cancer [55]. Whether the outcomes of
IL-17A signaling are beneficial or harmful depends on the amount of IL-17A produced and
how IL-17A signals are received and transmitted within the responding cell. The related
IL-17B share the common interleukin receptor IL17-RB with IL-25, and they are expressed
in several peripheral tissues and immune tissues, including colon epithelial cells [56].
However, IL-17B and IL-25 appear to have opposite functions in colon inflammation. In
acute colonic inflammation, both cytokines have been shown to be upregulated, where
IL-25 has a pathogenic role by promoting the production of the pro-inflammatory mediator
IL-6, whereas IL-17B has been shown to perform an anti-inflammatory role by blocking
IL-25 signaling in acute inflammation [47,56]. In this study, IL-6 was not upregulated,
which could be indicative of a beneficial immune response of IL-17B. Although IL-17B
promotes cell survival, proliferation, and migration, when measured alone, it relates to
poor prognosis in patients with different types of cancer [47].

IL-17D is expressed in a wide variety of healthy tissues but is one of the least under-
stood members of the IL-17 family [47]. Stimulation of IL-17D in endothelial cells has been
shown to induce classical pro-inflammatory cytokine responses such as IL-6, IL-8, and
GM-CSF [57], although increased levels of IL-17D in the present study did not result in
increased levels of these pro-inflammatory cytokines. In addition, IL-17D has been found
to increase in tumors and during viral infections where Nrf2-mediated IL-17D expression
plays an important role in the antitumor as well as the antiviral response through the
regulation of innate immune cell recruitment [41,47]. Thus, the increased levels of IL-17D
observed in the present study may contribute to an anti-inflammatory effect.

IL-22 primarily targets epithelial and stroma cells to induce innate host defense mech-
anisms that control the invasion of extracellular pathogens. In addition, IL-22 can enhance
tissue regeneration and wound healing and thus may provide therapeutic potential in
diseases associated with tissue damage [58]. In addition, IL-22 promotes the expression of
various chemokines from epithelial cells, which likely helps to recruit the leukocytes to the
site of inflammation and/or pathogens [59]. Colorectal cancer and other lifestyle diseases
are often initiated during inflammatory conditions and changes in the microbiota. Even a
small amount of blood in the stool may be a result of microinflammation and microbiota
changes, and blood in the stool can predict the cause of mortality, not only for CRC [60,61].
The increased secretion of IL-23, IL-22, and IL-17 cytokines observed in the ex vivo model
by the intake of carrot juice indicates that they will further activate the innate immune
response in the event that an acute inflammatory condition occurs, which will result in a
reduction of acute microinflammation in the human body. This may help the body to create
homeostasis in the microbiota, preventing chronic inflammation and the development
of serious diseases because an imbalance in the concentration of IL-23, IL-22, and IL-17
cytokines observed in chronic inflammation is associated with autoimmune diseases and
cancer [53,62–64].
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IL-16 has been shown to exert a strong chemoattractant activity on Th cells, activate
the expression and production of proinflammatory cytokines such as IL-1β, IL-6, IL-15, and
TNF-α in human monocytes, and play a key role in inflammation, including inflammatory
bowel disease, and the progression of certain types of cancers [65–67]. The reduced level of
IL-16 in the ex vivo setup as previously described [1], and the fact that IL-1β, IL-6, IL-15,
and TNF-α are not affected in the blood samples after stimulation with LPS (Tables 1 and S2
and [1]), indicates that the intake of carrot juice exerts an anti-inflammatory role in relation
to IL-16 production and thus may contribute to control the immune response in acute
inflammation. The same is true for the reduced level of IL-1α in the ex vivo setup [1]
because IL-1α is a damage-associated molecular pattern-induced cytokine that evokes
many inflammatory reactions via the IL-1 receptor type 1 [68].

In addition, it was demonstrated in this study that the intake of carrots stimulates the
secretion of IL-15 under normal conditions and not in response to inflammation (Table 1).
IL-15 is a cytokine with a broad range of biological effects on the innate and adaptive
immune system that plays a central role in the inflammatory and protective immune
response against pathogens [69–71]. This immunostimulating effect of IL-15 stimulates
the immune response in general and may prepare the human body for the initiation of
inflammation, and this may prevent the development of lifestyle diseases like CRC [72].

Finally, it was demonstrated that IFN-γ was upregulated during the LPS stimulation
and after intake of carrots (Table 1). IFN-γ is originally thought to affect viral replication;
however, immunostimulating effects are also observed by this cytokine in several complex
processes in diseases and health [73,74]. Therefore, the increased IFN-γ secretion observed
in the acute inflammation model confirms the immunostimulating effects of carrots.

The ex vivo model system used in this study to determine the effect of carrot juice
on the profile of cytokines and chemokines in the blood circulation has, however, some
limitations. First, the measurements reflect a specific point of time before and after the
intake of carrot juice (1 h) and, furthermore, acute inflammation due to LPS stimulation
of the blood samples. Secondly, the effect of carrot juice on cytokines and chemokines
is not determined during pathological processes and specific tissues but is limited to the
blood circulation. Finally, the interplay between cytokines and chemokines in tissue is very
complex and may be different from that observed in the blood circulation. Consequently,
further research is warranted to elucidate the underlying mechanisms for the health-
promoting effects of carrot product consumption related to inflammation and immune
responses and to validate these observations in long-term clinical trials. Further, such
clinical trials should comprise larger and more diverse populations including gender, age,
etc., than used in the present study and include the evaluation of the effects on inflammation
and immune responses on different cell types and tissues.

5. Conclusions

In the present study, the intake of carrot juice reduced inflammatory cytokines such
as IL-15 but upregulated immunostimulating cytokines in the IL-23/IL-17 Th17 axis after
induction of acute inflammation by LPS ex vivo. Whether these responses may be harmful
or beneficial in the long term is not clarified by the present study. Intake of carrots has acute
effects on reactivity in parts of the innate immune system, and the bioactive compounds in
carrots that can explain these effects are most likely acetylenic oxylipins such as FaOH and
FaDOH due to their ability to activate the pathways of Keap1-Nrf2 and JAK-STAT.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15235002/s1, Tables S1: Overview of the multi-plex plate con-
taining analytes for the analysis of proinflammatory cytokines, pro-inflammatory chemokines, and
anti-inflammatory cytokines; Table S2: Effect of carrot juice intake on pro- and inflammatory biomark-
ers analyzed in an ex vivo assay using whole blood from healthy donors with and without addition
of LPS. Time of blood sampling 0 h is before consumption of carrot juice and 1 h is after consump-
tion of carrot juice (peak concentration of FaOH in the circulation [27]. NSE = no significant effect.

https://www.mdpi.com/article/10.3390/nu15235002/s1
https://www.mdpi.com/article/10.3390/nu15235002/s1
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Mean concentrations (pg/mL) of biomarkers measured in the plasma sample are listed for the study
(n = 14).
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